• Home
  • ETH Zurich
  • Department of Environmental Systems Science
  • Jake M. Alexander
Jake M. Alexander

Jake M. Alexander
ETH Zurich | ETH Zürich · Department of Environmental Systems Science

PhD

About

71
Publications
39,547
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,025
Citations

Publications

Publications (71)
Article
Understanding how species respond to climate change is critical for forecasting the future dynamics and distribution of pests, diseases and biological diversity. Although ecologists have long acknowledged species' direct physiological and demographic responses to climate, more recent work suggests that these direct responses can be overwhelmed by i...
Article
Local adaptation at range edges influences species' distributions and how they respond to environmental change. However, the factors that affect adaptation, including gene flow and local selection pressures, are likely to vary across different types of range edge. We performed a reciprocal transplant experiment to investigate local adaptation in po...
Article
Biologists have recently devoted increasing attention to the role of rapid evolution in species' responses to environmental change. However, it is still unclear what evolutionary responses should be expected, at what rates, and whether evolution will save populations at risk of extinction. The potential of biological invasions to provide useful ins...
Article
A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment...
Article
Full-text available
Nonnative species richness typically declines along environmental gradients such as elevation. It is usually assumed that this is because few invaders possess the necessary adaptations to succeed under extreme environmental conditions. Here, we show that nonnative plants reaching high elevations around the world are not highly specialized stress to...
Article
Full-text available
Forecasting the trajectories of species assemblages in response to ongoing climate change requires quantifying the time lags in the demographic and ecological processes through which climate impacts species' abundances. Since experimental climate manipulations are typically abrupt, the observed species responses may not match their responses to gra...
Article
Full-text available
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we...
Article
Full-text available
Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need...
Article
Full-text available
A major aim of ecology is to upscale attributes of individuals to understand processes at population, community and ecosystem scales. Such attributes are typically described using functional traits, that is, standardised characteristics that impact fitness via effects on survival, growth and/or reproduction. However, commonly used functional traits...
Preprint
Climate warming is releasing carbon from soils around the world 1–3 , constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems 4–9 . Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown ¹⁰ . Here we used alpine grasslands as a...
Article
Full-text available
The relationship between niche and distribution, and especially the role of biotic interactions in shaping species' geographic distributions, has gained increasing interest in the last two decades. Most ecological research has focused on negative species interactions, especially competition, predation and parasitism. Yet the relevance of positive i...
Article
Full-text available
The scarcity of local plant extinctions following recent climate change has been explained by demographic inertia and lags in the displacement of resident species by novel species, generating an ‘extinction debt’. We established a transplant experiment to disentangle the contribution of these processes to the local extinction risk of four alpine pl...
Preprint
Full-text available
Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need...
Preprint
Full-text available
Research in environmental science relies heavily on global climatic grids derived from estimates of air temperature at around 2 meter above ground1-3. These climatic grids however fail to reflect conditions near and below the soil surface, where critical ecosystem functions such as soil carbon storage are controlled and most biodiversity resides4-8...
Article
Full-text available
Extreme abiotic conditions, geographic isolation, and low levels of disturbance have historically provided alpine, Arctic, and Antarctic regions with low input of and relative resistance to the introduction of new species. However, the climate is warming rapidly, concomitant with intense and diversified types of human influence in these cold enviro...
Article
Plant associated mutualists can mediate invasion success by affecting the ecological niche of non-native plant species. Anthropogenic disturbance is also key in facilitating invasion success through changes in biotic and abiotic conditions, but the combined effect of these two factors in natural environments is understudied. To better understand th...
Article
Phenological shifts, changes in the seasonal timing of life cycle events, are among the best documented responses of species to climate change. However, the consequences of these phenological shifts for population dynamics remain unclear. Population growth could be enhanced if species that advance their phenology benefit from longer growing seasons...
