
Jakob El Kholtei- Master of Science
- PhD Student at University of Basel
Jakob El Kholtei
- Master of Science
- PhD Student at University of Basel
About
6
Publications
1,950
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
228
Citations
Introduction
Current institution
Publications
Publications (6)
Spatiotemporal patterns of gene expression underlie embryogenesis. Despite progress in single-cell genomics, mapping these patterns across whole embryos with comprehensive gene coverage and at high resolution has remained elusive. Here, we introduce a w hole- e mbryo imaging platform using m ultiplexed e rror-robust fluorescent in- s itu h ybridiza...
The mammalian liver is a central hub for systemic metabolic homeostasis. Liver tissue is spatially structured, with hepatocytes operating in repeating lobules, and sub-lobule zones performing distinct functions. The liver is also subject to extensive temporal regulation, orchestrated by the interplay of the circadian clock, systemic signals and fee...
Neurogenesis comprises many highly regulated processes including proliferation, differentiation, and maturation. However, the transcriptional landscapes underlying brain development are poorly characterized. We describe a developmental single-cell catalog of ∼220,000 zebrafish brain cells encompassing 12 stages from embryo to larva. We characterize...
The mammalian liver performs key physiological functions for maintaining energy and metabolic homeostasis. Liver tissue is both spatially structured and temporally orchestrated. Hepatocytes operate in repeating anatomical units termed lobules and different lobule zones perform distinct functions. The liver is also subject to extensive temporal regu...
Advances in single-cell transcriptomics techniques are revolutionizing studies of cellular differentiation and heterogeneity. It has become possible to track the trajectory of thousands of genes across the cellular lineage trees that represent the temporal emergence of cell types during dynamic processes. However, reconstruction of cellular lineage...
Advances in single-cell transcriptomics techniques are revolutionizing studies of cellular differentiation and heterogeneity. Consequently, it becomes possible to track the trajectory of thousands of genes across the cellular lineage trees that represent the temporal emergence of cell types during dynamic processes. However, reconstruction of cellu...