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Abstract— Finite field arithmetic is becoming increasingly a very 
prominent solution for calculations in many applications. In this 
paper, complexity and delay of six different multipliers 
(Mastrovito multiplier, Paar-Roelse multiplier, Massey- Omura 
multiplier, Hasan-Masoleh multiplier, Berlekamp multiplier and 
Karatsuba multiplier) are compared. Also this paper presents a 
modified multiplier based on Karatsuba multiplication 
algorithm. To optimize the Karatsuba multiplication algorithm, 
the product terms are splited into two alternative forms and all 
the terms are expressed in the repeated fashion. This Modified 
architecture saves the 14.9% computation time and it consumes 
45.5% less slices than existing Karatsuba multiplier. The 
proposed architecture has been simulated and synthesized by 
Xilinx ISE design suite for Spartan & Vertex device family. The 
new architecture is simple & easy. The proposed Modified 
Karatsuba Multiplier (MKM) is also applied to compute the 
circular convolution for DSP application. In Spartan3E FPGA 
device family, computation of 8-bit circular convolution using 
Modified Karatsuba Algorithm (MKA) is 26.5% faster than 
Karatsuba Algorithm (KA).  It also consumes 61.7% less slices 
than existing KA based Convolution. 

 Keywords- Karatsuba Algorithm; Finite fields; FPGA; VLSI; 
polynomial multiplication; Cicular Convolution;  

I.  INTRODUCTION  

Galois fields have gained wide spread applications in error 
correcting codes and cryptographic algorithms. Further 
applications may be found in signal processing and pseudo 
random number generation. Modern applications in many cases 
call for VLSI implementations of the arithmetic modules in 
order to satisfy the high speed requirements.  VLSI allows the 
designers to allocate complex systems consisting of several 
thousand or even millions transistors on one or very few chips. 
VLSI modules having Galois field multiplier can be classified 
into three categories: bit- serial multipliers [6], bit- parallel 
multipliers, and hybrid multiplier. Bit parallel architectures 
tend to be faster and only use combinatorial logic [5]. On the 
other hand, bit serial architectures require less area and uses 
registers in addition to combinatorial logic, and the hybrid 
multipliers, which are partially bit-serial and partially bit-
parallel. Hybrid multipliers are faster than bit-serial ones, while 
their area is smaller than that of bit- parallel. For efficient VLSI 
implementation suitable hardware architecture is needed. It is 
obtained by using addition, multiplication, field operations, 
suitably in the architecture. Addition can be implemented with 
a very low space complexity, multiplication is required to be 

fast but it is implemented with a higher complexity. Efficient 
architectures require low complexity and fast multipliers. 
Assuming a basis representation of the field elements addition 
is a relatively inexpensive operation, whereas the other field 
operation, is costly in terms of gate count and delay.  

In the polynomial multiplication, Karatsuba algorithm is used 
to make multiplication efficient which means algorithm saves 
multiplication at the cost of extra addition. Because 
multiplication is more costly than addition. Addition of two m-
bit numbers require m no. of XOR gates. Koc et al. [8] have 
proposed a recursive algorithm for fast multiplication of large 
integers having a precision of 2k computer words, where k is 
an integer. Their algorithm has been derived from the 
Karatsuba-Ofman algorithm and has the same asymptotic 
complexity. They have claimed that the running time of their 
algorithm is a little better that makes one third as many 
recursive calls. Murat Cenk et al. [9] gave improved formulas 
to multiply polynomials of small degree over F2    using 
Chinese Remainder Theorem (CRT) that improve 
multiplication complexity. Gang Zhou et al. have presented 
complexity analysis and efficient FPGA (Field Programmable 
Gate Array) implementations of bit parallel mixed Karatsuba–
Ofman multipliers in [10]. By introducing the common 
expression sharing and the complexity analysis on odd-term 
polynomials, they have achieved a lower gate bound than 
previous ASIC implementation. They have extended the 
analysis by using 4-input/6-input lookup tables (LUT) on 
FPGAs. They have evaluated the LUT complexity and area-
time product tradeoffs on FPGAs with different computer-
aided design (CAD) tools. They claim that their bit parallel 
multipliers consume the least resources among known FPGA 
implementations. 
      In this paper, a modified multiplier based on Karatsuba 
multiplication algorithm is proposed. To optimize the 
Karatsuba multiplication algorithm, the product terms are 
splited into two alternative forms and computed all the terms 
in the repeated fashion. This modified architecture saves the 
14.9% computation time and it consumes 45.5% less slices 
than existing Karatsuba multiplier. The proposed design has 
been simulated and synthesized using Xilinx FPGA based 
Spartan and Vertex device family. The new architecture is 
simple and easy. It is also applied to compute circular 
convolution. In Spartan3E FPGA device family, computation 
of 8-bit circular convolution using MKA is 26.5% faster than 
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KA.  It also consumes 61.7% less slices than existing KA 
based convolution. 
      The rest of the paper is organized as follows. Basics of 
Galois Field arithmetic and comparison of the different GF 
multipliers are presented in section-II. A new method for 
implementations of Karatsuba multipliers has been proposed 
in Section-III. Results & discussion are provided in Section-
IV. Section-V describes application of proposed algorithm to 
compute the circular convolution and finally the paper is 
concluded in Section-VI.  