Article
Upward shifts of mountain vegetation lag behind rates of climate warming, partly related to interconnected changes belowground. Here, we unravel above- and belowground linkages by drawing insights from short-term experimental manipulations and elevation gradient studies. Soils will likely gain carbon in early successional ecosystems, while losing c...
Article
Full-text available
Recent years have seen an exponential increase in the amount of data available in all sciences and application domains. Macroecology is part of this "Big Data" trend, with a strong rise in the volume of data that we are using for our research. Here, we summarize the most recent developments in macroecology in the age of Big Data that were presented...
Article
Full-text available
Approaches to predicting species assemblages through stacking individual niche‐based species distribution models (S‐SDMs) need to account for community processes other than abiotic filtering. Such constraints have been introduced by implementing ecological assembly rules (EARs) into S‐SDMs, and can be based on patterns of functional traits in commu...
Article
Adaptation to climate is expected to increase the performance of invasive species and their community-level impacts. However, while the fitness gains from adaptation should, in general, promote invader competitive ability, empirical demonstrations of this prediction are scarce. Furthermore, climate adaptation, in the form of altered timing of life...
Article
Full-text available
Prevention is regarded as a cost-effective management action to avoid unwanted impacts of non-native species. However, targeted prevention can be difficult if little is known about the traits of successfully invading non-native species or habitat characteristics that make native vegetation more resistant to invasion. Here, we surveyed mountain road...
Article
Species are shifting their ranges, for example to higher elevations, in response to climate change. Different plant species and soil microbiota will likely shift their ranges at different rates, giving rise to novel communities of plants and soil organisms. However, the ecological consequences of such novel plant–soil interactions are poorly unders...
Article
We investigated patterns of species richness and community dissimilarity along elevation gradients using globally replicated, standardized surveys of vascular plants. We asked how these patterns of diversity are influenced by anthropogenic pressures (road construction and non-native species). Global. 2008–2015. Vascular plants. Native and non-nativ...
Article
Studies of genetic adaptation in plant populations along elevation gradients in mountains have a long history, but there has until now been neither a synthesis of how frequently plant populations exhibit adaptation to elevation nor an evaluation of how consistent underlying trait differences across species are. We reviewed studies of adaptation alo...
Article
Full-text available
Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make tempo...
Article
Full-text available
Invasive and endangered species reflect opposite ends of a spectrum of ecological success, yet they experience many similar eco-evolutionary challenges including demographic bottlenecks, hybridization and novel environments. Despite these similarities, important differences exist. Demographic bottlenecks are more transient in invasive species, whic...
Article
Climate change will likely reshuffle ecological communities, causing novel species interactions that could profoundly influence how populations and communities respond to changing conditions. Nonetheless, predicting the impacts of novel interactions is challenging, partly because many methods of inference are contingent on the current configuration...
Article
Full-text available
Recent years have seen a surge of interest in understanding patterns and processes of plant invasions into mountains. Here, we synthesise current knowledge about the spread of non-native plants along elevation gradients, emphasising the current status and impacts that these species have in alpine ecosystems. Globally, invasions along elevation grad...
Article
Monitoring the elevation limits of non-native species is a potentially sensitive means of detecting effects of environmental change on invasion dynamics and species ranges. The aim of this study was to investigate temporal changes in the distribution of non-native plant species along elevation gradients in the Swiss Alps by repeating, in 2009, a re...
Article
Full-text available
Roads are known to act as corridors for dispersal of plant species. With their variable microclimate, role as corridors for species movement and reoccurring disturbance events, they show several characteristics that might influence range dynamics of both native and non-native species. Previous research on plant species ranges in mountains however s...
Article
Species interactions can have a larger impact on plant performance than direct effects of climate change itself, as shown by Rysavy et al. in this issue of the Journal of Vegetation Science. Their study illustrates different ways in which plant–plant interactions can change following climate change, stressing the need for experiments to disentangle...
Article
Full-text available
Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains a...
