
International Conference on VLSI and Signal Processing (ICVSP): 10 – 12 January, 2014

 1

FPGA Based Modified Karatsuba Multiplier

Jagannath Samanta
 Dept. of ECE

Haldia Institute of Technology
Haldia, India

jagannath19060@gmail.com

Razia Sultana
Dept. of ECE

Haldia Institute of Technology
Haldia, India

razia04@gmail.com

Jaydeb Bhaumik
Dept. ECE

Haldia Institute of Technology
Haldia, India

bhaumik.jaydeb@gmail.com

Abstract— Finite field arithmetic is becoming increasingly a very
prominent solution for calculations in many applications. In this
paper, complexity and delay of six different multipliers
(Mastrovito multiplier, Paar-Roelse multiplier, Massey- Omura
multiplier, Hasan-Masoleh multiplier, Berlekamp multiplier and
Karatsuba multiplier) are compared. Also this paper presents a
modified multiplier based on Karatsuba multiplication
algorithm. To optimize the Karatsuba multiplication algorithm,
the product terms are splited into two alternative forms and all
the terms are expressed in the repeated fashion. This Modified
architecture saves the 14.9% computation time and it consumes
45.5% less slices than existing Karatsuba multiplier. The
proposed architecture has been simulated and synthesized by
Xilinx ISE design suite for Spartan & Vertex device family. The
new architecture is simple & easy. The proposed Modified
Karatsuba Multiplier (MKM) is also applied to compute the
circular convolution for DSP application. In Spartan3E FPGA
device family, computation of 8-bit circular convolution using
Modified Karatsuba Algorithm (MKA) is 26.5% faster than
Karatsuba Algorithm (KA). It also consumes 61.7% less slices
than existing KA based Convolution.

 Keywords- Karatsuba Algorithm; Finite fields; FPGA; VLSI;
polynomial multiplication; Cicular Convolution;

I. INTRODUCTION

Galois fields have gained wide spread applications in error
correcting codes and cryptographic algorithms. Further
applications may be found in signal processing and pseudo
random number generation. Modern applications in many cases
call for VLSI implementations of the arithmetic modules in
order to satisfy the high speed requirements. VLSI allows the
designers to allocate complex systems consisting of several
thousand or even millions transistors on one or very few chips.
VLSI modules having Galois field multiplier can be classified
into three categories: bit- serial multipliers [6], bit- parallel
multipliers, and hybrid multiplier. Bit parallel architectures
tend to be faster and only use combinatorial logic [5]. On the
other hand, bit serial architectures require less area and uses
registers in addition to combinatorial logic, and the hybrid
multipliers, which are partially bit-serial and partially bit-
parallel. Hybrid multipliers are faster than bit-serial ones, while
their area is smaller than that of bit- parallel. For efficient VLSI
implementation suitable hardware architecture is needed. It is
obtained by using addition, multiplication, field operations,
suitably in the architecture. Addition can be implemented with
a very low space complexity, multiplication is required to be

fast but it is implemented with a higher complexity. Efficient
architectures require low complexity and fast multipliers.
Assuming a basis representation of the field elements addition
is a relatively inexpensive operation, whereas the other field
operation, is costly in terms of gate count and delay.

In the polynomial multiplication, Karatsuba algorithm is used
to make multiplication efficient which means algorithm saves
multiplication at the cost of extra addition. Because
multiplication is more costly than addition. Addition of two m-
bit numbers require m no. of XOR gates. Koc et al. [8] have
proposed a recursive algorithm for fast multiplication of large
integers having a precision of 2k computer words, where k is
an integer. Their algorithm has been derived from the
Karatsuba-Ofman algorithm and has the same asymptotic
complexity. They have claimed that the running time of their
algorithm is a little better that makes one third as many
recursive calls. Murat Cenk et al. [9] gave improved formulas
to multiply polynomials of small degree over F2 using
Chinese Remainder Theorem (CRT) that improve
multiplication complexity. Gang Zhou et al. have presented
complexity analysis and efficient FPGA (Field Programmable
Gate Array) implementations of bit parallel mixed Karatsuba–
Ofman multipliers in [10]. By introducing the common
expression sharing and the complexity analysis on odd-term
polynomials, they have achieved a lower gate bound than
previous ASIC implementation. They have extended the
analysis by using 4-input/6-input lookup tables (LUT) on
FPGAs. They have evaluated the LUT complexity and area-
time product tradeoffs on FPGAs with different computer-
aided design (CAD) tools. They claim that their bit parallel
multipliers consume the least resources among known FPGA
implementations.
 In this paper, a modified multiplier based on Karatsuba
multiplication algorithm is proposed. To optimize the
Karatsuba multiplication algorithm, the product terms are
splited into two alternative forms and computed all the terms
in the repeated fashion. This modified architecture saves the
14.9% computation time and it consumes 45.5% less slices
than existing Karatsuba multiplier. The proposed design has
been simulated and synthesized using Xilinx FPGA based
Spartan and Vertex device family. The new architecture is
simple and easy. It is also applied to compute circular
convolution. In Spartan3E FPGA device family, computation
of 8-bit circular convolution using MKA is 26.5% faster than