II.  GALOIS FIELD ARITHMETICS  

      Galois field defines as GF(pm) which is a field with pm 
numbers of elements (p is a prime number) [7]. Furthermore, 
order of Galois field is the number of elements in the Galois 
field. Addition and multiplication are two basic operations 
mainly done in Galois field arithmetic. Addition and 
subtraction of elements of GF(2m) are simple XOR operations 
of the two operands. Each of the elements in the GF is first 
represented as a corresponding polynomial. Multiplication 
operation over the Galois field is a more complex operation 
than the addition operation. For m=4, the product  is 
represented as follows:  

              A(x) = a3x3 +a2x2+a1x +a0                                                      (1) 
               B(x) = b3x3 +b2x2+b1x +b0                                        (2) 
A(x)×B(x)= (a3x3 +a2x2+a1x +a0 ) × (b3x3 +b2x2+b1x +b0) 
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The result has seven coefficients which must convert back into 
a 4-tuple to achieve closure. This can be done by substituting 
the value of x6, x5 and x4 with their polynomial representations 
and summing terms. 
   A(x) × B(x) = (a3b3 + a3b0 + a2b1 + a1b2 + a0b3) x3+ (a3b3 + 
a3b2 + a2b3 + a2b0 + a1b1 +a0b2) x2 + (a3b2 + a2b3 + a3 b1 + 
a2b2 + a1b3 + a1b0 + a0b1) x+ (a3b1 + a2 b2 +a1b3 +a0b0).    (3)   
Eqn. (3) is often expressed in matrix form. 
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The multiplication results in eqn.(3) can be implemented as 
logical ANDs and the additions as logical XORs. Thus, the 
expression requires only 16 AND and 15 XOR to implement. 
 
GF multipliers are dependent on addition and multiplication. 
Addition is easy and it equates to a bit-wise XOR of the m-
tuple and is realized by an array of mXOR gates. The GF  
multiplier much more complicated and is the key to 
developing efficient of GF field computational circuits. In this 
section, we have conducted an extensive survey on six 
different GF multipliers i.e. Mastrovito multiplier, Paar-Roelse 
multiplier, Massey-Omura multiplier, Hasan-Masoleh 
multiplier, Berlekamp multiplier and Karatsuba multiplier. Six 

different GF multipliers are compared with their device 
utilization and combinational path delay using Xilinx based 
simulation tools on FPGA platforms. We have used the 
Verilog HDL language to code the all design. 
 
Karatsuba Multiplier (KM) 
    In this section, we introduce the fundamental Karatsuba 
algorithm which can successfully be applied to polynomial 
multiplication. The Karatsuba Algorithm was introduced by 
Karatsuba in 1962. The fundamental Karatsuba multiplication 
for polynomial in GF(2m) is a recursive divide-and-conquer 
technique. It is considered as one of the fastest way to multiply 
long numbers. For polynomial multiplication with original 
Karatsuba method both operands have to be divided into two 
equal parts. Then each sub operands is divided again into two 
parts. The process will continue until this become single. 
Figure1 shows the block diagram of Karatsuba multiplier                     
for degree-3 polynomials. Then we get the followings by 
splitting the polynomials using KM: 
If  A(x)  and  B(x)  are  field  polynomials  with  degrees  3  
over a field GF (24). 
With the auxiliary variables  

