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A B S T R A C T

With the 6G-enabled Internet of Vehicles (IoV), the Intelligent Transportation System (ITS) uses new
communication technologies and smart data analysis to make transportation systems more innovative and
effective. After the emergence of 6G, focusing on emergency message dissemination scenarios in IoVs, software-
defined vehicular fog computing (SDVF) networks can be instrumental in enhancing vehicle-to-everything
communication for sharing the road, traffic, and accident information with low latency. Nevertheless, the
emergency messages are susceptible to intrusion attacks, especially Sybil attacks that could produce numerous
bogus clients or collaborate with compromised devices. Thus, we propose the Federated Learning Entrusted
Misbehaviour Detection System (FLEMDS) with vehicle selection to support the 6G-enabled vehicles in
combating Sybil attackers. As a result, Sybil attack detection is carried out locally in the vehicles employing
the federated learning on-vehicle AI technique. The FLEMDS employs a three-level model weight aggregation
process at three locations to improve detection accuracy. To minimize the learning and detection latency,
federated learning and software-defined vehicular fog computing are combined in the FLEMDS. We employ a
fuzzy logic-based FL-vehicle selection (FLBFLVS) technique in the Road-Side Units (RSUs) and Base Stations
(BSs) to choose suitable FL-vehicles as clients for the participation of local training in the FL process. The
experimental results substantiate that the FLEMDS with FLBFLVS capitulates with a higher detection accuracy
of 87% for a minimal number of global aggregations. Furthermore, FLEMDS with FLBFLVS is compared with the
state-of-the-art FL-based frameworks. The outcomes show that the proposed schemes yield a faster convergence
rate as well as a decrease in the time consumption of computation and communication.
1. Introduction

The fast growth of Internet technology has made it possible for
people to use 5G technology in their everyday lives. 5G technology
is being developed because people want to use a lot of data and the
number of cell phones and cars is growing quickly. As 5G technology
gets more mature, countries all over the world have started to look into
6G technology [1]. When 6G comes out, it will give mobile communi-
cation networks a lot of new ways to improve. With 6G connectivity,
huge mobile networks can do complicated calculations quickly, and the
user experience will start to get closer to the real response time [2]. The
future of automotive and intelligent transportation systems is the 6G-
enabled Internet of Vehicles (IoVs). Communication between moving
vehicles is essential for maintaining road safety on the 6G-enabled
IoVs. The IoVs that support 6G encompasses Vehicle-to-Everything
(V2X) communications. They are Vehicle-to-Vehicle (V2V), Vehicle-
to-Infrastructure (V2I), Vehicle-to-Sensors (V2S), Vehicle-to-Road-Side
Units (V2R), and Vehicle-to-Pedestrians (V2P) communications. V2X
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communications increase comfort, send warning signals, and improve
road safety (including media). Dash cameras are a type of onboard
sensor that can record evidence and provide information about the
environment around the vehicle. Video data from moving vehicles
or communication infrastructure could be used to help people drive,
manage traffic, find parking spots, and let ambulances know about
accidents. The round-trip delay between vehicles and the cloud is a big
reason for the delay. For applications that need to process high-quality
video streams in real-time, sending data to the cloud for analytics is not
a good idea. Only a small number of vehicles have the right amount of
processing power to do advanced data analytics locally.

1.1. Fog computing and software-defined networks

Cisco Systems [3] developed fog computing to address the above
issues. Fog computing refers to the processing and analysis of time-
critical data at the network’s edge level. The Internet of Vehicles
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uses V2V and V2I interaction to quickly transmit recovery informa-
tion to ambulances and other vehicles. Ge et al. [4] present the 5G
software-defined vehicular network architecture to meet performance
requirements such as minimal dissemination latency and maximum
network capacity while taking into account varying vehicle densities.
The goal is to bring together technologies such as 5G connectivity,
cloud computing, and software-defined networks. The construction of
heterogeneous networks using software-defined networking (SDN) and
fog computing is the focus of the 6G vehicular networks. The IoVs
are exceptionally dynamic and complicated, with strict conditions on
extremely low latency, excessive reliability, and enormous connec-
tions [5]. By conquering the restrictions of 5G technology, 6G would be
a leading promoter of the advancement towards a genuine Intelligent
Transportation System and the recognition of the Smart City concept.
6G is essential for IoV to meet the stricter requirements for vehicle
communications that 5G only partially met. More importantly, security
and privacy should be a key priority because vulnerabilities can lead
to disastrous effects. As a result, serious concerns are raised about
collecting data from people and sensors.

1.2. Basic architecture

As shown in Fig. 1 our basic architecture holds the SDVF architec-
ture [6]. The SDVF architecture is comprised of several fog clusters
and a central SDN controller (SDNC) that makes cycling decisions. The
predominant component of the SDVF architecture is the SDNC. A fog
cluster is a group of multiple vehicles, RSUs, base stations (BS), and one
RSU controller (RSUC). The design of the SDVF architecture includes a
distributed control plane that is made up of multiple controllers. Path
estimation and video packet tracking are effectively made possible by
the combination of VFC with a global centralized SDN controller and
local hierarchical multiple RSU controllers. The SDNC manages the
entire IoV network. Instead of transmitting specific flow rules, SDNC
transmits an abstract policy rule. RSUCs determine how specific policy
rules behave within a fog cluster based on their local intelligence. Fog
nodes can be vehicles, RSUs, or 5G cellular BSs (enodeB). Fog nodes are
nodes made up of storage and computation components. According to
Xiao et al. [7], installing fog computing nodes on specific connected and
autonomous vehicles (vehicular fog nodes or fog vehicles), including
smart buses and taxis, leverages their mobility to offer on-demand
fog computing for cost-effectiveness. It is the situation with vehicles
travelling at the furthest lowest speed, such as cars stuck in high traffic,
airport shuttles, or automobiles on college campuses. To reduce data
propagation delays between the monitoring area and the cloud, fog
nodes analyse raw video streams.

1.3. Motivation

Physical security compromises are more likely in fog nodes than in
cloud servers, which are often physically secure. A malevolent vehicle
that pretends to be genuine is called a rogue vehicle. Rogue vehicles
can create fake identities or spoof many real IDs by changing the
network topology. These attack vehicles use numerous bogus identities
to simultaneously halt IoV networks. A rogue node that assigns innu-
merable false identities is a Sybil attacker [8]. A promising technology
is required for misbehaviour detection that uses data from messages to
identify vehicles that may be acting maliciously within the system.

According to Al-Otaibi et al. [9], managing rogue vehicles that
transmit false information or threaten users’ privacy is a critical security
issue in IoVs. The information given by other vehicles must enable
drivers to make crucial decisions. A rogue node may purposefully
introduce misleading data into the network with malicious intent, or
unreliable sensors may result in catastrophic network damage. Extreme
circumstances may even cause the network to become immobilized.
The rogue node can fake the vehicle speed values as well as its com-
puted traffic flow and density values in safety beacon messages. There
2

is a requirement for a misbehaving detection mechanism to detect such
bogus network flows. Machine learning (ML) and deep learning (DL)-
based misbehaving detection systems (MDS) on IoVs have gotten a lot
of attention because of their success in achieving high classification ac-
curacy [10,11]. However, existing IoV misbehaving detection schemes
based on machine learning require massive amounts of data to com-
plete model updates. To counter new threats, ML-based misbehaving
detection models must be updated. Also, storing and sending informa-
tion to a central server could put privacy and security at risk. 6G will be
an intelligent self-learning network that uses artificial intelligence and
deep learning to deal with vehicular network and network management
complexity [12]. It is of crucial importance to handle the security and
privacy challenges of 6G.

1.4. Federated Learning

The term Federated Learning (FL) was first coined in 2016 by
McMahan et al. [13] which brings unique advantages to the security
and privacy issues in 6G. Federated Learning [14] offers a technique
for cooperative training that enables various entities to create a com-
mon machine-learning model. Each device that takes part in federated
learning has access to private training data that other clients and the
server cannot see. This protects the privacy and security of the data.
Only model updates are shared at a central aggregation server, which
is usually hosted by one of the parties or by a cloud service provider. A
method for identifying passive mobile attacks in 5G VFC was brought
forth by Boualouache et al. [15]. This method employs FL to enable
secure and confidential collaborative learning and to develop a robust
global ML model to detect passive attackers. By putting FL servers at the
edge, the system lets clients talk to each other quickly and uses semi-
supervised learning to let the data label itself. The aggregation server
is a central part that could be a single point of failure if something
goes wrong. The FL aggregation process can be carried out at multiple
levels. Hayawi et al. [16] suggested a federated learning framework to
address the issues of network congestion and capacity. They developed
an algorithm for a flexible aggregation node selection process, which
chooses the most suitable global aggregation node depending on how
busy it is and how long it takes to communicate with it. RSU acts as
a fog node that performs local aggregation. Based on what computers
can do and how much energy is left over, a method for choosing clients
for each communication round was suggested. Though the authors
claim that it assists in streamlining the learning process and cutting out
delays, it lacks in considering the quality of the communication links
with the clients.

