Mutual Information-based Sensor Positioning for
Car Cabin Comfort Control

Diana Hintea!, James Brusey', Elena Gaura!, Neil Beloe?, and David Bridge®

! Coventry University, Priory Lane, Coventry, CV1 5FB, UK
2 Jaguar Land Rover Ltd, Abbey Road, Whitley, Coventry, CV3 4LF, UK
3 MIRA Ltd, Watling Street, Nuneaton, CV10 0TU, UK

Abstract. Car cabins are transient, non-uniform thermal environments,
both with respect to time and space. Identifying representative locations
for the Heating, Ventilation and Air Conditioning (HVAC) system sen-
sors is an open research problem. Common sensor positioning approaches
are driven by considerations such as cost or aesthetics, which may impact
on the performance/outputs of the HVAC system and thus occupants’
comfort. Based on experimental data, this paper quantifies the spacial-
temporal variations in the cabin’s environment by using Mutual Infor-
mation (MI) as a similarity measure. The overarching aim for the work is
to find optimal (but practical) locations for sensors that: i) can produce
accurate estimates of temperature at locations where sensors would be
difficult to place, such as on an occupant’s face or abdomen and ii) thus,
support the development of occupant rather than cabin focused HVAC
control algorithms. When applied to experimental data from stable and
hot/cold soaking scenarios, the method proposed successfully identified
practical sensor locations which estimate face and abdomen temperatures
of an occupant with less than 0.7 °C and 0.5 °C error, respectively.

1 Introduction

The role of Heating, Ventilation and Air Conditioning (HVAC) in cars is to keep
passengers comfortable or, more correctly, to avoid their discomfort. Tradition-
ally, the HVAC energy budget has been generous. However, with the introduction
of electric and hybrid electric vehicles, any additional energy usage by the HVAC
system reduces the range, and thus, the usefulness of the car. Energy efficient
approaches to control are called for, potentially based on local conditioning of
occupied cabin areas and driven by occupants’ perceptions of the environment
rather than set-point temperatures.

Several novel approaches to HVAC control have been presented in the lit-
erature. Generally, such approaches are concerned with directly controlling the
comfort of the cabin occupants. Comfort is estimated by applying a model, such
as Predicted Mean Value (PMYV) [3], to the cabin sensed data. The success of
such control algorithms heavily relies on an accurate representation of the sensed
phenomena at specific points, i.e in the immediate vicinity of the occupant, and
also presume the cabin environment to be relatively stable.



A parallel line of work in the domain takes advantage of enhanced under-
standing of human physiology and proposes models for estimating the occupant’s
thermal sensation and, with it, thermal comfort. Thermal sensation can be pre-
dicted either for the whole body or for individual body parts and common model
inputs are local skin temperature, mean skin temperature and core body tem-
perature, together reflecting the overall thermal state of the body. The Berkeley
Comfort Model [6] and Zhang’s Model [14] are the best empirical models to date
and are used by most advanced automotive simulators such as RadTherm [10]
for evaluating cabin environments.

Whilst expected to deliver a more accurate representation of the comfort ex-
perienced by occupants, physiological comfort models can not be directly used
for HVAC control as it is impractical to acquire the necessary inputs (i.e. skin
temperature at various points). The inputs could, however, be estimated from
suitable cabin data. The prerequisites are: i) a good understanding of the cabin
environment and the relationships between various sensing locations within the
cabin and ii) a method of estimating with sufficient accuracy human skin tem-
perature in a variety of conditions, from cabin data.

The work here proposes a Mutual Information (MI) based method as an aid
to understanding the cabin environment and the spacial relationships between
temperatures within the cabin. MI quantifies the shared informational content
between a source sensor location and a target virtual location (such as various
occupant skin sites). Within an experimental set-up which makes available not
only cabin data at multiple points, but also occupant skin temperature data,
the method allows the selection of practical cabin sensor locations best suited
for estimating skin temperatures.

The paper is structured as follows. Section 2 presents related work in the
areas of HVAC control and sensor positioning. Section 3 describes the methods
developed for calculating the MI between sensor locations within a car cabin envi-
ronment. Section 4 presents the results obtained when applying the MI methods
to experimental data and Section 5 concludes the paper.