International Conference on VLSI and Signal Processing (ICVSP): 10 – 12 January, 2014

 2

KA. It also consumes 61.7% less slices than existing KA
based convolution.
 The rest of the paper is organized as follows. Basics of
Galois Field arithmetic and comparison of the different GF
multipliers are presented in section-II. A new method for
implementations of Karatsuba multipliers has been proposed
in Section-III. Results & discussion are provided in Section-
IV. Section-V describes application of proposed algorithm to
compute the circular convolution and finally the paper is
concluded in Section-VI.

II. GALOIS FIELD ARITHMETICS

 Galois field defines as GF(pm) which is a field with pm
numbers of elements (p is a prime number) [7]. Furthermore,
order of Galois field is the number of elements in the Galois
field. Addition and multiplication are two basic operations
mainly done in Galois field arithmetic. Addition and
subtraction of elements of GF(2m) are simple XOR operations
of the two operands. Each of the elements in the GF is first
represented as a corresponding polynomial. Multiplication
operation over the Galois field is a more complex operation
than the addition operation. For m=4, the product is
represented as follows:

 A(x) = a3x3 +a2x2+a1x +a0 (1)
 B(x) = b3x3 +b2x2+b1x +b0 (2)
A(x)×B(x)= (a3x3 +a2x2+a1x +a0) × (b3x3 +b2x2+b1x +b0)

0
00

1
1001

2
201102

3
21123003

4
312213

5
3223

6
33

)()()(

)()()()(

xbaxbabaxbababa
xbabababaxbababaxbabaxba





The result has seven coefficients which must convert back into
a 4-tuple to achieve closure. This can be done by substituting
the value of x6, x5 and x4 with their polynomial representations
and summing terms.
 A(x) × B(x) = (a3b3 + a3b0 + a2b1 + a1b2 + a0b3) x3+ (a3b3 +
a3b2 + a2b3 + a2b0 + a1b1 +a0b2) x2 + (a3b2 + a2b3 + a3 b1 +
a2b2 + a1b3 + a1b0 + a0b1) x+ (a3b1 + a2 b2 +a1b3 +a0b0). (3)
Eqn. (3) is often expressed in matrix form.























03123

230312

2123031

1230

aaaaa
aaaaaa
aaaaaaa

aaaa



















3

2

1

0

b
b
b
b

=



















3

2

1

0

c
c
c
c

 (4)
The multiplication results in eqn.(3) can be implemented as
logical ANDs and the additions as logical XORs. Thus, the
expression requires only 16 AND and 15 XOR to implement.

GF multipliers are dependent on addition and multiplication.
Addition is easy and it equates to a bit-wise XOR of the m-
tuple and is realized by an array of mXOR gates. The GF
multiplier much more complicated and is the key to
developing efficient of GF field computational circuits. In this
section, we have conducted an extensive survey on six
different GF multipliers i.e. Mastrovito multiplier, Paar-Roelse
multiplier, Massey-Omura multiplier, Hasan-Masoleh
multiplier, Berlekamp multiplier and Karatsuba multiplier. Six

different GF multipliers are compared with their device
utilization and combinational path delay using Xilinx based
simulation tools on FPGA platforms. We have used the
Verilog HDL language to code the all design.

