576 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Generalized Fuzzy c-Means Clustering Strategies
Using L;, Norm Distances

Richard J. HathawayMember, IEEEJames C. Bezdelkellow, IEEE and Yingkang Hu

Abstract—Fuzzy c-means (FCM) is a useful clustering tech- we define the set of alhondegeneratéuzzy ¢ x n partition

nique. Recent modifications of FCM usingL; norm distances matrices for partitioning: data intoc clusters as
increase robustness to outliers. Object and relational data versions

of FCM clustering are defined for the more general case where

the L, norm (p > 1) or semi-norm (0 < p < 1) is used as the Myen = {U € R*™|Vi, k: 0 < Uy, < 15
measure of dissimilarity. We give simple (though computationally

intensive) alternating optimization schemes for all object data

cases ofp > 0 in order to facilitate the empirical examination of - Uy =1: 0 - I5f 2
the object data models. Both object and relational approaches are Z ik U< Z G 2)
included in a numerical study. =1 k=1

Index Terms—Clustering, fuzzy c-means,L,, norm, outlier. The most popular and effective method of optimizing (1) is
the fuzzy c-means algorithm, which alternates between opti-
mizations ofJ,,(U | v*) overU with v* fixed andJ,,(v| U*)
over v with U* fixed, producing a sequencgU ™, v(")}.

HE fuzzy c-means (FCM) algorithm [1] has successfullppecifically, ther + 1st value ofv = [vy,...,v.] is computed
been applied to a wide variety of clustering problems [2lising therth value ofU in the right-hand side of

This approach partitions a set of objectdpta, . .., x, } C R? " "
into c-(fuzzy) clusters based on a computed minimizer of the |, _ <Z T]rclxk>/ <Z U"Z) fori=1.. .. .c.
k=1 k=1

. INTRODUCTION

fuzzy within-group least squares functional

¢ n (3)
Im(U,v) = f’?x‘—viQ 1 .
(U, v) ; ; 1%k 12 D Thenthe updatech1st value ofy is used to calculate ther 1st
value of U via
where .
m > 1 fuzzification parameter; U = (dfl/(nl—l)) Z (dfl/(nz—l)) where (4)
v, € R* prototype (or mean) of ok ot ik ’
theth cluster; 5
Ui € [0,1] degree to which datum k== H2.>
x; belongs to theith fori=1,...,¢c and k=1,....,n. (5
= ] = [v v.] € Rexe frlwl;?rts;of cluster proto- The FCM iteration is initialized using somé & M., (or
U= W = Ve Ve ’ vpes: P possiblyy € R**¢) and continues by alternating the updates in
U = [Un] y;rtitiyon matrix: (3) and (4) until the difference measured in any nornyJsr™
I *_HQ ik Euclidean or ' 2-norm (orR**€) in successive partition matrices @matrices) is less
2 squared than some prescribed tolerance
. . qu ) . While FCM has proven itself to be very useful, the quality
For later notational convenience, we will array the object datfil .

i . of the computed cluster centefsy,...,v.} can sometimes
{x1,...,x,}ascolumnsin the object data matiix= [z,z] = Ll .
i ] € R**". The partition matrixt/ is a convenient be degraded due to the effects of outliers in the data set. This
X1so oo Xn ' P occurs becauséix = |jxi — vill3 = 30_ (zjn — vji)?,

tool for representing cluster structure in the d@ta, . .., x, }; the datum-to-prototype dissimilarity term in (1), can place con-

siderable weight on outlying data points, thus pulling cluster
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Fig. 1. Anillustration of the possible shapesfof(v;:) = Y1, Ula e — v;:7.

to increase robustness against outlying data. Earlier work tiédwever, as with FCM, optimization can be done by alternating
uses theL; norm or its square in FCM-based clustering apseparate optimizations over theandv variables. Thel(-vari-
pears in Bobrowski and Bezdek [9] and Jajuga [10]. Bobrowslble) minimizer ofJ,,, ,,(U, v) overM.,, (for afixedv) is given
and Bezdek [9] also gave a method for optimizihg when the by (4) using the datum-to-prototype dissimilarities

square of the sup norfl..) is used in (1).