Article
Full-text available
Many modern environmental problems span vastly different spatial scales, from the management of local ecosystems to understanding globally interconnected processes, and addressing them through international policy. MIREN tackles one such “glocal” (global/local) environmental problem – plant invasions in mountains – through a transdisciplinary, mult...
Conference Paper
Background/Question/Methods Climate change is causing widespread shifts in phenology, the timing of life cycle events such as flowering and spring leaf out. While these patterns have been fairly well characterized for plants using experiments and observational studies, the consequences of phenological shifts for demography, population dynamics an...
Article
AimWe evaluated whether the performance of individuals and populations of the invasive plant Verbascum thapsus differs between its native and non-native ranges, across climate gradients, and in response to its position in a global-scaled niche model.LocationIndia (Kashmir) and Switzerland (native range) and Australia and USA (Hawaii, Montana and Or...
Article
Full-text available
Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We ass...
Chapter
Full-text available
Mountains are of great significance for people and biodiversity. Although often considered to be at low risk from alien plants, recent studies suggest that mountain ecosystems are not inherently more resistant to invasion than other types of ecosystems. Future invasion risks are likely to increase greatly, in partic-ular due to climate warming and...
Article
Full-text available
Mountains are of great significance for people and biodiversity. Although often considered to be at low risk from alien plants, recent studies suggest that mountain ecosystems are not inherently more resistant to invasion than other types of ecosystems. Future invasion risks are likely to increase greatly, in particular due to climate warming and i...
Article
AimBecause climatic factors, especially temperature, show similar trends with elevation and latitude, it is often assumed that elevational gradients can be used as a proxy for understanding ecological processes along latitudinal gradients. We investigated the validity of this assumption for herbaceous plants, testing the hypotheses that (1) species...
Article
Altitudinal gradients offer valuable study systems to investigate how adaptive genetic diversity is distributed within and between natural populations and which factors promote or prevent adaptive differentiation. The environmental clines along altitudinal gradients tend to be steep relative to the dispersal distance of many organisms, providing an...
Article
Full-text available
The European Alps harbour a unique and species-rich biodiversity, which is increasingly impacted by habitat fragmentation through land-use changes, urbanization and expanding transport infrastructure. In this study, we identified the 50 most important questions relating to the maintenance and restoration of an ecological continuum – the connectedne...
Article
Although the problem of plant invasions is expected to increase with climate change, there is as yet little experimental evidence, in particular, for the effects of extreme weather events. We established communities of European meadow species, which were subjected to warming and extreme event (drought and deluge) treatments in a factorial design at...
Article
1. Understanding how non-native plants respond to environmental variation, and the limits to these responses, is important for predicting plant invasiveness. Until now, the extent to which species’ climatic limits differ on introduction to a new range has not been experimentally tested. Here, we investigate fitness responses to temperature and low-...
Article
Full-text available
A non-native plant species spreading along an environmental gradient may need to adjust its growth to the prevailing conditions that it encounters by a combination of phenotypic plasticity and genetic adaptation. There have been several studies of how non-native species respond to changing environmental conditions along latitudinal gradients, but m...
Article
Aim To investigate how species richness and similarity of non-native plants varies along gradients of elevation and human disturbance. Location Eight mountain regions on four continents and two oceanic islands. Methods We compared the distribution of non-native plant species along roads in eight mountainous regions. Within each region, abundance of...
Article
Full-text available
Background: In temperate mountains, most non-native plant species reach their distributional limit somewhere along the elevational gradient. However, it is unclear if growth limitations can explain upper range limits and whether phenotypic plasticity or genetic changes allow species to occupy a broad elevational gradient.Aims: We investigated how n...
Article
Full-text available
Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. dsimberloff@utk.edu Jake Alexander Institute of Integrative Biology, Zurich, Switzerland. Fred Allendorf Univ...
Article
Full-text available
Aim We use data from 13 mountain regions and surrounding lowland areas to identify (1) the origins, traits and cultural uses of alien plant species that establish in mountains, (2) the alien species that are most likely to be a threat and (3) how managers might use this information to prevent further invasions. Location Australia, Canada, Chile, In...