Karatsuba Multiplier (KM)
 In this section, we introduce the fundamental Karatsuba
algorithm which can successfully be applied to polynomial
multiplication. The Karatsuba Algorithm was introduced by
Karatsuba in 1962. The fundamental Karatsuba multiplication
for polynomial in GF(2m) is a recursive divide-and-conquer
technique. It is considered as one of the fastest way to multiply
long numbers. For polynomial multiplication with original
Karatsuba method both operands have to be divided into two
equal parts. Then each sub operands is divided again into two
parts. The process will continue until this become single.
Figure1 shows the block diagram of Karatsuba multiplier
for degree-3 polynomials. Then we get the followings by
splitting the polynomials using KM:
If A(x) and B(x) are field polynomials with degrees 3
over a field GF (24).
With the auxiliary variables

D0 = a0b0 , D1 = a1b1
D2 = a2b2 , D3 = a3b3
D0, 1 = (a0 + a1) (b0 + b1)
D0, 2 = (a0 + a2) (b0 + b2)
D1, 3 = (a1 + a3) (b1 + b3)
D3, 2 = (a3 + a2) (b3 + b2)
D0,1,2,3 = (a0 + a1+ a2 +a3) (b0 + b1+b2+b3)

Field multiplication can be performed into two steps. Firstly,
we perform an ordinary polynomial multiplication of two field
elements. Secondly, a reduction operation with an irreducible
polynomial is need to be performed in order to obtain the (m -
1) degree polynomial. It is noticed that once the irreducible
polynomial p(x) = x4+ x+1 has been selected, the reduction
step can be accomplished by using XOR gates only [9]. From
the irreducible polynomial p(x) we can replace x 4= x+1, x5=
x2+ x and x6 = x 3+ x2 to obtain C’ (x) as follows:
 C’(x) = A(x) B(x) mod p(x)
C’(x)=(D0,1,2,3–D1,3–D2,0–D3,2 –D0,1+D0+D1+D2)x3+ (D0,2+D3,2
+D1 –D0) x2+(D0,1+D1,3+D3,2 –D0)x+(D1,3–D1–D3+D2+D0) (5)

III. Modified Karatsuba Multiplier (MKM)

 In this section our Modified Karatsuba Algorithm (MKA)
has been discussed. In MKA all techniques are same as
fundamental basic Karatsuba multiplier except the splitting
techniques. To optimize the Karatsuba Multiplication
Algorithm, the product terms are splited into two alternative
forms. This reduction technique requires small area and less
delay than others existing multiplication algorithms. The
results are compared by using Xilinx based synthesis tools on
different FPGA device family like Spartan & Vertex. Our
synthesis results are better than existing basic Karatsuba
algorithm which is shown in the following section. Assume

International Conference on VLSI and Signal Processing (ICVSP): 10 – 12 January, 2014

 3

A(x) and B(x) are two field polynomials with degree 3 in
GF(24).

A(x) = a3 x 3+a2x 2+a1x + a0
 B(x) = b3x 3+b2x 2+b1x +b0

Fig.1: Block diagram of Karatsuba multiplier

for degree-3 polynomials

Then we get the following expression by splitting the
coefficients of C(x)= A(x)B(x) polynomial using MKA.

D0 = a0b0 , D1 = a1b1
D2 = a2b2 , D3 =a3b3
D3,2=(a3+a2)(b3+b2)
D3,1=(a3+a1)(b3+b1)
D3,0=(a3+a0)(b3+b0)
D1,2=(a1+a2)(b1+b2)
D0,2=(a0+a2)(b0+b2)
D0,1=(a0+a1)(b0+b1)

Here operands are splited into two alternative terms.
Employing auxiliary variables, we can obtain the following
expression.

)6.........()())

()()()(

0011,0
2

1022,0
3

212,1

303,0
4

2313,1
5

322,3
6

3

DxDDDxDDDDxDDD

DDDxDDDDxDDDxDxC





 Then C’(x) is computed by using the relationship C’(x)=C(x)
mod p(x). Using the irreducible polynomial p(x)=x4+x+1,
terms x 4 , x5 and x6 in C(x) are replaced by (x+1),(x2+x) ,
(x3+x2) respectively. The simplified expression of C’(x) is as
follows:

C’(x)=(D0,3–D0+D1,2–D1–D2)x3+(D0,2+D3,2+D1–D0)x2 +(D0,1+D1,3+
D3,2 –D0)x +(D1,3–D1–D3+D2+D0) (7)

Figure2 shows the block diagram of Modified Karatsuba
multiplier for degree-3 polynomials.