1.5. Problem statement

Many research papers have only discussed the issues with vehicle
selection strategies in FL-based IoVs. Similarly, only a few papers in
the research literature have developed and addressed the issues of FL-
based systems for detecting bad behaviour in 6G-enabled IoVs. Before,
not enough factors were taken into account to pick the best and most
appropriate vehicles for local training of datasets for the use of FL to
improve MDS approaches in IoVs with 6G.

1.6. Solution outline

To the best of our knowledge, this is the first effort to analyze
the computational capabilities and quality of the communication links
of the clients to develop a single framework that focuses on mis-
behaviour detection (FLEMDS) along with the best vehicle selection
strategy (FLBFLVS) in 6G-enabled IoVs. The FLEMDS framework is
unique because it uses three-layered federated learning, a sophisticated
type of deep learning network, to tell the difference between legitimate
network flows and those that are part of a Sybil attack. The framework
is made up of a number of distributed SDN controllers that collaborate
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Fig. 1. Architecture of SDVF.
to train an effective misbehaving detection system for the entire vehic-
ular network. The number of model aggregations and synchronization
rounds that an FL operation goes through depends on the batch size that
is employed. Before model aggregation, each client (FL-vehicle) trains
on its entire local dataset. A model update generated by a node for each
round is frequently intended to be temporary, but the aggregator must
durably store it until model aggregation is finished [17]. The aggregator
nodes selected in FLEMDS are capable of storage and computing. The
SDNC, RSUCs, RSUs, and base stations are the aggregator nodes in
FLEMDS. By default, the aggregator side discards the model updates
once the aggregated model is permanently stored, while each node may
maintain model updates according to its local data retention policy.
Furthermore, the resources of a few fog vehicles may be partially or
completely utilized. To fully take part in federated learning with fog
vehicles, it is important to choose suitable vehicular fog nodes. Over
time, vehicles change their minds about whether or not to take part in
the FL process until they reach an equilibrium state. The equilibrium
state might not last for very long. So, it makes more sense to choose
some connected fog vehicles that take part in the federated learning
process. There could be a large number of uncovered fog vehicles with
high computational capabilities. Because of these reasons, it is impor-
tant to choose fog vehicles as FL vehicles and think about uncovered
fog vehicles. The FLEMDS framework uses the FLBFLVS method, which
only lets a set of fog vehicles train locally as clients. The novelty of
FLEMDS architecture also lies in the FLBFLVS approach, which uses
the fuzzy-logic concept to select only the fog vehicles that take part
in local training for the FL process. FL-vehicles are chosen using the
FLBFLVS approach based on factors such as RSSILTE, RSSIIEEE802.11p,
residual energy, available memory, and current data records.
3

1.6.1. Contributions
The paper makes four major contributions:

1. We point out the main problems with the various learning-
based misbehaving detection techniques and the existing FL-based
frameworks in vehicular networks. We specifically point out the
difficulties in employing the distributed and centralized solutions
currently in use without considering the effectiveness of com-
munication and the uneven characteristics of vehicle data. We
also summarized the existing approaches to vehicle selection in
federated learning.

2. Additionally, we discuss the significance of using the fuzzy logic
technique [18] for choosing the FL-vehicles from a huge pool
of vehicular fog nodes to deliver a fast global update. The FL-
vehicles’ contributions to the overall model are different because
they have different sets of features and training, which makes this
more difficult.

3. We suggest a security architecture for SDVF that is built around
a speedy traffic accident rescue scenario and has three layers of
federated learning to spot Sybil attacks. So, the identification can
be done in the car while taking into account the learning environ-
ment’s unbalanced vehicle data. After three levels of aggregation
have been set up, the global weights are sent from SDNC to RSUs
through RSUCs. When in range, the FL-vehicles interact with the
RSUs, or BSs, which act as fog nodes to gather and incorporate
the most recent updates from the global model weights into
their local models. The final global model is generated for edge
vehicles. Additionally, in the case of our FL proposal, only model
weights are provided to the global model, successfully protecting
the privacy of the vehicle data in the SDVF.
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Table 1
Summary of acronyms.

Acronym Definition

6G Sixth-Generation
5G Fifth-generation
ITS Intelligent Transportation Systems
IoV Internet of Vehicles
VFC Vehicular Fog Computing
SDVF Software-defined Vehicular Fog

Computing
FL Federated Learning
MDS Misbehaving Detection System
FLEMDS Federated Learning Entrusted

Misbehaviour Detection System
RSU Road-Side Unit
BS Base Station
enodeB Evolved Node B
FLBFLVS Fuzzy Logic-Based Federated Learning

Vehicle Selection
FL-vehicle Federated Learning-vehicle
V2X Vehicle-to-Everything
V2V Vehicle-to-Vehicle
V2I Vehicle-to-Infrastructure
V2S Vehicle-to-Sensors
V2R Vehicle-to-Road-Side Units
V2P Vehicle-to-Pedestrians
SDN Software-defined Networks
SDNC Software-defined Network Controller
RSUC Road-Side Unit Controller
PKI Public Key Infrastructure
PCA Pseudonym Certificate Authority
ML Machine Learning
DL Deep Learning
MDS Misbehaving Detection Systems

4. Lastly, we compare our federated learning entrusted misbehav-
ing detection (FLEMDS) method to the state-of-the-art FL-based
frameworks and test it against a simulated threat model in the
SDVF architecture. We also estimate the FLBFLVS procedure
based on the fuzzy logic method.

.7. Paper organization

The following is the organization of the paper: Section 2 discusses
he issues in various learning-based misbehaving detection techniques,
he existing federated learning frameworks on the Internet of Vehicles,
nd also the current vehicle selection strategies for FL. Section 3
resents a threat model in a speedy traffic accident rescue scenario
oncerning SDVF networks. Section 4 describes the proposed System.
he experimental setup and comparative results are explicated in Sec-
ion 5. Section 6 contains the conclusion and future work. For ease of
eading, the definitions of acronyms used in this paper are summarized
n Table 1.

. Related work

In this section, we first look at the problems with different learning-
ased misbehaviour detection systems for next-generation 6G-enabled
ehicle networks. In existing federated learning frameworks for vehi-
les, an investigation of the complications and consequences is carried
ut.

.1. Learning-based misbehaving detection systems on the internet of vehi-
les.

To issue digital keys to the OBUs of vehicles and RSUs in accordance
ith ETSI and IEEE standards, a vehicular Public Key Infrastructure

PKI) system is in place [19]. To sign messages sent back and forth,
4

igital keys are used. This verifies the identity of the sender and ensures
that the message is real. These signatures serve as a means of identify-
ing a specific vehicle. As a result, it would be simple to follow a vehicle
that uses the same key to sign all of its messages. Pseudonym authen-
tication is handled by the Pseudonym Certificate Authority (PCA). The
pseudonym authentication process creates a pseudonym for the vehicle
ID. The pseudonym can include the valid open key, the length of time
the key is good for, and the digital signature of PCA. The vehicle ID
can be saved to track the ID of a vehicle that uses a pseudonym. A
Sybil attack can happen when a misbehaving vehicle uses multiple
valid pseudonym certificates at the same time. So that users’ privacy
is protected, the vehicular PKI gives out many certificates with fake
names for the same vehicle. A vehicle can therefore frequently change
its signature to avoid being tracked. An attack is made possible by
the pseudonymization of cars, in which a single vehicle pretends to
be several different on-road entities at once. This form of malicious
activity is known as a Sybil attack. Even though the mobile PKI protects
the network from attacks from the outside, it can still be attacked
by rogue nodes on the inside. A node with valid keys could sign the
messages while sending false information.

Misbehaviour Detection System (MDS) is one of the most important
and basic security measures for stopping security attacks. It has been
used extensively in conventional cyber networks for ages. To enhance
the accuracy of a centralized detector in the IoTs, Li et al. [20] built
a cooperative misbehaving detection framework. At the moment, con-
sidering factors such as the placement location and learning levels of
IDS, the misbehaving detection systems on IoVs fall into the following
categories.

2.1.1. Distributed learning-based misbehaving detection system on individ-
ual clients

In VANETs, each node, like a vehicle or RSU, has its own IDS module
that looks for local attempts to break in. To protect VANETs from false
information assaults, Zaidi et al. [21] presented an intrusion detection
algorithm based on communication intervals and vehicle density. It
operates without expensive gear like Lidar, radar, or cameras and is
independent of any infrastructure (such as RSU). Zhang et al. [22]
suggested a machine learning-based MDS using differential privacy
while maintaining privacy.