5
In this note, we examine FCM-based clustering using general dig, = Z |25 — vjilP
L, norm distances, where ttig, norm of thes-dimensional real =
vectorz is defined aslz||, = (35_; |2;[")*/?, p > 1. In Sec- fori=1,...,c and k=1,....n. (7)

tion Il, we present an object-data strategy for usipgnorms

due to Miyamoto and Agusta [11], [12] and Overstreet [13Appropriate methods of computing thevariable minimizer of
Additionally, we describe how a relational data approach can Be.,,(I/,v) over R**¢ (for a fixed {/) depend on the value of
taken using the non-Euclidean fuzzy c-means (NERFCM) alge-but in all cases this optimization can be decoupled intos
rithm of Hathaway and Bezdek [14]. The object-data approagtdependentinivariate minimizations of functions of the form
operates directly and solely, on the object data masriXhe re-

lational ap_proac_h <_:Iu_ste_|<{s<1, ..., X, } indirectly thrqugh the fii(vy) = Z Ult|zjn — vjil?s

use of derived dissimilarity datd = [R;], whereR;,, is some =1

measure of the dissimilarity betwegn andx;. The two strate- forj=1,...,s and i=1,...,;c. (8)
gies will be compared using numerical examples in Section IIl. ) ) )
The final section summarizes our findings. The geometric form off;; is nonconvex fo0 < p < 1, with

a cusp at each datum valusgy,. Forp = 1, f;; is convex and
piecewise linear, with a corner at each,. The functionf;; is
differentiable and strictly convex if < p < oo. The three types
A. Object-Data Strategy of shapes are illustrated in Fig. 1 using the functfer(v;;) =

This approach is based on a direct modification of the fuz& * | — 4 — vji|? + 0.7 % |1 — ;[P + 0.4 % |5 — vy [P
c-means functional,,, (U, v). The generalization of (1) thatwe ~We choose to minimizg;; in (8) in the simplest possible way
consider here was originally proposed by Miyamoto and Agusg#ice our emphasis here is on understanding the properties of the
[11] and later extended by Overstreet [13]. The objective funélusterings and not on computational efficiency. pot 1, we

Il. L, EXTENSIONS OFFUZZY c-MEANS

tion is note thatf;; takes its minimum value ovék for one (or more)
elements in the sdtz1,. .., %, }. Forp < 1, the minimizing
SR value ofv;; is simply taken to be the smallest of thg, values
= ™ —v,|P ) a N ’
Tmp(Usv) = 2; kZl Uikller = villp which globally minimizef;; over{x,, ..., z;,}. The mean of
i=1 ke

. the smallest and largest globally minimizimg. values is used
— Z Z Z Pz —viP, omo> 1. (6) for '_[he special case of = 1_. Forp > 1,_the _computed vqlue of
vy; is taken to be a numerical approximation to the unique zero

of fJ/7 =—p 22:1 []:;”.le — Uji|p_1 Sign(xjk — Uji), obtained
The optimization of (6) is relatively straightforward and thédwere using the method of bisection.
choice ofp has considerable effect on the influence of outliers We summarize the object-data strategy. It consists of alter-
and other properties of the representation of the clusters. We sa#ing optimizations of/,,, , in (6) between thé/ andv vari-
that.J,,, » is the original FCM functional and,, ; isthe morero- ables. The optimization over theE variable is accomplished
bust functional used by Kersten [5]-[7]. Miyamoto and Agustasing (7) in (4) and the optimization over theariable is decou-
[11], [12] consider this model in general for< p < oo and the pled intoc x s univariate optimizations of functions of the form
range ofp is extended to include < p < 1 in Overstreet [13]. (8). The univariate optimizations are essentially done using ex-
The object-data approach considered in this correspondenckasstive search ovét:;q, . ...z, } for p < 1 and bisection on
based on iterative minimization of,, ,,. J’Z for p > 1. (Exhaustive search, which is necessaryfer 1,

The optimization of (6) for generalis more complicated and is prohibitively expensive for sufficiently large data sets and we,
costly than the optimization of the special case- 2 (FCM). therefore, acknowledge a practical limitation to the usefulness

i=1 k=1 j=1
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of this model in some cases. We repeat that the emphasis her *; 4
is on studying the clustering solutions produced by the various 4qg

models.) The alternating optimization is continued until succes- | *Outlier(s)

siveU partitions are withire = 0.000 01 of each other, as mea- 80 x ok x
sured by the sup norm ¢t/=ev-U°l). It is important to under- ool N
stand that the independence of the components (&r fixed BN
U) in (6) allows the minimizingv to be calculated using only 40} x i x
univariate optimizations; and the result so obtained does opti-