Fig.2: Block diagram of Modified Karatsuba multiplier
for degree-3 polynomial

IV. RESULTS & DISCUSSION:
 We have studied the performance of each multiplier
over GF(24) employing the Xilinx ISE simulation tool.
Multipliers are implemented on Spartan3E xc3s100e-4 device.
These multipliers are compared based on number of slices,
number of 4-input LUTs, bonded I/O blocks and delay.

TABLE 1: Comparison of different multipliers in GF(24) field

Different GF
Multipliers

No. of
slices

(out of
960)

No. of 4
i/p

LUTs
(out of
1920)

No. of
bonded
IOBs

(out of 66)

Max.
combinational
path delay (ns)

Mastrovito[2] 7 12 12 13.195

Paar – Roelse [3] 7 12 12 13.083

Massy Omura [4] 7 13 12 14.932

Hasan Masoleh [5] 7 12 12 13.271

Berlekamp [6] 8 15 12 12.985

Karatsuba

Multiplier (KM)

[7]

9 15 12 14.790

Modified

Karatsuba

Multiplier (MKM)

6 11 12 13.057

Table-1 shows the result of device utilization and
combinational path delay of various types of GF(24)
multipliers. Proposed multiplier has less hardware complexity
than other GF multiplier. It is also faster than other multipliers
except Berlekamp.

International Conference on VLSI and Signal Processing (ICVSP): 10 – 12 January, 2014

 4

 Fig. 3: Time delay graph of various multipliers in GF(24)

Figure 3 shows the delay graph of various type of finite field
multiplier. From the table1, it is observed that the Berlekamp
Multiplier has the lowest combinational path delay than other
finite field multipliers. Highest path delay is found in Massy-
Omura multiplier.
TABLE 2: Complexity comparison between KM and MKM for different
GF field

TABLE 3: Comparison of resource utilization between KM and MKM in
GF(28) for different Xilinx FPGA Devices.

Devices Algo # Slices
m out of
n (m/n)

4-i/p
LUTs m
out of n
(m/n)

Bonded
IOB

m out of n
(m/n)

Delay
(ns)

KM 66 /192 115/ 384 24/90 19.835 Spartan2
(xc2s15) MKM 36/192 62/ 384 24/ 90 15.857

KM 66 / 768 115/1536 24/182 19.095 Spartan 2E
(xc2s50e) MKM 36 /768 62/1536 24/182 15.279

KM 66/768 115/1536 24/63 16.206 Spartan 3
(xc3s50) MKM 36/768 62/1536 24/63 13.948

KM 66/ 960 115/1920 24/66 20.028 Spartan 3E
(xc3s100e) MKM 36/ 960 62/1920 24/ 66 17.035

KM 66/768 115/1536 24/184 24.699 Virtex
(xcv50) MKM 36/768 62/1536 24/184 19.703

KM 66/256 115/512 24/ 88 14.759 Virtex2
(xc2v50) MKM 36/ 256 62/512 24/88 12.601

KM 66/1408 115/2816 24/140 9.14 Virtex2P
(xc2vp2) MKM 36/1408 62/2816 24/140 7.754

KM 66/5472 115/10944 24/240 8.311 Virtex4
(xc4vFx12) MKM 36/5472 62/10944 24/240 7.199

KM 66/768 115/1536 24/98 16.659 Virtex E
(xcv50e) MKM 36/768 62/1536 24/98 13.041

Table-2 shows the complexity of KM and MKM for m= 2, 3, 4
and 8. For m=4, KM requires 24 additions and 9
multiplications to compute C(x) whereas MKA requires 10
multiplications and 23 additions, thus we save 1 addition. And

for m=8, KM requires 139 additions and 36 multiplications
to compute C(x) whereas modified KM, MKA needs 36
multiplications and 109 additions. Thus MKA can save 30
additions. Table 3, compares between Karatsuba multiplier
(KM) and Modified Karatsuba Multiplier (MKM) in GF(28)
field based on different Spartan & Vertex FPGA device
family.