2.1.2. Centralized learning-based misbehaving detection system on RSUs or
cluster heads

The IDS implemented on the RSU is considered a substitute for
the vehicles. A hierarchical IDS relying on BUSNet was developed by
Tian et al. [22], in which buses serve as clustering nodes to collect
routing packets together with the dissemination of data among cars.
The RSU learns the regular behaviour model using the collected flows
after receiving the actual network flows from the bus nodes. The RSU
traces the whole vehicular network using a well-trained model that
can recognize network packets and data packets and quickly sound an
alarm if it sees anything out of the ordinary. As a central RSU monitors
the complete network, the method experiences SPOF (single-point-of-
failure). Additionally, since it cannot expand properly as the system
gets bigger. For such solutions to work, the centralized RSU needs to
have enormous storage, computing, and transmitting resources so that
it may efficiently manage vast volumes of traffic. Cluster head nodes in
this classification are in charge of spotting intrusion attempts. Wahab
et al. [23] suggest an intelligent detection model that boosts the rate of
detection and obtains the least overhead even with the high mobility
of VANET. Within each cluster, multi-point relay vehicles (specialist
nodes that are in charge of packet forwarding) work together to collect
training data, which is then processed in real time. Subba et al. [24]
created an IDS with a classifier with a lightweight component drawn
on game theory with two players to detect malicious cars and decrease
communication costs. To cut down on IDS traffic, it simulates the
exchange of messages by making the cluster head and a bad vehicle

play a game. This is done by using a monitoring method based on the
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Nash equilibrium. This method slows down the network less than both
centralized and decentralized IDS, and it can keep fighting attackers
even when RSU is not available. But this method can only get limited
information about flow from the cluster head, so it cannot be used to
train a detection system to keep track of the whole network. For this
type of solution to work, the cluster head must be a vehicle with a lot of
computing power and a stable network bandwidth so that connections
do not drop out.

2.1.3. Collaborative learning-based misbehaving detection systems
Both individual vehicles and centralized elements like RSUs and

cluster heads are equipped with collaborative learning-based IDS. Sed-
jelmaci et al. [25] created a powerful clustering method and suggested
a compact intrusion detection system for VANET to handle high node
mobility and quick changes in topology. The intrusion detection of
three agents makes up the entire network: the cluster runs the local
IDS; the cluster head runs the global IDS; the RSU runs the global
decision system. Three detection agents must work together to identify
malicious vehicles so they can be detected with high accuracy. Aloqaily
et al. [26] used deep belief-decision trees to create an attack detection
technique for detecting attacks on automobiles. Nevertheless, each
intrusion detection requires participation from the cars, cluster heads,
and RSUs, which adds a significant burden to the system. So that
network latency does not get in the way, these frequent exchanges and
active engagement need constant and high bandwidth. Multiple SDN
controllers are installed on the base stations, and Shu et al. [27] suggest
a collaborative IDS drawn on distributed SDN as a defense against
security attacks in vehicular ad-hoc networks. A generative adversarial
network (GAN) is employed to construct a collaborative IDS. It lets mul-
tiple SDN controllers work together to train an IDS model for the whole
vehicular network, not just a local network, to fix the problem of biased
flow caused by deploying multiple SDNs in a decentralized way. For
software-defined connected vehicles, Kim et al. [28] developed an MDS
based on machine learning where the vehicles examine the incoming
traffic and send some chosen traffic flows to the SDN controller. The
SDN controller uses the SVM classification method to train a multi-class
classifier based on these data flows. Vehicles get the parameters of the
trained model so they can use them to find other vehicles that are acting
up. For vehicular networks, Mirzaee et al. [29] suggested a two-layer
IDS technique based on machine learning. The suggested method calls
for the Edge IDS at the supervisory layer and the on-vehicle IDS as the
main node to work together to find threats.

2.2. Existing federated learning frameworks on the internet of vehicles

Many pieces of writing have shown that federated learning is used
in IoVs to reach many goals. Its goals include keeping data private,
making routing decisions, putting in place systems to find people who
are acting strangely, and a few other things. An FL-based framework
was put forth by Mowla et al. [30] to enable on-device identification
of jamming attacks in FANET using the UAV clients with the federated
learning model. The selection of client groups for a constrained global
model is carried out by employing a client group prioritization method
based on the Dempster–Shafer theory. Zhou et al. [31] suggested a
two-layer FL-based model for intelligent object detection that produces
accurate and efficient learning outcomes in 6G Internet-of-Vehicles. A
two-layer FL framework was made and put into place to improve the
traditional cloud computing architecture in vehicular networks that
support 6G. An embedded TFL-CNN was built by leveraging convo-
lutional neural networks for training to employ local input and just
share the parameters. A technique called multi-layered heterogeneous
model selection and aggregation was used to take into account both the
local and global contexts of each car and RSU. This made the training
process much more effective. The intelligent object detection process
was then created using a context-aware learning approach. Magdum
et al. demonstrated a cooperative V2X-based FL system that combines
5

LTE and 802.11p interfaces [32]. The proposed V2X-based FL system
asserts to be more effective than the system that simply uses a 4G
LTE interface for V2X interaction since it makes use of radios already
present in vehicles.

Xiao et al. [33] suggest a completely decentralized FL-enabled
framework for investigating an undirected topology with time variation
matching to the dynamic multi-agent system. The authors claim that
the system can quickly converge and is partially immune to the effects
of random data collection and dynamic networks that change over time.
Zhang et al. [34] present a secure cloud–edge-end collaboration PIoT
(BASE-PIoT) architecture based on blockchain and AI. With three com-
mon blockchains working with PIoT, the system claims to guarantee
data security and intelligent computation offloading, as well as ver-
satile resource allocation, secure data sharing, and diffserv guarantee.
They also suggest a federated deep actor-critic work offloading method
powered by blockchain to solve the problem of safe and low-latency
compute offloading.

Since vehicles generate a tremendous amount of data, the tradi-
tional machine learning-based IDS approaches are not the best options.
The fact is that data needs significant computing, network, and private
resources. Traditional vehicular networks cannot have fully distributed
IDS frameworks because cars do not have enough computing power.
Vehicle networks’ need for low latency and limited connectivity also
makes it hard to use an edge computing model. But the federated learn-
ing paradigm is useful because it lets devices be trained by the machine
learning models that use the least amount of network resources and do
not share data with a central server. In most federated learning MDS
architectures, a single global aggregator is used, with the possibility of a
single point of failure. And also, they are unable to scale to handle large
amounts of data and adapt to the vehicle’s behaviour. The performance
of a single aggregator drops as the number of vehicles increases. Also, in
a fair way to choose clients, the local training might not be enough for
clients with limited computing resources and bad wireless conditions.
It leads to disproportionately long upload times. Existing federated
learning methodologies often create a single separate local model for
every vehicle to train the local sensitive data, then employ a centralized
model globally to interchange the trained weights of connected vehicles
that take part in the FL process. Due to the different properties of the
local data samples and the different types of vehicles involved in the
process, the traditional FL method cannot make all vehicles perform
well in the same way.

2.3. Vehicle selection strategies for federated learning in the internet of
vehicles

The vehicles taking part in federated learning are not all the same,
they may have different types of datasets with different sizes, qualities,
and distributions. This is called the non-independent and identically
distributed (non-IID) problem. If you select vehicles randomly, you
might end up with vehicles with few resources or clients with less
data. This could make it harder to reach the goal of a certain level
of accuracy and lead to a large number of learning rounds. There are
several approaches to federated learning vehicle selection, including
biased client selection [35], unbiased client selection [36,37], syn-
chronous aggregation [38], and asynchronous aggregation [39–42].
The performance of FL, like training time, model upload latency, and
model convergence, is affected by the number of vehicles chosen and
the local data of those vehicles. The authors present the link between
the number of selected clients and the FL training process [36]. Then,
incorporate federated learning with client selection (FedCS), in which
the server chooses as many clients as possible in each communication
round to speed up global model convergence in resource-constrained
edge networks. Yoshida et al. [43] proposed a selection approach
based on a multi-armed bandit model that takes into account different
computing and communication resources. The authors suggest a later-

is-better principle-based client selection approach, in which chosen
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clients with minimal bandwidth and energy are updated in each learn-
ing round [44]. Analogous findings are presented in [45], where a
stochastic selection scheme based on the efficiency and fairness of the
participant is established to achieve a trade-off between convergence
time and accuracy. In order to select more clients for the FL training
process, the authors of [46] take into account CPU frequency, memory,
and energy. Lai et al. [47] use multiple predefined criteria to select
the device with the best computational capability and sample quality
in order to improve the accuracy of the FL model. Wang et al. [48]
investigate the change in the model before and after training, in which
the local dataset is assumed to be non-IID. Then reinforcement learning
is used by taking into account how accurate the model is and how many
communication rounds there have been. The authors of [49] calculate
the reputation of each vehicle by testing the accuracy of the local model
to build a client selection architecture. Maintaining the reputation of
every FL user, though, is challenging. In fact, selecting more clients
means injecting the model with more samples. Evidently, the research
discussed above only takes into account the number of chosen clients,
and it does not adequately address the clients’ capacities for FL training.