D0 = a0b0   , D1 = a1b1     
D2 = a2b2  , D3 = a3b3 
D0, 1 = (a0 + a1) (b0 + b1)    
D0, 2 = (a0 + a2) (b0 + b2)  
D1, 3 = (a1 + a3) (b1 + b3) 
D3, 2 = (a3 + a2) (b3 + b2) 
D0,1,2,3 = (a0 + a1+ a2 +a3) (b0 + b1+b2+b3) 
 

Field multiplication can be performed into two steps. Firstly, 
we perform an ordinary polynomial multiplication of two field 
elements. Secondly, a reduction operation with an irreducible 
polynomial is need to be performed in order to obtain the (m - 
1) degree polynomial. It is noticed that once the irreducible 
polynomial p(x) = x4+ x+1 has been selected, the reduction 
step can be accomplished by using XOR gates only [9]. From 
the irreducible polynomial p(x) we can replace x 4= x+1, x5= 
x2+ x and x6 = x 3+ x2 to obtain C’ (x) as follows:  
       C’(x) = A(x) B(x) mod p(x)  
C’(x)=(D0,1,2,3–D1,3–D2,0–D3,2 –D0,1+D0+D1+D2)x3+ (D0,2+D3,2 
+D1 –D0) x2+(D0,1+D1,3+D3,2 –D0)x+(D1,3–D1–D3+D2+D0) (5) 

 

III. Modified Karatsuba Multiplier (MKM) 

     In this section our Modified Karatsuba Algorithm (MKA) 
has been discussed. In MKA all techniques are same as 
fundamental basic Karatsuba multiplier except the splitting 
techniques. To optimize the Karatsuba Multiplication 
Algorithm, the product terms are splited into two alternative 
forms. This reduction technique requires small area and less 
delay than others existing multiplication algorithms. The 
results are compared by using Xilinx based synthesis tools on 
different FPGA device family like Spartan & Vertex. Our 
synthesis results are better than existing basic Karatsuba 
algorithm which is shown in the following section. Assume 
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A(x)  and  B(x)  are two field  polynomials  with  degree 3 in  
GF(24).  

A(x) = a3 x 3+a2x 2+a1x + a0       
                            B(x) = b3x 3+b2x 2+b1x +b0  

 
Fig.1: Block diagram of Karatsuba multiplier                     

for degree-3 polynomials 
 
Then we get the following expression by splitting the 
coefficients of C(x)= A(x)B(x)  polynomial using MKA.  

D0 = a0b0  , D1 = a1b1     
D2 = a2b2 , D3 =a3b3   
D3,2=(a3+a2)(b3+b2) 
D3,1=(a3+a1)(b3+b1) 
D3,0=(a3+a0)(b3+b0) 
D1,2=(a1+a2)(b1+b2) 
D0,2=(a0+a2)(b0+b2) 
D0,1=(a0+a1)(b0+b1) 

Here operands are splited into two alternative terms. 
Employing auxiliary variables, we can obtain the following 
expression.  
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 Then C’(x) is computed by using the relationship C’(x)=C(x) 
mod p(x). Using the irreducible polynomial p(x)=x4+x+1, 
terms  x 4 , x5 and x6 in C(x) are replaced by  (x+1),( x2+x) , 
(x3+x2) respectively. The simplified expression of C’(x) is as 
follows: 
 
C’(x)=(D0,3–D0+D1,2–D1–D2)x3+(D0,2+D3,2+D1–D0)x2 +(D0,1+D1,3+ 
D3,2 –D0)x +(D1,3–D1–D3+D2+D0)                                                    (7) 
 
Figure2 shows the block diagram of Modified Karatsuba 
multiplier for degree-3 polynomials. 

 

Fig.2:   Block diagram of Modified Karatsuba multiplier 
for degree-3 polynomial 

IV.  RESULTS & DISCUSSION: 
            We have studied the performance of each multiplier 
over GF(24) employing the Xilinx ISE simulation tool. 
Multipliers are implemented on Spartan3E xc3s100e-4 device. 
These multipliers are compared based on number of slices, 
number of 4-input LUTs, bonded I/O blocks and delay. 
 