2 Related Work

Numerous attempts exist in the literature towards developing comfort control
algorithms. Torres et al. [13] designed and implemented a neural network based
control algorithm, using a back-propagation learning method. Though good re-
sults were achieved based on a simple neural network, a disadvantage is repre-
sented by the network’s long training duration. In order to make the learning
process less time consuming, Luo et al. [7] worked on a Fuzzy Neural Network
(FNN) model for predicting clothing thermal functions, based on body core and
skin temperatures. Another fuzzy logic-based control algorithm was presented
by Stephen et al. [12]. The method simplified and converted Fanger’s [3] PMV
equations into fuzzy rules. However, the results were simulation-based and the
controller’s effectiveness was not clear from the results.



The works described above assume that the sensor data driving the control
algorithms is a perfect representation of the cabin environment. The complexity
and dynamics of the cabin are not considered. Spacial-temporal thermal vari-
ations in the cabin are however significant, as observed experimentally by the
authors here in a variety of controlled tests.

Although not specifically dealing with cabin environments, a number of works
in the literature are concerned with strategies for finding optimal sensor locations
in similar complex environments. Guestrin et al. [4] chose a MI criteria (a mea-
sure of the amount of shared information between two random variables [2,8])
and implemented a polynomial-time approximation for maximizing the MI, lead-
ing to better sensor placements. A Bayesian approach used for optimally locating
a sensor with respect to the others was described by Cameron et al. [1]. In this
method the expectations regarding the sensing environment were updated based
on the acquired sensor data and the next sensor locations were chosen by taking
into account this prior information. Shah et al. [11] dealt with the problem of
optimally positioning sensors in lumped and distributed parameter dynamic sys-
tems. The covariance of the parameter estimates was computed and the sensor
locations were found by minimizing the covariance matrix. Using the concept of
entropy, Papadimitriou et al. [9] illustrated a method for optimally locating the
sensors in a structure in order to extract from the measured data the most valu-
able information about the model’s parameters. Another entropy-based sensor
placement method was developed by Gutierrez et al. [5]. A maximum entropy
approach for selecting the corresponding probability distributions was used with
the purpose of minimizing the average detection error for fault locations.

A MI based approach has been adopted in this work and is further presented
in the next section.

3 Mutual Information-based Method

The MI computation method described here is based on finding entropies, leading
to a multivariate Gaussian assumption over the variables. The normal distribu-
tion hypothesis was confirmed by applying the D’Agostino normality test on the
experimental data sets.

A series of methods were researched towards the purpose of computing the
MI. The first belongs to the discrete case and consists of sampling the raw
data, the second one derives an approximate continuous curve that matches the
probability distribution observed in the raw data. A third method implemented
belongs to the continuous case and it consists of a numerical approximation to
the integral definition of MI. The method presented further on was selected over
the above described methods since it gave results consistent with expectations
for all experimental data.

The MI computation method contains the steps in Figure 1, described in
what follows.
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Fig. 1. Flow chart of the entropy-based approach of computing the mutual information

3.1 Gathering the Experimental Data

A series of experiments were performed in a climatic wind tunnel with a state
of the art vehicle, as follows:

— Five 54 minutes long steady state experiments, each with three occupants
in the car. The car cabin air temperature was initially set to 22 °C, and
increased by 1 °C per minute, towards a final temperature of 26 °C. For the
second part of the experiment, the temperature was gradually decreased to
16 °C, and finally brought back to 22 °C. The car was in idle state during the
initial, middle and final parts of the experiment when the temperatures were
maintained at 22 °C, 16 °C and 22 °C, respectively and driven at a constant
speed of 50 km/h when the temperature increments were performed.

— Two warm-up experiments, each 70 minutes long. The car was initially
soaked to -18 °C. The experiments began by setting the cabin’s thermostat
to the highest possible temperature (first experiment), and 22 °C, respec-
tively (second experiment). There were two cabin occupants each time and
the car was driven at a constant speed of 50 km/h for the first 30 minutes,
and 100 km/h for the rest of each experiment.

The cabin and occupant sensor data was acquired with a frequency of 0.1Hz. The
sensorized occupant was in the front passenger seat for all above experiments.
4 skin sensors were used: face, upper arm, chest and abdomen. The cabin had
standard instrumentation consisting of a thermocouple harness with 32 sensors
(locations shown in Figure 2). The abbreviations used in Figure 2 are: L = left,
R = right, R1 = row containing the front seats, R2 = row containing the back
seats, while the discharge sensors are the sensors placed at the air conditioning
vent outlets.