The authors state that in synchronous FL, there is only one launch
end and one aggregation end for the single global model [42]. Each
round begins at the same time for each client. When all models are in
the environment, federated aggregation is run without setting a goal
for learning rounds. In response to frequent model updates and bot-
tlenecks, the authors of [50] implement semi-asynchronous FL. Then,
they theoretically assess how partial clients may affect convergence
performance. The authors in [38] design a traditional synchronous FL
protocol that includes choice of the client, node layout, and report-
ing. Even with bottlenecks, this protocol is suitable for the majority
of FL scenarios. The bottlenecks are remedied effectively in [43] by
incorporating the limit in learning rounds.

Previous research studies did not investigate the computational
capabilities and communication link qualities of the vehicles when
participating in FL local training. To solve these problems in 5G and lay
the groundwork for 6G, an FL-entrusted misbehaving detection system
(FLEMDS) has been proposed. The FL process looks at many aggregators
from different network domains that have a lot of computing power. So,
there is a guarantee that data from vehicles will be shared and gathered
correctly so that updates from vehicles in all parts of the vehicular
network will be better. FLEMDS with FLBFLVS only lets vehicular fog
nodes that can compute and store data be chosen as clients for the
training process. This makes sure that update and upload times are kept
to a minimum.

3. Threat model in speedy traffic accident rescue scenario

When 5G or 6G vehicular networks are combined with software-
defined networks (SDN) and fog computing, they can achieve ultra-low
transmission delay, high throughput, and the ability to support the
dynamic nature of vehicular network functions for a low cost. We are
considering 6G SDVF networks because our application, the emergency
Scenario, is all about sending out safety beacons with very low latency.
The basic SDVF architecture [6] incorporates the scenario for speedy
traffic accident rescue and uses fog nodes to broadcast accident-related
video required by hospitals to dispatch ambulances for both congestion
avoidance and speedy traffic accident rescue. The SDVF network sends
video packets from the surveillance area to the hospital by dividing
roads into different road segments with unique segment IDs. The infor-
mation that vehicles on the road share with the RSUs is then forwarded
by the RSUs to the RSU controller of the fog cluster. After obtaining
real-time topology from RSUC, SDNC finds the shortest path to the
target. The suggested system also takes advantage of the fact that
video packets can be routed via RSUC from one fog cluster to another
or in a multi-hop fashion, i.e., V2V, V2R, and V2B communications.
Maintaining up-to-date routes to neighbouring RSUs will eventually be
important compared to other mobile nodes because vehicles demand
6

a high level of familiarity with RSUs. The SDNC and the RSUC are
the most important parts of the SDVF architecture for video streaming
between fog nodes and the hospital. Fog nodes must be distributed
around the network, and global–local controllers must be in charge of
managing them. Services that are dispersed over numerous fog nodes
must be managed. SDNC figures out the best way for the ambulances
to get to the accident scene as quickly as possible. The video is looked
at locally in cars, RSUs, or cell phone base stations called fog nodes.

In vehicular networks, vehicles regularly broadcast basic safety
messages (BSM), also known as safety beacons, for accurate positioning,
localization of new neighbouring vehicles, or emergency purposes by
claiming their identities. A Sybil node can effortlessly allege multitudi-
nous identities without being detected. Identity authentication is not
a good way to keep Sybil attacks from happening in IoVs. The SDVF
design for the rescue scenario has added two variants of the Sybil
attack known as emergency message alteration and fake emergency
message generation in which either the position of the vehicles is
modified or a new emergency message is generated by claiming the
identities. Fig. 2 depicts a Sybil attacker discovering the identity of a
fog node (for example, an RSU). Then, it sends a fake location-based
accident video to the hospital. As a compromised fog node, the Sybil
attacker first looks for hospitals near the fog cluster. If the RSUC of
the current fog cluster cannot find the hospital nearby, it sends the
video feeds and emergency alerts to the next fog cluster. The main
job of a cellular BS (also a fog node) is to provide wide coverage.
If a BS in the fog cluster detects a hospital nearby after receiving a
video stream, it will transfer the streams to the hospital. The hospital
also analyzes the received video feeds for accident-related data, like
the severity of the accident, the number of people who were affected
in the accident, the number of vehicles jumbled in the collision, etc.
Eventually, the hospital sends an ambulance to the accident site based
on the claimed position in the safety beacon that it has received. The
wrong alerts act as false notifications, such as You are on the rescue
route or You are nearing an accident location, and are sent to vehicles
moving towards the accident location through V2V communications.
Altogether, an erroneous congestion area is formed by the fog nodes.
As drivers get closer to the made-up accident site, the wrong virtual
congestion avoidance region is made based on where the accident
happened (shown by the red square). The incorrect rescue route is
chosen, as shown by the pink line from the hospital to the scene of the
accident. The goal of the vehicles’ emergency rescue plan is to change
the route so that ambulances can get to the scene of an accident. But
the route is wrongly predicted by the Sybil attacker.

4. Proposed system: Federated Learning Entrusted Misbehaving
Detection System (FLEMDS) for SDVF networks

This section explains the step-by-step process of creating a federated
learning misbehaving detection system model for SDVF architecture
using the FLBFLVS algorithm. The subsection discusses Sybil attack
detection, which will be implemented at the edge vehicles using the
FLEMDS algorithm. We also precisely analyze the correctness of the
verification. We show how a Sybil attack can be found in the local data
of a vehicle using the threat model.

4.1. System model

The Federated Learning-entrusted misbehaving detection system for
SDVF networks is shown in Fig. 3. It performs three-level flexible and
adaptive model aggregation that detects Sybil attacks. The FLEMDS
architecture is scalable for vehicle participation and topology. Three-
level model aggregation aims to enhance the detection accuracy of
the MDS system. The procedure for the FLEMDS comprises six steps.
Refer to Table 2 for the notation symbols and their definitions used

throughout the article.
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Fig. 2. Threat model in a speedy traffic accident rescue scenario considering a software-defined vehicular fog computing architecture.
Table 2
Summary of notations.

Notation symbols Definition

K Total number of model updates
Winitial Initial detection model weights
c A specific fog cluster
Df Local Sybil attack dataset instances
Wf Global model weights
Wt+1 weights at time t+1
Lf Global loss function
lf Local loss function
uf Number of local updates
nf Number of local attack dataset instances
ef Residual energy
mf Available memory
Pf Available CPU capacity
Jf Number of data records
LA1 Number of level-1 local aggregators
LA2 Number of level-2 local aggregators
qf Number of FL-vehicles
nf Number of local attack dataset instances
w1f Level-1 local weights
w2f Level-2 local weights
p Pseudonym
pdb Pseudonym database

4.1.1. Parameter estimation and the creation of an initial global model
The chosen FL-vehicle acts as a client in the federated learning

architecture for 6G-enabled IoVs. The clients do parameter estimation
by using vehicle features like pseudonym, sender-ID, receiver-ID, speed,
claimed transmission time, reception time, position, acceleration, and
heading. To train a model for finding bad behaviour, we added an
attack-ID feature with two different values. This feature is used to
differentiate between two types of network flows, such as normal flows
and Sybil attack flows. The initial detection model, Winitial is trained
globally at the SDN controller using a few instances of the attack
7

dataset. The updated weights Wf are then distributed to the fog clusters
participating in the model training phase of the federated learning
process. The weights Wf are the parameters that can be learned and are
changed when the model is being trained. A shared weight update from
the FL-vehicles that is sent to the global model also makes it possible
to use a federated averaging method.

4.1.2. Fog cluster selection for training
Consider that there are Vf fog vehicles, R RSUs, and B base stations

as fog nodes which are disseminated to 𝑁 fog clusters. Due to the
fog clustering phenomenon, the fog vehicles with the proper computa-
tional and storage capabilities get the opportunity to take part in local
training, which minimizes the communication overhead between the
vehicles and the SDN controller. Additionally, the local Sybil attack
dataset owned by the fog vehicles in a fog cluster c is denoted by Df.

At the initialization of a round t, the SDNC initiates the fog clusters
N. Suppose K is the total number of model updates in round t, and the
SDNC sends Wf as the latest model weight to RSUCs (fog cluster heads).
While the new update begins, RSUCs forward it to their corresponding
fog clusters. The fog clusters can be selected in a fixed or random
manner. At the starting point, Wf equals Winitial. At a later point, Wf
assigns a value of Wt+1 soon after the SDNC has been updated. The
SDNC adds a new fog cluster from 𝑁 that has not participated in each
round or update.