TABLE 1: Comparison of different  multipliers in GF(24) field  

Different GF 
Multipliers 

No. of 
slices 

(out of 
960) 

No.  of 4 
i/p 

LUTs 
(out of 
1920) 

No.  of 
bonded 
IOBs 

(out of 66) 

Max. 
combinational 
path delay (ns) 

Mastrovito[2] 7 12 12 13.195 

Paar – Roelse  [3] 7 12 12 13.083 

Massy Omura [4] 7 13 12 14.932 

Hasan Masoleh [5] 7 12 12 13.271 

Berlekamp [6] 8 15 12 12.985 

Karatsuba 

Multiplier (KM) 

[7] 

9 15 12 14.790 

Modified 

Karatsuba 

Multiplier (MKM) 

6 11 12 13.057 

    
Table-1 shows the result of device utilization and 
combinational path delay of various types of GF(24) 
multipliers. Proposed multiplier has less hardware complexity 
than other GF multiplier. It is also faster than other multipliers 
except Berlekamp.  
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    Fig. 3:    Time delay graph of various multipliers in GF(24) 

Figure 3 shows the delay graph of various type of finite field 
multiplier. From the table1, it is observed that the Berlekamp 
Multiplier has the lowest combinational path delay than other 
finite field multipliers. Highest path delay is found in Massy-
Omura multiplier.  
TABLE 2: Complexity comparison between KM and MKM for different 
GF field  

 
TABLE 3: Comparison of resource utilization between KM and MKM in 
GF(28) for different Xilinx FPGA Devices. 

Devices Algo #  Slices     
m out of 
n (m/n) 

# 4-i/p 
LUTs   m 
out of n 
(m/n) 

# Bonded 
IOB           

m out of n 
(m/n) 

Delay 
(ns) 

KM 66 /192 115/ 384 24/90 19.835 Spartan2 
(xc2s15) MKM 36/192 62/ 384 24/ 90 15.857 

KM 66 / 768 115/1536 24/182 19.095 Spartan 2E 
(xc2s50e) MKM 36 /768 62/1536 24/182 15.279 

KM 66/768 115/1536 24/63 16.206 Spartan 3 
(xc3s50) MKM 36/768 62/1536 24/63 13.948 

KM 66/ 960 115/1920 24/66 20.028 Spartan 3E 
(xc3s100e) MKM 36/ 960 62/1920 24/ 66 17.035 

KM 66/768 115/1536 24/184 24.699 Virtex 
(xcv50) MKM 36/768 62/1536 24/184 19.703 

KM 66/256 115/512 24/ 88 14.759 Virtex2 
(xc2v50) MKM 36/ 256 62/512 24/88 12.601 

KM 66/1408 115/2816 24/140 9.14 Virtex2P 
(xc2vp2) MKM 36/1408 62/2816 24/140 7.754 

KM 66/5472 115/10944 24/240 8.311 Virtex4 
(xc4vFx12) MKM 36/5472 62/10944 24/240 7.199 

KM 66/768 115/1536 24/98 16.659 Virtex E 
(xcv50e) MKM 36/768 62/1536 24/98 13.041 

 
 
Table-2 shows the complexity of KM and MKM for m= 2, 3, 4 
and 8. For m=4, KM requires 24 additions and 9 
multiplications to compute C(x) whereas MKA requires 10 
multiplications and 23 additions, thus we save 1 addition. And 

for m=8, KM requires 139 additions and  36  multiplications  
to compute C(x)  whereas modified KM, MKA  needs  36  
multiplications and 109  additions. Thus MKA can save  30 
additions. Table 3, compares between Karatsuba multiplier 
(KM) and Modified Karatsuba Multiplier (MKM) in GF(28) 
field based on different Spartan & Vertex FPGA device 
family. 

 
Fig.4: Delay graph of 8×8 KM and MKM on different FPGA devices 

 
Fig. 5: Area occupied (% slices) of 8×8 KM and MKM on different FPGA 

devices. 
Figure 4 shows the multiplication time delay of the MKM in 
comparison with KM for different FPGA device. The 
proposed architecture has very small multiplication time delay 
and device utilization in comparison with the other 
architectures. Figure 5 shows resource utilization in terms of 
(% of slices) necessary for the implementation. In Spartan3E, 
our modified Karatsuba multiplier is 14.9% faster than 
Karatsuba multiplier. It also consumes 45.5% less slices than 
KM. 