Fig.4: Delay graph of 8×8 KM and MKM on different FPGA devices

Fig. 5: Area occupied (% slices) of 8×8 KM and MKM on different FPGA

devices.
Figure 4 shows the multiplication time delay of the MKM in
comparison with KM for different FPGA device. The
proposed architecture has very small multiplication time delay
and device utilization in comparison with the other
architectures. Figure 5 shows resource utilization in terms of
(% of slices) necessary for the implementation. In Spartan3E,
our modified Karatsuba multiplier is 14.9% faster than
Karatsuba multiplier. It also consumes 45.5% less slices than
KM.

 Fig. 6: Simulation results of Modified Karatsuba Multiplier

The simulation results of 8×8 MKM have been shown in Fig.
6. Figure shows the decimal equivalent of multiplication of
two 8-bit numbers to give the result. Ports ‘a’ and ‘b’ are the
two input ports that accept the numbers to be multiplied while
the port ‘c’ is the output port where the product of the two
aforesaid numbers is obtained.

 KM MKM

m # MUL # ADD # MUL # ADD

2 3 4 3 4

3 6 13 6 12

4 9 24 10 23

8 36 139 36 109

International Conference on VLSI and Signal Processing (ICVSP): 10 – 12 January, 2014

 5

TABLE 4: Comparison of device utilization and combinational path delay
of 8×8 KM and MKM using different primitive polynomial.

p1(x)=x8+x4+x3+x2+1
Algo # Slices

(out of
768)

4-i/p
LUT

(out of
1536)

Bonded
IOB

(out 63)

Delay
(ns)

KM 66 115 24 16.206

MKM 36 62 24 13.948
P2(x) = x8+x5+x3+x2+1

KM 69 121 24 15.206

MKM 36 62 24 13.539

P3(x) = x8+x5+x3+x+1
KM 67 116 24 16.553

MKM 34 59 24 13.798

 (a)

 (b)

Fig7. (a) Delay (ns); (b) Area occupied (%Slices) using different
primitive polynomials

Table 4 shows the simulation results for device utilization
and combinational path delay of 8×8 KM and MKM using
three different primitive polynomials. The multipliers are
implemented on the Xilinx Spartan3 xc3s50e-4 FPGA device.
Figure 7(a) shows the delay graph of KM and MKM for three
types of primitive polynomial. Figure 7(b) shows the area
performances of KM and MKM for three different primitive
polynomials, which are given in terms of total numbers of
slices necessary for the implementation. From Table 4, it is
observed that in the three cases the MKM requires lesser
number of slices and at the same time minimum critical path
delay.

V. APPLICATION
 In this Section, computation of circular convolution by
employing proposed Modified Karatsuba Algorithm is
presented. Assume A and B are the two sequences, where

A={a0,a1,a2,a3,a4,a5,a6,a7} and B={b0,b1,b2,b3,b4,b5,b6,b7}. All
the points of A are placed on the outer circle in the counter
clockwise direction. Starting at the same point as A, all points
of B are placed on the inner circle in clockwise direction.

Expression of d0 is obtained by multiplying the corresponding
samples points and then adding the product terms.

d0=a0b0+a7b1+a6b2+a5b3+a4b4+a3b5+a2b6+a1b7 (8)

Applying Modified Karatsuba Algorithm (MKA) in equation
(8) we can obtain,
d0=a0b0+(a7+a1)(b7+b1)+a7b7+a1b1+(a5+a3)(b5+b3)+
 a5b5+a3b3+(a2+a6)(b2+b6)+a2b2+a6b6+a4b4 (9)

Similarly the expressions of d1,d2,d3, d4 d5,d6 and d7 are
obtained and they are as follows:
d1=a0b1+a1b0+a2b7+a3b6+a4b5+a5b4+a6b3+a7b2