4.1.3. Fuzzy logic-based FL-vehicle selection (FLBFLVS)
Each FL round must include a certain ratio of fog vehicles that are

chosen inside a fog cluster, and other connected vehicles are dropped
based on certain criteria. We assume that a pseudonym authentication
procedure is followed to verify the issued certificates of fog vehicles to
prove they are legitimate [51]. The main reason behind the selection
of vehicle clients for local training is the following: most vehicles are
unable to participate in the learning process due to their lower com-
putational capabilities and memory. If they were likely to be forced,
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Fig. 3. Federated learning entrusted misbehaviour detection system (FLEMDS) model.
the learning process would be slowed. Thus, an efficient fuzzy logic-
based FL-vehicle selection (FLBFLVS) technique is executed at RSUs
and base stations based on factors such as accessible memory, data
records, residual energy, and link strength of LTE and IEEE 802.11p
connections. An Elliptic Curve Cryptography (ECC) is used to guarantee
communication privacy and source authentication which is provided
by the current IEEE 802.11 standard IEEE 1609.2 /cite. The fuzzy
logic technique [18] is utilized for the selection of suitable FL-vehicles
to be involved in the process of federated learning. FL fog vehicles
are selected periodically. The selected nodes accumulate the required
parameters through V2I (RSUs, BSs) and V2V communications. The
FLBFLVS selection algorithm calculates the convenience of vehicles to
decide whether to include them in the selected vehicle list or not.
Algorithm 1 outlines the algorithm of the FLBFLVS procedure.

A mathematical technique that employs linguistic variables is
termed fuzzy logic. There are three steps in the fuzzy process, namely
fuzzification, fuzzy inference systems, and defuzzification. Fuzzification
is the process of converting the input values into linguistic values
using membership functions. A set of IF-THEN rules known as a fuzzy
inference system is used to translate inputs into outputs. Using fuzzy
operations, the various inputs are combined in the initial section of
rules using an IF statement with the combination of OR and AND. The
second section, which is the linguistic value of the output, represents
the outcome of the IF statement. The opposite of fuzzification is defuzzi-
fication. The fuzzy inference system’s linguistic output is transformed
into an accurate numerical value.

The accuracy of the data gathered may be impacted by changes in
network circumstances such as interference and weather. Fuzzy logic is
employed in this situation because it is a reliable method for resolving
issues with imperfect information. We investigate the case of slow-
moving cars and buses at airports and university campuses. We use LTE
link strength and IEEE802.11p link strength, residual energy, available
memory, and the current number of data records as metrics. The link
strength is measured based on the received signal strength indicator
(RSSI). The variables RSSILTE and RSSIIEEE802.11p have linguistic values
of poor, average, and good. The variables residual energy, available
memory, and current data records have low, medium, and high lin-
guistic values. Vehicular fogs should have high LTE and IEEE 802.11p
link strength (RSSI) values to guarantee communication with RSUs
and base stations. The range of linguistic variables RSSILTE RSSI802.11p,
residual energy, available memory, and data records are presented in
Fig. 4. A classic fuzzy set function is between the values of 0 and 1,
8

Table 3
FLBFLVS parameter rules.

Rules RSSI
(LTE)

RSSI
(802.11p)

RE M DR Convenience
(output)

1 Good Good High High Low High
2 Good Good High High Medium High
3 Good Good High High Medium Medium
4 Average Average High High High Medium
5 Poor Poor Low Low Low Low
6 Poor Poor Low High High Low

denoting the degree of the membership function of the input or output
linguistic variables in a particular set. Table 3 depicts the rules for the
five parameters that act as inputs to fuzzy variables to produce fuzzy
production rules. The output linguistic variable, convenience, signifies
the chances of the fog vehicles becoming FL-vehicles. The higher the
value of the convenience variable, the greater the chances of the fog
vehicles becoming FL-vehicles. This structure was used to select the FL-
vehicle in a fog cluster at each RSU or base station. The most suitable
fog vehicular nodes are selected as FL vehicles.

The format of the rules is demonstrated by the following instance:

If (RSSILTE is good) OR (RSSI802.11p is good) AND (residual energy
(RE) is high) AND (memory (M) is high) AND (data record (DR) is
low) then (convenience is high).

4.1.4. Local training and upload
FL-vehicles undergo local training using local Sybil attack data Df

and transmit the local updates(weights) to RSUs in their proximity. The
𝛾 ∈ Df has two parts (X𝛾 , Y𝛾 ), X𝛾 represents an input vector whereas Y𝛾

represents an output vector.
A local model is trained by the selected FL-vehicle using a finite sum

objective of the following form:

min
∑

𝐿f(𝑤) (1)

In Eq. (1), Lf(w) is a global loss function across each FL-vehicle
that is to be minimized. lf(w) is a local loss function across FL-vehicle’s
training over Sybil attack dataset instances Df.

𝐿f(𝑤) = 1
𝑛

∑

𝑙i(𝑤) (2)

f 𝑖∈𝐷f
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Fig. 4. Range of linguistic input and output variables (a) RSSILTE (b) RSSIIEEE802.11p (c) Residual energy (d) Available memory (e) Current data records (f) Convenience.
Algorithm 1 FLBFLVS procedure within each fog cluster
1: 𝐼𝑛𝑝𝑢𝑡 ∶ 𝐿𝑖𝑠𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑢𝑙𝑎𝑟 𝑓𝑜𝑔 𝑛𝑜𝑑𝑒𝑠 𝑉 f 𝑖𝑛 𝑎 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑑𝑎𝑡𝑎 𝐿𝑇𝐸 𝑙𝑖𝑛𝑘 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝐼𝐸𝐸𝐸 802.11𝑝 𝑙𝑖𝑛𝑘 𝑞𝑢𝑎𝑙𝑖𝑡𝑦, 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦,

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑚𝑒𝑚𝑜𝑟𝑦, 𝑎𝑛𝑑 𝑑𝑎𝑡𝑎 𝑟𝑒𝑐𝑜𝑟𝑑𝑠, 𝑉 f = {𝑣1, 𝑣2, 𝑣3, .....𝑣f}
2: 𝑂𝑢𝑡𝑝𝑢𝑡 ∶ 𝑆𝑒𝑡 𝑜𝑓 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝐹𝐿 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝐵f = {𝑏1, 𝑏2, 𝑏3, ......𝑏f}
3: function FLBFLVS
4: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∶
5: 𝑡 ← 0 ⊳ time slot
6: 𝑁 f ⊳ number of fog vehicles at t
7: 𝐴𝑡 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇
8: 𝑇 ← 𝑡 + 𝑇 ⊳ Initial FL selected vehicle list is empty
9: 𝐵f ← 𝑁𝑈𝐿𝐿

10: for (i =0 to Nf) do
11: 𝐸𝑎𝑐ℎ 𝑓𝑜𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑉 f 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑠 𝑖𝑡𝑠 𝑖𝑛𝑝𝑢𝑡𝑠

⊳ RSSILTE, RSSI802.11p, residual energy RE, available memory M, and current data records DR.
12: 𝑐𝑜𝑛𝑣𝑒𝑛𝑖𝑒𝑛𝑐𝑒i = 𝑓𝑢𝑧𝑧𝑦_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑅𝑆𝑆𝐼LTE, 𝑅𝑆𝑆𝐼802.11p, 𝑅𝐸,𝑀,𝐷𝑅)

⊳ Each vehicle computes its convenience value.
13: if (𝑐𝑜𝑛𝑣𝑒𝑛𝑖𝑒𝑛𝑐𝑒i 𝑖𝑠 ℎ𝑖𝑔ℎ) then ⊳ vi becomes an FL-vehicle(client)
14: 𝐵f ← 𝑣i
15: end if
16: end for
17: return 𝐵f
18: end function
where,

𝑙i(𝑤) = 𝑓 (𝑥i, 𝑦i;𝑤) (3)

In Eq. (3), 𝑙i(𝑤) is a function with the ith feature xi associated with
label y and model weights w.
9

i

Local weights are updated on each selected FL-vehicle in Bf.

𝑤f(𝑡) = 𝑤f(𝑡) − 𝛼𝛥𝐿f(𝑤f(𝑡, 𝑏𝑠f)) (4)

bsf refers to batch size and 𝛼 refers to the learning rate that should
be greater or equal to zero.
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The number of local updates uf as follows:

f =
𝐸f𝑛f
𝑏𝑠f

𝑒f𝑚f𝑃 f
𝐽 f

(5)

The notations Ef, nf, BSf, ef, mf, Pf, and Jf represent the conditions
f fog vehicles, Ef denotes the training iterations, nf denotes the number
f local attack dataset instances, bsf denotes mini-batch size across fth
L-vehicle, ef denotes residual energy, mf denotes available memory,
f denotes available CPU capacity, and Jf denotes the number of data
ecords. After uf local updates, all the FL-vehicles under RSU or BS
level 1 local aggregators) la1 ∈ LA1 send the updated parameters to

the local aggregators at level 1 to calculate the local aggregation.