 
           Fig. 6: Simulation results of Modified Karatsuba Multiplier 

The simulation results of 8×8 MKM have been shown in Fig. 
6. Figure shows the decimal equivalent of multiplication of 
two 8-bit numbers to give the result. Ports ‘a’ and ‘b’ are the 
two input ports that accept the numbers to be multiplied while 
the port ‘c’ is the output port where the product of the two 
aforesaid numbers is obtained.  
 

 KM MKM 

m # MUL # ADD # MUL # ADD 

2 3 4 3 4 

3 6 13 6 12 

4 9 24 10 23 

8 36 139 36 109 
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TABLE 4: Comparison of device utilization and combinational path delay 
of 8×8 KM  and MKM  using  different  primitive polynomial.                          

p1(x)=x8+x4+x3+x2+1 
Algo # Slices 

(out  of 
768) 

# 4-i/p 
LUT     

(out of 
1536) 

# Bonded 
IOB           

(out 63) 

Delay    
(ns) 

KM 66 115 24 16.206 

MKM 36 62 24 13.948 
P2(x) = x8+x5+x3+x2+1 

KM 69 121 24 15.206 

MKM 36 62 24 13.539 

P3(x) = x8+x5+x3+x+1 
KM 67 116 24 16.553 

MKM 34 59 24 13.798 

 

 
   (a) 

 
   (b) 

Fig7.  (a) Delay (ns);  (b) Area occupied (%Slices) using different 
primitive polynomials 

Table 4 shows  the  simulation  results  for device utilization  
and combinational path  delay   of  8×8 KM  and  MKM  using  
three different  primitive polynomials. The multipliers are 
implemented on the Xilinx Spartan3 xc3s50e-4 FPGA device. 
Figure 7(a) shows   the delay graph of KM and MKM for three 
types of primitive polynomial. Figure 7(b) shows the area 
performances of  KM and MKM for three different primitive 
polynomials, which are given in terms of total numbers of 
slices necessary for the implementation. From Table 4, it is 
observed that in the three cases the MKM requires lesser 
number of slices and at the same time minimum critical path 
delay. 
 

V.  APPLICATION 
    In this Section, computation of circular convolution by 
employing proposed  Modified Karatsuba Algorithm is 
presented. Assume  A  and B  are the two sequences,  where 

A={a0,a1,a2,a3,a4,a5,a6,a7} and   B={b0,b1,b2,b3,b4,b5,b6,b7}. All 
the points of A are placed on the outer circle in the counter 
clockwise direction. Starting at the same point as A, all points 
of  B are placed on the inner  circle  in clockwise direction.    

 
Expression of d0 is obtained by multiplying the corresponding 
samples points and then adding the product terms. 

d0=a0b0+a7b1+a6b2+a5b3+a4b4+a3b5+a2b6+a1b7                 (8)                                                  
 
Applying Modified Karatsuba Algorithm (MKA) in equation 
(8) we can obtain, 
d0=a0b0+(a7+a1)(b7+b1)+a7b7+a1b1+(a5+a3)(b5+b3)+ 
      a5b5+a3b3+(a2+a6)(b2+b6)+a2b2+a6b6+a4b4                              (9) 
 
Similarly the expressions of  d1,d2,d3, d4 d5,d6 and d7  are 
obtained and they are as follows: 
d1=a0b1+a1b0+a2b7+a3b6+a4b5+a5b4+a6b3+a7b2                 

   =(a0+a1)(b0+b1)+a0b0+a1b1+(a2+a7)(b2+b7)+a2b2+a7b7+ 
(a3+a6)(b3+b6)+a3b3+a6b6+(a5+a4)(b5+b4)+a5b5+a4b4      (10) 
 
d2=a0b2+a1b1+a2b0+a3b7+a4b6+a5b5+a6b4+a7b3                                                       
=a1b1+(a0+a2)(b0+b2)+a0b0+a2b2+(a7+a3)(b7+b3)+a7b7+a3b3    
+(a4+a6)(b4+b6)+a4b4+a6b6+a5b5                                       (11) 
 