H 7 £ £ 20} x
mize J,, ,(v|U*) overv for U*. KK

[#] 3 X X xx xxx X X
B. Relational-Data Strategy R
-20} x

The relational-data strategy uses the non-Euclidean re-
lational fuzzy c-means (NERFCM) in [14]. In essence, 4o}

NERFCM is a safeguarded version of RFCM, which is the xxxixxx Outtier(s)
relational dual of fuzzy c-means. RECM produces the FCM  0f R

clustering of {x;,...,x,} indirectly using relational data 8ol .

R = [Rj] = [|lx; — xx||3]. Given some matrix of rela- 4

. ) . . 100 -
tional dataRz, the NERFCM algorithm iteratively generates 00 50 0 50 100 X4

a sequence of partition matriced/(")} according to the
following steps. The current/ matrix is used to calculate Fig. 2.
vectorswy, ..., w, according to

“Two cluster data” scatterplot and initial prototypess 2.

I1l. NUMERICAL EXPERIMENTS

w; = (U, U) Z ik - ©) In all experiments we chose = 2 and stopped iteration as
k=1 soon as the absolute value of differencealbpairs of elements
These vectors are then used to calculate new dissimiladies (i.e., ||U™™ — U°M||..) in a successive pair &f matrices dif-

according to fered by less than 0.000 01. The first experiment usesahe (
point) data set in Fig. 2, which consists of three (25 point) ra-

dir. = (Rw;) — 0.5(w;)" R(w;) dial clusters centered @t = (—350,0)7, o = (0, —60)7 and
fork=1,...,n and i=1,...,c. (10) pa = (60,60)T and a varying number of outliers located at

the indicated positions. The purpose of this experiment is to in-
If necessary, the dissimilarities are altered to guarantee posgistigate sensitivity to outliers of the object and relational ap-
tivity ([14]) and then they are used in (4) to generate the ngwoaches for various values pf The leftmost column of the
U iterate. The iteration is continued until the sup-norm diffetable gives the number of outliers included with the three clus-
ence in successivé matrices is sufficiently small. ters inthe sample. The number of outliers is even and the outliers
The relational data approach for dr, extension of FCM are evenly divided between the two positions shown in Fig. 2.
consists of applying NERFCM with thé ,-based relational All iteration sequences are initialized using a hard partition that
dataR = [Rj] = [llx; — xx|8] = [>;—; lzi; — =al?].  correctly partitions the three clusters and groups each outlier
This approach will produce a terminal partition matfix, with its nearest cluster. For a computed sdeofminal prototype
which attempts to represent the cluster memberships farctorsv;, v2 andwvs, we measure the sensitivity to the outliers
{x1,...,%,}, but it does not directly provide cluster proto-as the Frobenius norm distance between the true centers and
typesv = [vy,...,v.]. We recover meaningful prototypes byterminal prototype vector{i; pi2 ps] — [v1 v2 vs]||F, where
using the terminal partitioh* with {xi,...,x,} and solving || A||r is defined by||Al|r = (3, A3 ;)"
Note the effects of increasing numbers of outliers as we move
v" = argmin Jp, ,(U", v). (11) down the rows of Table I. We see no deterioration in the quality
v of the terminal prototype vectors for as many as 24 outliers for
We remark that the duality theory (in [14] and [15]) that guatoth the object and relational approaches with= 0.5 and
antees that the same solution is found using the object andwe= 1. The last few rows indicate that this resistance to out-
lational versions of FCM holds only fgr = 2. At other values liers is actually slightly greater fop = 1 than forp = 0.5.
for p, it is possible that the object data version and its relationabr any value o > 1, the deviation of the computed proto-
derivative yield different{/,v) pairs for the same choices oftypes from the true cluster centers steadily increases with the
common algorithmic parameters. One purpose for trying a relaamber of outliers. The object and relational data results are
tional approach fop # 2 is to discover any general similaritiesquite comparable fop > 1 and, as predicted by duality theory,
between the object and relational approaches that extend ghsy produce identical results fpr= 2. Forp < 1, the object
the limited duality theory. Theoretical convergence of the objeahd relational protoypes eventually vary from the true centers
data algorithms fot < p < o is shown in [12]; existing con- for sufficiently large numbers of outliers, but fewer outliers are
vergence theory ([14]) for the relational approach only coversquired to cause substantial deviation for the relative data ap-
the case op = 2. proach. Based on the results of this experiment, the object data
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TABLE |
DEVIATION OF COMPUTED FROMTRUE CLUSTER CENTERS ||[tt1 pt2 pta] — [v1 vz vs]||F