4.1.5. Local aggregation level-1
To achieve weight aggregation, RSUs or base stations serve as

middle brokers to gather and aggregate data from all connected ve-
hicles within their coverage area. It includes learning parameters as
well as contextual information like vehicle locations and navigational
instructions. RSUs then interact with the RSUC to upload aggregated
model parameters and associated contextual data. After the global
aggregation, the RSUC provides the updated model weights to RSUs,
which were received from SDNC. RSUs and BSs subsequently send
these updated model weights to specific vehicles. As referred to in
Fig. 3, the RSU1 and RSU2 perform the process of local aggregation at
level-1. RSU1 and RSU2 send the aggregated model weights to RSUC1.
Similarly, selected FL-vehicles under RSU3 and 5G BS perform local
aggregation at level-1, and the aggregated model weights are sent to
the RSUC2.

The calculation of level-1 local weights aggregation is as follows:

𝑤1f(𝑡) =

∑𝑞f
𝑓=1 𝑛f𝑤f(𝑡)

𝑞f
(6)

where qf denotes the number of FL-vehicles and nf represents the
umber of local attack data-set instances.

.1.6. Local aggregation level-2
At level 1, RSUs and BSs act as fog nodes. Since the fog nodes have

igh computational power, RSU controllers and SDN controllers do not
nfer the model quality. At level-2, RSU controllers act as aggregators
hich retrieve aggregated model weights from the RSUs and base

tations from the level-1 to perform the level-2 aggregation process.
s demonstrated in Fig. 3, the RSUC1 and RSUC2 perform the second

evel of aggregations and send the aggregated weights to SDNC.
The level-2 local aggregation weights w2f(t) are calculated at RSUCs

by taking the average of local aggregation parameters w1f(t) from
multiple level-1 local aggregators la1 ∈ LA1, which is defined as
follows:

𝑤2f(𝑡) =

∑𝑙𝑎1
𝑓=1 𝑤1f(𝑡)

𝐿𝐴1
(7)

4.1.7. Global aggregation
The SDN controller is both a global controller and an aggregator

for the SDVF network as a whole. It performs the global aggregation
process at the third level by getting the local aggregated weights as part
of level-2 from RSUC1 and RSUC2. The proposed three-layer federated
learning system FLEMDS assures data privacy, effective knowledge-
sharing, and improved Sybil attack detection accuracy only by re-
quiring the transfer of model weights. Once the FLEMDS reaches the
𝜖 number of selections and two levels of local aggregations, RSUCs
forward the aggregated weights for global aggregation to SDNC. If the
SDNC controller fails, one of the best RSUCs will take over as the
secondary global aggregator. Thus, it overcomes the challenge of a
single failure in traditional FL techniques. For simplicity, we have set
RSUC1 as the default secondary global aggregator. As part of our work
in the future, we want to set up a way to choose the best RSUC to
replace the SDNC.
10
The global aggregation weight Wf is calculated at SDNC by taking
he average of local aggregation parameters w2f(t) from various level-

2 local aggregators la2 ∈ LA2 within each fog cluster n ∈ N, which is
defined as follows:

𝑊 f =
𝑁
∑

𝑛=1

[ 𝑙𝑎2
∑

𝑓=1

𝑤2f(𝑡)
𝐿𝐴2

]

(8)

We consider uf local updates and 𝜖1 = 𝐿𝐴1 number of level-1
local aggregations and 𝜖2 = 𝐿𝐴2 number of level-2 local aggregations
efore accomplishing one global aggregation. Only a few global aggre-
ations are executed instead of executing at each round which helps
o minimize the communication overhead only after 𝜖i number of local
ggregations at level-1 and level-2 from R number of communication
ounds, where 𝑖 represents the level number 𝑖 ∈ 1, 2. It also helps to

reduce the latency by minimizing the number of communications to
reach the SDNC for global aggregation, which is at the cloud level.

4.1.8. Back-propagation of the global weights
Once after completing the global aggregation, the global aggregator

(SDNC) updates RSUCs, RSUs (or BSs), and FL-vehicles with the end
global model. Before the next FL-vehicle selection and local training
process, the model is synchronized with the global weights. The syn-
chronization ensures that all of the chosen FL-vehicles receive the
previously learned weights from the global model. It will be helpful
when a particular vehicle has not participated in the prior FL-vehicle
selection process. Once the global model reaches the convergence level,
the FL process is stopped. The final global model is deployed in all the
vehicles to detect Sybil attacking nodes at the edge level.

4.2. Sybil attack detection

To detect the fake safety beacon sent by the Sybil attacker, the
global model is trained using the local attack dataset. The data in-
stances are differentiated between normal and Sybil attack flow by
making the usage of the concept known as pseudonyms linkage pro-
posed in [52]. The objective of pseudonyms linkage is to precisely link
all the pseudonyms that originate from the same vehicle. According
to the machine learning linking option, it determines whether the
two reported pseudonyms are linked to the same vehicle utilizing the
formerly computed features. A few reported pseudonyms are flagged as
linked pseudonyms are considered as an attack. The linked pseudonyms
are stored in the pseudonym-database pdb. The pseudonym in the
safety message is examined and if it belongs to the linked pseudonyms,
then it is detected as abnormal network flow. Otherwise, it is detected
as a normal network flow.

The federated learning entrusted intrusion detection system proce-
dure is explained in Algorithm 2, which calls the FLBFLVS function,
which is used to select the suitable fog node. The function receives
metric data from fog vehicles. The complete step-wise explanation of
the FLEMDS algorithm is given in Section 4.1. After model convergence
at R=500, the final global model of FLEMDS is procured and it is
deployed on the vehicles. The fog vehicles with the newly learned
FLEMDS model weights can be in one of two modes: the training
mode or the testing mode. If the fog vehicles are in the training
mode, then they can make predictions about the network flows and
provide local updates back to the RSUs, BSs, RSUCs, and then to SDNC
for contributing to the global FLEMDS Wf model. If the fog vehicles
are in the testing mode where only network flow predictions on pre-
trained attack data instances are performed. The testing mode saves
communication overhead as the FLEMDS weights are not required to
be sent to the RSUs for the local aggregation. The testing mode is used
when the fog vehicle is not suitable for the selection of participation in
local training. Whenever the new safety messages reach the vehicles at
the edge level through V2V or V2I communications, FLEMDS is utilized

to verify whether the message belongs to normal flow or abnormal flow.



Ad Hoc Networks 144 (2023) 103153L. Jai Vinita and V. Vetriselvi

(
g
t

f
o
i
t

Algorithm 2 FLEMDS algorithm for each round
1: 𝐼𝑛𝑝𝑢𝑡 ∶ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡 (𝑊 initial) 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠 𝑜𝑓 𝑝𝑠𝑒𝑢𝑑𝑜𝑛𝑦𝑚 𝑝, 𝑠𝑒𝑛𝑑𝑒𝑟-𝐼𝐷 𝑠𝑖𝑑, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟-𝐼𝐷 𝑟𝑖𝑑, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠, 𝑠𝑝𝑒𝑒𝑑 𝑠𝑝, ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ℎ𝑑, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑐,

𝑎𝑡𝑡𝑎𝑐𝑘-𝐼𝐷 𝑎𝑖𝑑, 𝑝𝑠𝑒𝑢𝑑𝑜𝑛𝑦𝑚 − 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑑𝑏, 𝐹 , 𝐶, 𝑁, 𝐿𝐴1, 𝐿𝐴2, 𝜖, 𝑅
2: 𝑂𝑢𝑡𝑝𝑢𝑡 ∶ 𝑊 f(𝑡) 𝑑𝑒𝑡𝑒𝑐𝑡𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑓𝑙𝑜𝑤
3: function FLEMDS
4: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∶ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 𝑊 initial
5: 𝑆𝐷𝑁𝐶 𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑠 𝑁 𝑓𝑜𝑔 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑜𝑢𝑛𝑑

⊳ Runs under each cluster
6: for (each level-1 local aggregator la1 ∈ LA1 in parallel) do
7: FLBFLVS() ⊳ Fuzzy logic-based federated learning vehicle selection function is called
8: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒 𝑤f(𝑡) 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝐿 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑓 ∈ 𝐹
9: for (each selected FL-vehicle f ∈ F in parallel) do