Article
Full-text available
An important factor influencing whether or not a non-native plant species becomes invasive is the climate in the area of introduction. To become naturalised in the new range, a species must either be climatically pre-adapted (climate matching), have a high phenotypic plasticity, or be able to adapt genetically, which in the latter case may take man...
Article
Aim Differences in phenological timing might explain why populations of the annual Lactuca serriola reach higher elevational limits in a part of its introduced range than in its native range. I investigated (1) whether this difference in elevational limits has a genetic basis, (2) the importance of clinal genetic differentiation and phenotypic plas...
Article
We discuss the apparent paradox that while introduced populations often adapt rapidly to conditions in the new range, it is normally assumed that the species’ niche remains unchanged. Focusing on plants, we argue that studies of the niche dynamics of alien species are useful for understanding the constraints acting on species in their native ranges...
Article
Full-text available
Most studies of invasive species have been in highly modified, lowland environments, with comparatively little attention directed to less disturbed, high-elevation environments. However, increasing evidence indicates that plant invasions do occur in these environments, which often have high conservation value and provide important ecosystem service...
Article
Aim To assess the population genetic consequences of the colonization of two species with contrasting mating systems, Solidago canadensis and Lactuca serriola, along altitudinal gradients in both their native and introduced ranges. Location Allegheny Mountains, West Virginia and Wallowa Mountains, Oregon, USA; Valais, southern Switzerland. Methods...
Article
Due to altered ecological and evolutionary contexts, we might expect the responses of alien plants to environmental gradients, as revealed through patterns of trait variation, to differ from those of the same species in their native range. In particular, the spread of alien plant species along such gradients might be limited by their ability to est...
Article
Studying plant invasions along environmental gradients is a promising approach to dissect the relative importance of multiple interacting factors that affect the spread of a species in a new range. Along altitudinal gradients, factors such as propagule pressure, climatic conditions and biotic interactions change simultaneously across rather small g...
Article
Aim Since ecological and evolutionary context changes when a plant species is introduced to a new area, it can be assumed that responses of alien plants to changing conditions along environmental gradients differ from those in their native range. Even if seed availability is not limited, the distribution of alien plants along such a gradient might...
Article
Summary • Demographic rates such as growth and survival may interact directly as a result of allocation constraints, or indirectly through their relationship with structural characteristics. • We explored the relationship between growth and survival in a range of rosette-forming species across different habitats, and investigated possible mechanist...
Article
Morphological variation in the Strobilanthes kunthiana group is examined and species delimitation problems addressed. A taxonomic revision is presented recognising ten species from peninsular India. Two new species are described, Strobilanthes gamblei Carine, J. Alexander & Scotland and S. carnatica Carine, J. Alexander & Scotland.

Network

Cited By

Projects

Projects (3)
Project
A Continental Leader in African Mountain Research, with an immediate focus on the sustainable development of the Maloti-Drakensberg.
Project
Climate change can affect species both directly and indirectly, by altering their interactions with competitors, natural enemies and mutualists. As well as altering interactions among species that already co-occur in communities today, climate change is leading to the large-scale reshuffling of species distributions, giving rise to “novel interactions” among species that did not previously co-occur. However, the impacts of novel interactions remain poorly understood. In the NICH project, we are investigating the ecological consequences of novel competitors, and the potential for longer-term evolutionary responses, using a using a series of experiments that simulate future competitive scenarios faced by focal alpine plants at field sites in the western Swiss Alps. These data will be used to explore the consequences of changing competitive interactions for range dynamics under climate change.
Project
The aim of MIREN is to understand the effects of global change on plant invasions and plant biodiversity in mountainous areas. We perform observational and experimental studies along elevation gradients to evaluate and quantify the processes and mechanisms that are shaping mountain plant communities. By performing our experiments in this way we can evaluate processes at local (within site), region, and global (both comparing within and between latitudinal zones) scales.