Object Data Clustering Relational Data Clustering
QOutliers | p=05 | p=1 p=15| p=2 p=3.{p=05| p=1 p=15| p=2 p=3
0 0 0 0.046 0374 1.190 0 0 0.058 0.374 0.340
2 0 0 0.340 2.063 10.595 0 0 0.286 2,063 12.348
4 0 0 0.907 4.062 18.323 0 0 0.756 4.062 20.050
6 0 0 1.659 6.155 24.481 0 0 1.402 6.155 25.842
8 0 0 2.560 8.349 29.694 0 0 2.205 8.349 30.657
10 0 0 3.586 10.661 | 34.313 0 0 3.154 10.661 | 34.904
12 0 0 4.715 13.109 | 38512 0 0 4.245 13.109 | 38.767
14 0 0 5.920 15719 | 42391 0 0 5.469 15.719 | 42347
16 0 4] 7.134 18.519 | 46.012 0 0 6.797 18.519 | 45.703
18 0 0 8.038 21.547 | 49413 0 0 7.953 21.547 | 48.871
20 0 0 9.258 24846 | 52.622 0 0 9.523 24846 | 51.881
22 0 0 10.687 | 28.472 | 55.659 0 0 11.305 | 28.472 | 54.753
24 0 0 11.943 | 32496 | 58.546 0 0 13.365 | 32.496 | 57499
30 0 0 16.171 | 48309 | 66.453 | 199.749 | 7.666 23,012 | 48.309 | 65.049
40 145945 | 9.735 103.461 | 82.078 | 77.688 | 168.819 | 105325 | 99.947 | 82.078 | 75.465
50 145.945 | 145945 | 135.110 | 97.737 | 87.359 | 168.819 | 175.535 | 124.092 | 97.737 | 84.450

x2 A
100 ¢

o}
60} x x
401

20+

60} initial
prototypes
_80 n

-100 - .
-100 -50 0 50 100 %4

Fig. 3. “Two cluster data” scatterplot and initial prototypes- 2.

approach fop = 1 offers the greatest robustness and efficiedt and are, respectively, called the “two cluster data” and “no
implementational approaches for it are discussed in [7]. cluster data.” Using identical data values, initializations,
The results of the first experiment show that in at leasind stopping criteria, we calculaté/”*, v™) and (U©,v©)
some cases, the errors produced by the object and relatiamgihg the relational and object data approaches, respectively.
approaches are of a similar magnitude. Is it also true thafke calculated the Frobenius norm difference in the terminal
the computed prototypes and partition matrices of the twaartitions and prototypes produced by the two approaches as
approaches are themselves very similar? The remaining = ||[Uf — U?||r andvy = ||v® — v?||r. These differences
merical experiments use other artificial two-dimensional datae given for a range qf values using the “two cluster data”
sets that allow us to graphically depict the effectpobn the and “no cluster data” in Table II.
placement of the terminal prototype vectors. The two dataDuality theory for NERFCM ([11], [12]) guarantees that the
sets (and initial prototype values) are depicted in Figs. 3 addference is zero whep = 2, but note that it is reasonably
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Fig. 4. “No cluster data” scatterplot and initial prototypes- 4.

TABLE I cluster data” set has vertical symmetry, sovdoandv, from
FROBENIUS NORM DIFFERENCE INTERMINAL OBJECT AND RELATIONAL either approach.