10: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑙𝑜𝑐𝑎𝑙 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 𝑤f(𝑡), 𝑢f 𝑡𝑖𝑚𝑒𝑠 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (4) 𝑎𝑛𝑑 (5)
11: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑙𝑜𝑐𝑎𝑙 𝑙𝑜𝑠𝑠 𝑙f, 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3)
12: end for
13: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐺𝑙𝑜𝑏𝑎𝑙 𝑙𝑜𝑠𝑠 𝐿f(𝑤), 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2)
14: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑙𝑒𝑣𝑒𝑙 − 1 𝑙𝑜𝑐𝑎𝑙 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑤1f(𝑡) 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6)
15: end for
16: for (each level-2 aggregator la2 ∈ LA2 in parallel) do
17: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑙𝑒𝑣𝑒𝑙 − 2 𝑙𝑜𝑐𝑎𝑙 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑤2f(𝑡) 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7)
18: end for
19: if (t is an integer multiple of 𝜖1 𝑎𝑛𝑑 𝜖2) then
20: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑊 f(𝑡) 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8)
21: end if
22: end function

⊳ Sybil Attack Detection-Testing Phase
23: Whenever a safety beacon reaches a vehicle
24: pseudonym of the source present in the beacon is verified
25: if (pseudonym p ∈ pseudonym-database pdb) then
26: 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑓𝑙𝑜𝑤
27: else
28: 𝑛𝑜𝑟𝑚𝑎𝑙𝑓𝑙𝑜𝑤
29: end if
4.2.1. Complexity analysis
We analyze the time and space complexity of the three-layered

FL-based Sybil attack detection algorithm in the worst-case scenarios,
which are presented in Algorithm 2. We consider the function FLEMDS
to assess the time complexity of the proposed Algorithm 2. In particular,
Algorithm 2 requires (𝑞f + 𝐿𝐴1 + 𝐿𝐴2 + 𝑁) number of additions and
𝑞f + 𝐿𝐴1 + 𝐿𝐴2) number of multiplications for generating a global
radient or model (Eqs. (6)–(8)). As such, the time complexity of
he algorithm is 𝑂(𝑛2) since the number of local updates 𝑢f and the

number of iterations 𝐸f is much smaller than n. The time complexity
or Algorithm 2 is O (𝑛2 + 𝑛2 + 𝑛) = 𝑂(2𝑛2 + 𝑛). The time complexity
f calculating the convenience value using fuzzy logic in Algorithm 1
s 𝑂(𝑛2 + 𝑛2 + 𝑛) = 𝑂(2𝑛2 + 𝑛) (Step 12). Compared with local training,
he complexity for backpropagation is 𝑂(𝑛3) at the vehicle side. The

overhead of the proposed algorithms on the aggregators’ side is minor
and can be ignored. Space complexity is the amount of memory a
model needs to run well. The distributed nature of the federated model
means it uses less memory. In contrast, the feed-forward nature of
the proposed federated model that uses extreme machine learning has
made it easier to use less space. The space complexity of Algorithms 1
and 2 is 3.25 MB.

4.2.2. Correctness proof
We present correctness proof that the Algorithm 2 enables vehicles

to detect a Sybil attack whenever the new safety messages reach the
vehicles at the edge level through V2V or V2I communications. We
consider a threat scenario where a Sybil attacker discovers the identity
of a fog node (for example, an RSU). Then, it sends a fake location-
based accident video to the hospital. As a compromised fog node,
the Sybil attacker first looks for hospitals near the fog cluster. If the
11

RSUC of the current fog cluster cannot find the hospital nearby, it
sends the video feeds and emergency alerts to the next fog cluster. We
focus on Sybil attack detection with our algorithm, where the vehicles
can operate. The initial global model Wf at SDNC is trained with an
instance of attack dataset, and the model is transmitted to the Bf=5
selected FL vehicles within a fog cluster through RSUC and RSU. And
then, at the starting point, R = 1 round of communication was used
to train models using the three-layered FL method as described in
Section 4.1. In particular, p = [1, 2, 3, 4], or 5 FL-vehicles, were used
for distributed training. For instance, each FL dataset Df1, Df2, Df3,
Df4, and Df5 had examples from 2 classes of Sybil attacks, but each
vehicle’s FL dataset was biased towards a different class by 50%. The
global loss Lfw is calculated (step 13) from the local losses l1w, l2w,
l3w l4w, and l5w. The local weights wf1, wf2, wf3, wf4, and wf5 are
calculated (step 12) for 5 FL-vehicles. Following uf local updates (step
10), all 5 vehicles within RSU1’s vicinity send the local weights to
RSU. Similarly, RSU2 receives the local weights from their FL-vehicles.
RSU1 and RSU2 calculate the level-1 aggregation weights w1f1, w1f2
respectively, w1f3 and w1f4 (step 14). RSUC1 and RSUC2 at level-
2 receive level-1 aggregated weights. They perform the level-2 local
aggregation process using 4 weights to obtain w2f1 and w2f2 (step
17). SDNC, as the global aggregator, performs the global aggregation
process to calculate the global model Wf (step 20). The global model Wf
is disseminated to the FL-vehicles through RSUC1, RSUC2, RSU1, RSU2,
RSU3, and BS1 after the first communication round. To form a new
local model, the weights of 5 FL vehicles under RSU1, RSU2, and other
vehicles under RSU3, and BS1 are updated with the global weights. The
new, updated local model is sent to the new set of selected FL vehicles
for the next communication round. The same process is repeated for
𝑅 = 500 communication rounds for model convergence. Following
model convergence, the final model will be deployed in the vehicles.
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Table 4
Simulation parameters.

Parameters Values

Open Street Map bound box 80.2331, 12.9918; 80.2676, 13.0165
Mobility Scenario Urban/Highways (10 km)
Threat Constant location attack (Sybil)
Number of attackers 1
Normal Traffic density ≈ 200 vehicles/km2

Rush-hour traffic density ≈ 700 vehicles/km2

Channel frequency 5.890e9
SDN Controller 1
Propagation model Two ray
Vehicle communication range 300 m
RSU Communication range 1000 m
Antenna model Omnidirectional
Bit rate 18 Mbit/s
PHY model IEEE 802.11p
MAC model EDCA

Now the vehicles are ready for the Sybil attack detection phase. When-
ever the safety beacons reach the vehicles, they automatically decline
the message if it belongs to the attack class (steps 23–29). A detailed
explanation of the simulated attack dataset and the classification of the
dataset is given in Section 5.1.

5. Performance evaluation

In this section, we confer the performance results that were carried
out to analyze the FLBFLVS procedure and the FLEMDS model. The
FLEMDS with FLBFLVS process is compared with FLEMDS without any
vehicle selection method. The FL-vehicles are chosen randomly if no
vehicle selection mechanism is used for any FL framework. Also, the
FLEMDS is compared with two different aggregations algorithm-based
MDS that are state-of-the-art architectures in FL. So far as we know, this
is the first approach to figure out how well-equipped vehicles that can
be used for effective local training affect the development of FL-enabled
MDS for the 6G-enabled Internet of vehicles by employing FLBFLVS.

5.1. Experimental setup

To experiment with the FLEMDS and FLBFLVS, we use the simulated
threat model for the SDVF network incorporated into the speedy rescue
traffic accident scenario. The simulation parameters are presented in
Table 4. We use the Veins simulation framework to run our project.
This framework combines the network simulator OMNET++ and the
traffic simulator SUMO. Veins comes with detailed IEEE 802.11p and
LTE V2X standards [53]. In contrast to LTE-V2X, which uses the PC5
sidelink interface specified in 3GPP Release 14 and improved in 3GPP
Release 15, DSRC uses IEEE 802.11p-based standards as the foundation
for wireless communication. IEEE 802.11p and LTE-V2X use IEEE
1609 WAVE standards for network layer and security protocols. The
simulated threat dataset is utilized to implement FLEMDS with the
vehicle selection method, FLEMDS without the FL-vehicle selection
method, and three state-of-the-art baseline frameworks. The baselines
are used for comparing vehicle selection strategies and also for com-
paring misbehaviour detection accuracy. Baseline-1 denotes a greedy
framework (FedCS) that employs a one-layer aggregation algorithm-
based MDS with client selection [36], baseline-2 indicates a traditional
one-layer (FedAvg) aggregation algorithm-based MDS with random
client selection [13]. The baseline-3 indicates a two-layer (TFL-CNN)
aggregation algorithm-based misbehaviour detection framework [31].
The development took place on the Google Colaboratory platform
under Python 3.7 using PyTorch 1.8.1 and a Graphics Processing Unit
(GPU). In all the frameworks, the vehicles are given local training with
12

the simulated attack datasets.
Table 5
Experimental parameters for FL.