In what follows, skin temperature is referred to as the target variable (or sim-
ply target). Similarly, the locations of sensors that can be practically considered
for HVAC control are referred to as source variables (or sources).

3.2 Computing the Marginal Entropies and the Mutual Information

Given two sensors X and Y, let X be the target location and Y the source
location. Using the entropy concept, the MI between the source and target can
be expressed as:

I(X;Y) = H(X) - H(X | Y), 1)



1 - R1DischargeOuterL

2 - DriverSeatBack

3 - HeadlinerIntRearPassHead
4 - PassengerSeatCushion

5 - PassengerSeatBack

6 - R2FootDischargeR

7 - R2DischargeR

8 - PanoramicPassengerHead

10 - R2DischargeL

11 - FrontScreenRCentre

12 - FrontSideGlassLCentre
13 - IPTopRCentre

14 - R1DischargelnnerL

15 - FrontSideGlassRCentre

16 - R1FootR

17 - R2RSeatCushion

18 - ScreenDefrostL

19 - R1DischargeOuterR
20 - IPTopLCentre

21 - FrontScreenLCentre
22 - R1FootL

23 - R2FootL

24 - DriverSeatCushion
25 - R2FootDischargelL
26 - PanoramicDriverHead
27 - R1FootDischargelL
28 - R2FootR

29 - R2RSeatBack

30 - ScreenDefrostR

31 - R1FootDischargeR
32 - SteeringWheel

9 - R1DischargelnnerR

Fig. 2. Source sensor locations

where H(X), H(Y) denote the marginal entropies of the two random variables
and H(X |Y) is the conditional entropy of X knowing Y.
Using the conditional entropy definition, MI can be written as:

I(X;Y)=H(X)- HY)+ H(X,Y).

Both the marginal entropies H (X ), H(Y) and the joint entropy H(X,Y) can
be computed from the general joint entropy formula for a multivariate normal
distribution:

H(Xy, Xay ooy X3) = %ln((%re)k =), 2)

where k represents the number of random variables forming the distribution
and X' is the covariance matrix of the variables.

3.3 Extending the Mutual Information Concept for Multiple
Sources

In order to represent more accurately the point of interest, namely the target
location, computing the MI from multiple source sensors is considered.

Given three sensors X,Y and Z, let X be the target location and Y and Z
be the source locations. Based on equation 1, the MI between the two sources
and the target can be written as:



I1(X;Y,Z)=H((X)-H(X|Y,Z).
The conditional entropy can be written as following:
H(X|Y5Z) = H(X,Y,Z) 7H(Y7Z)7

where H(X,Y, Z) is the joint entropy for the three sensors, while H(Y, Z) is
the joint entropy for the two sensor sources.

Finally, MI can be defined as:

The marginal entropy H(X), as well as the multiple joint entropies (H(Y, Z)
and H(X,Y, Z)), can be computed using equation 2.

4 Evaluation of the Method on Experimental Data

4.1 Mutual Information Outcomes between a Source Sensor and a
Target Sensor

The MI values between source sensors (32 cabin locations as per Figure 2) and
two target locations (face and abdomen of the front row passenger) were cal-
culated, over the whole experimental data bank. MI values for the FACE tar-
get varied between 0.0003 and 1.05, with the highest MI obtained from the
“R2DischargeR” sensor. For the ABDOMEN target, the lowest MI value was
0.0001 and the highest 0.67, obtained from the “R2RSeatCushion” sensor. Table
1 shows a sample of source locations and their respective MI values for FACE
and ABDOMEN targets. The table also presents results for the estimation accu-
racy which would be achieved by using the respective source - target pair. (This
estimation method is presented elsewhere.)

For both target locations, as the MI values decrease, the estimation accuracy
decreases too, as expected. However, no direct relationship was observed here
between the MI value and the estimation accuracy across the two targets (Figure
3).

Figure 4 represents graphically the MI between pairs of target sensors and
potential source sensors. The line thickness is directly proportional to the MI
value.