d3=a0b3+a1b2+a2b1+a3b0+a4b7+a5b6+a6b5+a7b4 

      = (a0+a3)(b0+b3)+a0b0+a3b3+(a1+a2)(b1+b2)+a1b1+a2b2                                                               
   +(a4+a7)(b4+b7)+a4b4+a7b7+(a6+a5)(b6+b5)+a5b5+a6b6 (12) 
 
d4= a0b4 +a1b3+a2b2+a3b1+a4b0+a5b7+a6 b6+a7b5                                                                        
  =(a0+a4)(b0+b4)+a0b0+a4b4+(a1+a3)(b1+b3)+a1b1+a3b3+ 
    (a5+a7)(b5+b7)+a5b5+a7b7+ a2b2+a6b6                           (13) 
 
d5=a0b5+a1b4+a2b3+a3b2+a4b1+a5b0+a6b7+a7b6   
   =(a0+a5)(b0+b5)+a0b0+a5b5+(a1+a4)(b1+b4)+a1b1+a4b4 
  +(a6+a7)(b6+b7)+a6b6+a7b7+(a2+a3)(b2+b3)+ a2b2+a3b3 (14) 
 
d6= a0b6 +a1b5+a2 b4+a3b3+a4b2+a5b1+a6 b0+a7b7                                                                 
    =(a0+a6)(b0+b6)+a0b0+a6b6+(a1+a5)(b1+b5)+a1b1+a5b5+ 
      (a2+a4)(b2+b4)+a2b2+a4b4+a7b7+a3b3                           (15) 
 
d7=a0b7+a1b6+a2b5+a3b4+a4b3+a5b2+a6b1+a7b0 

      =(a0+a7)(b0+b7)+a0b0+a7b7+(a1+a6)(b1+b6)+a1b1+a6b6                                                       
  +(a2+a5)(b2+b5)+a2b2+a5b5+(a3+a4)(b3+b4)+a4b4+a3b3 (16) 
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Fig. 8:  Simulation   result of circular convolution using MKA 

 
TABLE 5: Comparison of device utilization and combinational path delay  
to compute circular convolution using KA and MKA. 

Length Algorithm # Slices  
(out  of 

960) 

# 4-i/p 
LUT   

(out  of 
1920) 

# Bonded 
IOB   

(out  of 
66) 

Delay 
(ns) 

 
circular 

convolution 
using KA 

10 17 12 16.949 

4-bit 
circular 

convolution 
using MKA 

7 12 12 11.324 

 
circular 

convolution 
using KA 

68 118 24 18.469 

8-bit 
circular 

convolution 
using MKA 

26 45 25 13.567 

 

 
Fig. 9:  Delay  for comparing circular convolution  using KA  and   MKA  

  
Fig. 10: Area occupied (% slices) between circular Convolution using KA  

and  MKA 
 
The circular convolution algorithm is coded using Verilog 
HDL language. It is simulated and synthesized using Xilinx 
ISE 7.1i software tool. Table 5 shows the comparison of 
device utilization and combinational path delay to compute 
circular convolution using KA and MKA. It is observed that  
circular convolution based on MKA requires least amount of  

area and path delay. Figure 9 shows   the delay in computing 
convolution using two different algorithms and Figure 10 
shows the resource utilization in terms of % of slices 
necessary for the implementation. In Spartan3E FPGA device 
family, computation of 8-bit circular convolution based on 
MKA is 26.5% faster than KA.  It also consumes 61.7% less 
slices than existing KA based convolution. 

 
VI. CONCLUSION 

In   this paper, modified Karatsuba multipliers for degree 3 
and 7 polynomials has been implemented on FPGA platform. 
The  device  utilization and combinational  path  delay  of  
MKM  have   been   compared  with  standard  8×8  KM. It 
has been observed that the proposed multiplier has better 
timing performance than standard KM. In Spartan3E FPGA 
device, proposed multiplier needs 14.9% lesser delay than 
KM, and it also consumes 45.5% lesser slices   compared to 
KM. The new architecture   is very simple and easy. This 
feature is advantageous to have a suitable trade-offs between 
area and speed for implementing circular convolution 
algorithm in VLSI. In FPGA device family, computation of 8-
bit circular convolution using MKA is 26.5% faster than KA. 
It also consumes 61.7% less slices than existing KA based 
convolution. MKM may also be used to design cryptosystems. 
Proposed multiplier is faster and hardware efficient compared 
to existing Karatsuba multiplier. 
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