Parameters Notations Values

Received signal strength indicator of
LTE link

RSSILTE −130 to −20 dBm

Received signal strength indicator of
IEEE 802.11p link

RSSI802.11p −130 to −20 dBm

Residual energy RE 0 to 90 Joules
Memory M 4 to 7068 Kb
Data Records DR 0 to 4000 bits
Number of fog clusters N 2
Number of fog vehicles Vf 120
Number of selected fog vehicles for each
round in each fog cluster

Bf 10

Number of RSUs (fog nodes) R 4
Number of base stations (fog nodes) B 2
Number of RSU controllers RSUC 2
Number of SDN controllers SDNC 1
Number of communication rounds R 500
Local batch size bss 10
Number of local iterations Ef 50
Learning rate 𝛼 0.01

5.1.1. Simulated attack dataset
In the simulation, each vehicular fog node is equipped with LTE and

IEEE 802.11p interfaces. Multiple RSUs and base stations are placed in
various domains. The RSUs and base stations find out the fog vehicles
that are located within their communication proximity. It broadcasts
multi-hop probe messages to all the vehicles and collects response
messages from fog vehicles. The simulated dataset [6] consists of Sybil
attack flows and normal traffic flows. We treat the normal type as a
normal flow and the Sybil attack type as an abnormal flow. The dataset
consists of the messages that are broadcast and received by the RSUs,
eNodeBs, and vehicle On-Board Units (OBUs).

The simulated Sybil attack dataset consists of two safety beacon
forging attacks, two vehicle densities (Regular traffic and Rush traffic),
and one Sybil attacker. Each parameter set is repeated for randomiza-
tion. Each simulated dataset includes a ground truth JSON file that
incorporates all the messages from normal vehicles and Sybil vehicles,
as well as the messages that each vehicle has received. The ground
truth file in JSON format is converted into a.csv format. We use the.csv
ground truth file for detection. The features such as pseudonym, times-
tamp, sender-ID, receiver-ID, receiving time, position, speed, heading,
acceleration, pseudonym-database and attack-ID are used to generate
the attack dataset. Among the 11 features, the two features pseudonym-
database and attack-ID are manually included in the .csv files. The
parameters are combined by considering 100 instances of normal and
attack configuration, thus we have generated 11,004 rows of data
instances. The simulated attack dataset requires pre-processing to im-
prove the training and testing dataset to adequately evaluate the detec-
tion performance for next-generation SDVF networks under emergency
message dissemination scenarios. The three steps are followed during
the pre-processing of the dataset:

1. Delete the records with incorrect formatting and missing features.
2. To perform federated learning, divide the entire larger dataset

into smaller datasets.
3. Distribute the smaller datasets to the selected vehicular fog nodes.

5.2. Comparative results

We first evaluate the time (latency) consumption to determine the
impact of the FL-vehicle selection scheme FLBFLVS in the FLEMDS.

In Fig. 5, the proposed FLEMDS with FLBFLVS is compared with
baseline methods by considering several communication rounds and
time consumption as metrics. Then we assess the FLEMDS in terms of
learning efficiency. During the aggregation process, the shifting of the
model weight and the decline of loss are observed by investigating the
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Fig. 5. Impact of FLBFLVS vehicle selection method.

Fig. 6. Total convergence time.

training process of the FLEMDS. The learning rate is set to 0.001 and
the total number of communication rounds is set to 500. Based on the
FLEMDS with FLBFLVS method, the average latency of each communi-
cation is less than other schemes. The reduction of time consumption
in FLEMDS with the FLBFLVS method is relatively more than other
schemes since FLEMDS tends to select vehicular fog nodes with good
computational and storage capabilities as well as high qualities of LTE
and IEEE 802.11p links. Table 5 lists the experimental parameters and
their corresponding values used for the proposed work.

Around 120 vehicular fog nodes are used throughout the training
process. It is noted that when the selected number of FL-vehicles
from the fog vehicles increases, there is a rise in convergence time.
The proposed FLEMDS converges faster than the other FL-baseline
methods even with the minimal number of selected FL-vehicles which
is illustrated in Fig. 6.

Fig. 7 shows the ratio of selected vehicular fog nodes as FL client ve-
hicles for the FLBFLVS approach in FLEMDS and the random selection
of FL client vehicles in FLEMDS. The estimated metric is interpreted
as the ratio among the selected fog vehicles as FL clients versus the
total number of fog vehicles. The proposed FLEMDS works with the
FLBFLVS technique, which permits the reduction of the ratio compared
to the random selection. The reason behind the performance is that
only suitable and eligible fog vehicles are taken into consideration to
participate in the federated learning. It is measured that while using
13
Fig. 7. Ratio of selected FL-vehicles.

Fig. 8. Detection accuracy of FLEMDS with FLBFLVS procedure.

the FLBFLVS approach, only 20% of vehicular fog nodes participated
as FL clients in each round.

The performance of the final global model across the normal and
abnormal types in the traffic flows is described by accuracy. It measures
the proportion of accurate Sybil attack predictions to all predictions. In
our system, it is the proportion of Sybil samples that were correctly
identified in all of the samples. Aiming at a vehicular networking
scheme for FLEMDS, the consequence of non-IID (non-independent and
identically distributed) data is not contemplated on the performance of
FLEMDS. The performance of FLEMDS with the fuzzy logic-based FL-
vehicle selection procedure is demonstrated in Fig. 8. It can be found
that compared to state-of-the-art schemes, the proposed solution can
still achieve the best performance, and the detection accuracy is beyond
that of the state-of-the-art FL-based frameworks. The computation time
is calculated from the time taken by the RSU or base station to select the
vehicular clients. It also includes the computation time for the vehicle
clients to calculate their local loss values and the time taken by selected
vehicles to perform local updates. This hints that FLEMDS does not
arouse any further communication cost for FL-vehicle selection, instead
it acquires a 2-times reduction in the number of communication rounds
using 20% of vehicular clients compared to baseline frameworks and
gets higher detection accuracy performance.
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Table 6
Number of global aggregations (NGA)

Total number of
communication
rounds R

Baseline-2
framework
(NGA)

Baseline-3
framework (NGA)
when 𝜖 = 10

FLEMDS framework
(NGA) when 𝜖1 = 10,
𝜖2 = 5

500 500 50 10
400 400 40 8
300 300 30 6
200 200 20 4
100 100 10 2
Fig. 9. Local accuracy versus Global accuracy.

To reach the target accuracy, the number of global aggregations
executed for the proposed system and state-of-the-art baseline frame-
works is shown in Table 6. Suppose NGA denotes the number of global
aggregations then the baseline-2 framework requires NGA=R global
aggregations after client training whereas the baseline-3 framework
requires 𝑁GA = 𝑅

𝜖 global aggregations. The metric 𝜖 indicates the
number of local aggregations. The FLEMDS requires only 𝑁GA = 𝑅

(𝜖1×𝜖2)
number of global aggregations. The metrics 𝜖1 and 𝜖2 denote the
number of level-1 local aggregations and level-2 local aggregations,
respectively. For instance, if the total number of communication rounds
R is 500, then the baseline-2 framework performs 500 global aggrega-
tions, the baseline-3 framework performs 50 global aggregations, and
the FLEMDS requires only 10 global aggregations to reach 87% accu-
racy. The differentiation between local detection accuracy and global
detection accuracy is shown in Fig. 9 by comparing three frameworks.
Figs. 9(a) and (b) exhibit that the global detection accuracy for FLEMDS
outperforms the state-of-the-art baseline-2 and baseline-3 frameworks.

6. Conclusion and future work

To support 6G-enabled IoVs, a secure and privacy-preserving feder-
ated learning entrusted misbehaviour detection framework is designed
for the SDVF architecture that is adapted to a speedy traffic accident
rescue scenario. A Sybil threat model is introduced in a speedy traffic
accident rescue scenario and that is simulated in [6]. The simulated
attack dataset is extracted, pre-processed, and utilized for the imple-
mentation of the FLEMDS framework. The FLEMDS performs three
levels of aggregation at three locations, such as the RSU or base station,
the RSU controller, and the SDN controller, respectively, that serve as
a security and privacy foundation for 6G. To undergo local training
in FLEMDS, vehicular fog nodes opt to be client vehicles. To achieve
14
faster convergence, FL client vehicles are selected based on a fuzzy
logic approach known as FLBFLVS. It is shown from the results that the
detection accuracy of FLEMDS is also improved with the FLBFLVS pro-
cedure. It is also proved through the experiments that FLEMDS reaches
higher detection accuracy in a smaller number of global aggregations
when compared to state-of-the-art FL-based baseline frameworks.

We intended to extend our work by optimizing the FL-vehicle
selection problem. We also intend to employ a secured aggregation
algorithm to protect the model weights that are propagated across the
network. As part of the extended work, we plan to investigate a fog
clustering mechanism to be implemented by the SDN controller.
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