4.2 Mutual Information Outcomes between Two Source Sensors
and a Target Sensor

Table 2 illustrates how MI changes when two source sensors are considered
jointly. The use of two source sensors resulted in higher MI values through-
out the source and target pairs considered. The highest MI value for the FACE
target was 1.19, obtained from the “R2DischargeR” and “R2FootR” combination
of sensors. For the ABDOMEN target, the highest MI value was 0.76, obtained
from the “DriverSeatCushion” and “PassengerSeatCushion” combination of sen-
SOrs.
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Target Sensor: Face
Source Sensor

Temperature Estimation

MI RMSE(°C)(mean=std)

R2DischargeR 1.05
HeadlinerIntRearPassHead 0.86
SteeringWheel 0.67
R2FootR 0.64
IPTopRCentre 0.48

R1DischargelnnerL 0.37
FrontSideGlassLCentre 0.09

0.7£0.08
0.86+0.09
1.05+0.1
1.06+0.16
1.24+0.09
1.4+0.14
1.9+0.2

Target Sensor: Abdomen Temperature Estimation
Source Sensor MI RMSE(°C)(mean=std)

R2RSeatCushion 0.67
IPTopRCentre 0.61
PassengerSeatBack  0.59
PassengerSeatCushion 0.56
PanoramicDriverHead 0.36
FrontSideGlassRCentre 0.27
R1FootR 0.05

0.5240.06
0.55+0.06
0.56+0.06
0.5840.05
0.7240.06
0.8£0.03
1.040.02

Table 1. MI results for face and abdomen selected as target sensors
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Fig. 3. MI values and their corresponding estimation accuracy
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Fig. 4. MI relations between the two target sensors and some of the source sensors

Target Sensor: Face Temperature Estimation
Source Sensor 1 Source Sensor 2 MI RMSE(°C)(meantstd)
R2DischargeR R2FootR 1.19 0.62+0.10
R2DischargeR HeadlinerIntRearPassHead 1.17 0.6440.08
R2DischargeR R2FootL 1.16 0.66+0.09
PassengerSeatCushion HeadlinerIntRearPassHead 1.15 0.66+0.09
R2DischargeR R1FootL 1.14 0.66+0.09
Target Sensor: Abdomen Temperature Estimation
Source Sensor 1 Source Sensor 2 MI RMSE(°C)(mean=std)
DriverSeatCushion  PassengerSeatCushion 0.756 0.49+0.04
R2RSeatCushion IPTopRCentre 0.683 0.52440.06
R2RSeatCushion PassengerSeatCushion 0.683 0.526+0.06
R1DischargeOuterR R1FootL 0.682 0.52740.04
R2FootR R2RSeatCushion  0.679 0.52640.06

Table 2. Best five MI scores for face and abdomen selected as target sensors



5 Conclusions and Further Work

The work described a method of identifying optimal sensor locations for estimat-
ing temperature at defined target locations, such as the face or abdomen of a
cabin’s occupant. A first step towards this aim was to establish a robust method
for accurately quantifying how closely related various sensor data streams are.
The Mutual Information between sensors was found to be an appropriate mea-
sure for the application at hand.

For the face selected as target location, the “R2DischargeR” source sensor
delivered the highest MI value, leading to an estimation accuracy of 0.7 °C. For
the abdomen selected as target location, an estimation accuracy of 0.52 °C was
obtained with “R2RSeatCushion” as a source sensor. The method was extended
to multiple sources in order to find combinations of sensors which lead to a better
estimation of the target sensor. The estimation accuracy was further improved
to 0.62 °C for the face as target with “R2DischargeR” and “R2FootR” as source
sensors. For the abdomen as target, the estimation accuracy was increased to
0.49 °C with “DriverSeatCushion” and “PassengerSeatCushion” as source sen-
Sors.

With regard to future work, it is planned to estimate the overall comfort
of all occupants within a car cabin. Several source and target locations will be
used with the purpose of maximizing the MI among them. It is also planned to
implement a reinforcement learning HVAC algorithm used to train the system to
adjust set-points. Embedding this algorithm into the car’s HVAC system implies
that the HVAC control will gradually learn user’s preferences with the purpose
of reducing the instances of user intervention whilst maintaining the occupants’
comfort and reducing the energy consumption.
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