U, v) VALUES . - . ,
(U, v) VALLE Fig. 6 shows a similar experiment for the relational-data ap-

“Two Cluster Data” "No Cluster Data” proach applied to the “no cluster data.” While this is not a “clus-
tering” example, we used it to better understand the behavior of
P Yd Ya I Yq the methods. Surprisingly, we observed coincident prototypes at
0.1 145.674 3.347 174.356 2472 the center of the data for small valuespo$uch agp = 0.1 and
0.25 145.086 3.350 174.356 2472 . .
05 0.000 1437 174 356 a7l nearly coincident prototype_:s for large values sucl as 100;
075 0.000 0.806 120.000 2159 the prototypes are mos_t different apd farthest from the cenFer
1.0 0.000 0453 97.980 1.837 whenp = 2. The behavior of the object-data approach on this
1,25 0.119 0.251 50.573 1.110  example was similar in that = 2 gave the most separated pro-
1.5 0.135 0.130 1.923 0.433 totype values.
1.75 0.070 0.053 2.050 0.205
2.0 0.000 0.000 0.000 0.000
2.25 0.117 0.029 0.704 0.053 IV. DiscussION
g:g ggg} 8:(1)23 8:;;1;41; g:ﬂg We described relatior_1al and object-data approachgs for gen-
35 7952 0.241 15.803 0743 erating L, norm extensions of FCM. Also, we examined the
4.0 21.181 0.609 114.242 2484 behavior of the approaches for varigusalues using artificial
4.5 69.355 3.185 98.309 2374 data sets. We believe that the two most useful models are ob-

ject data based and correspongpte- 1 and2. Forp = 2, the

fuzzy c-means algorithm in [1] offers the least expensive clus-
small forp near two. Note also how the differenggis some- tering technique of all, and it works very well in most cases. For
times much greater than the differentdg. We also see from cases where noisy data and outliers may degrade FCM results,
this table that the relational and object-based results can be vagyrecommend the use of the object data model with1, op-
different for the important case pf= 1. timized using the fuzzy c-medians algorithm described in [7].

The remaining figures in this section graphically depict th€he relational data approach is best saved for cases when ob-

position of the computed terminal prototypesfor a range of ject data is unavailable or, in special casegfet 2, when the
p values. Fig. 5 shows the results for the “two cluster datalimension of the feature space is very high but the number of
obtained by the two approaches. Note that the outliers had&ta is small. (In this case, it may be computationally cheaper
increasing effect ag increases fronp = 0.5 to p = 2. As to form R and operate on it rather than on the original feature
p continues to increase above two, the outlying data has data.) We believe the relational approach foe= 1 exhibits
even more powerful draw on the prototypes, which move eveome robustness properties, but overall we view it as inferior to
nearer to the approximate center of the figure. Note that ftire object data approach of Kersten [7]. Our experiments always
p = 5, the terminal prototypes produced by the object-datsedr = 2, but we believe the importance pt= 2 and1 holds
approach collapse into coincident clusters. Because the “tfe any choice of the fuzzification constant.
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Fig. 5. “Two cluster data” terminal prototypes for the objé€)) and relationa(J) approaches = 2.
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Fig. 6. “No cluster data” terminal prototypes for the relational-data approaeht.

Choices fop other tharp = 1 orp = 2 lead to models which obtained. A partial analysis of the relational case indicates that
can provide good clustering results and possibly classifier dbere is still a strong dependence on the point of initialization,
signs, but the models are more difficult to optimize in the okeven ag increases without bound. For example, consider clus-
ject data case. Fgrvalues near two, the results obtained usintgring{(0,0)%, (0,1)¥, (0, 3)T'} into two clusters. It is not hard
the object and relational approaches are quite similar. Howewer,show that ag — oo, the relational based approach is es-
it now appears that the existing duality theory stated in [14] gentially equivalent to that done using NERFCM on $he 3
complete; that is, the object and relational approaches haveatrix R with all zero entries except;s = R3; = 1. Simple
strict duality relationshipnly whenp = 2. As p values in- numerical experiments with different crisp initializations show
crease above one, the attraction of terminal prototype vecttiat different solutions are possible. Because of this, we believe
to outliers increases. The empirical migration of the prototypésere may not be a nice theoretical result regarding the limiting
to the approximate center of the data setg excreases is inter- position of the prototypes gs — oo. We conclude by giving
esting to us, but no illuminating result regarding this has beene last question. Why is = 2 special in the sense demon-
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strated by Fig. 6 and does this mean that the original FCM is i5] ——, “Optimization of clustering criteria by reformulation/EEE

some sense optimal as a quantization tool?
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