 =(a0+a1)(b0+b1)+a0b0+a1b1+(a2+a7)(b2+b7)+a2b2+a7b7+
(a3+a6)(b3+b6)+a3b3+a6b6+(a5+a4)(b5+b4)+a5b5+a4b4 (10)

d2=a0b2+a1b1+a2b0+a3b7+a4b6+a5b5+a6b4+a7b3
=a1b1+(a0+a2)(b0+b2)+a0b0+a2b2+(a7+a3)(b7+b3)+a7b7+a3b3
+(a4+a6)(b4+b6)+a4b4+a6b6+a5b5 (11)

d3=a0b3+a1b2+a2b1+a3b0+a4b7+a5b6+a6b5+a7b4

 = (a0+a3)(b0+b3)+a0b0+a3b3+(a1+a2)(b1+b2)+a1b1+a2b2
 +(a4+a7)(b4+b7)+a4b4+a7b7+(a6+a5)(b6+b5)+a5b5+a6b6 (12)

d4= a0b4 +a1b3+a2b2+a3b1+a4b0+a5b7+a6 b6+a7b5
 =(a0+a4)(b0+b4)+a0b0+a4b4+(a1+a3)(b1+b3)+a1b1+a3b3+
 (a5+a7)(b5+b7)+a5b5+a7b7+ a2b2+a6b6 (13)

d5=a0b5+a1b4+a2b3+a3b2+a4b1+a5b0+a6b7+a7b6
 =(a0+a5)(b0+b5)+a0b0+a5b5+(a1+a4)(b1+b4)+a1b1+a4b4
 +(a6+a7)(b6+b7)+a6b6+a7b7+(a2+a3)(b2+b3)+ a2b2+a3b3 (14)

d6= a0b6 +a1b5+a2 b4+a3b3+a4b2+a5b1+a6 b0+a7b7
 =(a0+a6)(b0+b6)+a0b0+a6b6+(a1+a5)(b1+b5)+a1b1+a5b5+
 (a2+a4)(b2+b4)+a2b2+a4b4+a7b7+a3b3 (15)

d7=a0b7+a1b6+a2b5+a3b4+a4b3+a5b2+a6b1+a7b0

 =(a0+a7)(b0+b7)+a0b0+a7b7+(a1+a6)(b1+b6)+a1b1+a6b6
 +(a2+a5)(b2+b5)+a2b2+a5b5+(a3+a4)(b3+b4)+a4b4+a3b3 (16)

International Conference on VLSI and Signal Processing (ICVSP): 10 – 12 January, 2014

 6

Fig. 8: Simulation result of circular convolution using MKA

TABLE 5: Comparison of device utilization and combinational path delay
to compute circular convolution using KA and MKA.

Length Algorithm # Slices
(out of

960)

4-i/p
LUT

(out of
1920)

Bonded
IOB

(out of
66)

Delay
(ns)

circular

convolution
using KA

10 17 12 16.949

4-bit
circular

convolution
using MKA

7 12 12 11.324

circular

convolution
using KA

68 118 24 18.469

8-bit
circular

convolution
using MKA

26 45 25 13.567

Fig. 9: Delay for comparing circular convolution using KA and MKA

Fig. 10: Area occupied (% slices) between circular Convolution using KA

and MKA

The circular convolution algorithm is coded using Verilog
HDL language. It is simulated and synthesized using Xilinx
ISE 7.1i software tool. Table 5 shows the comparison of
device utilization and combinational path delay to compute
circular convolution using KA and MKA. It is observed that
circular convolution based on MKA requires least amount of

area and path delay. Figure 9 shows the delay in computing
convolution using two different algorithms and Figure 10
shows the resource utilization in terms of % of slices
necessary for the implementation. In Spartan3E FPGA device
family, computation of 8-bit circular convolution based on
MKA is 26.5% faster than KA. It also consumes 61.7% less
slices than existing KA based convolution.

VI. CONCLUSION

In this paper, modified Karatsuba multipliers for degree 3
and 7 polynomials has been implemented on FPGA platform.
The device utilization and combinational path delay of
MKM have been compared with standard 8×8 KM. It
has been observed that the proposed multiplier has better
timing performance than standard KM. In Spartan3E FPGA
device, proposed multiplier needs 14.9% lesser delay than
KM, and it also consumes 45.5% lesser slices compared to
KM. The new architecture is very simple and easy. This
feature is advantageous to have a suitable trade-offs between
area and speed for implementing circular convolution
algorithm in VLSI. In FPGA device family, computation of 8-
bit circular convolution using MKA is 26.5% faster than KA.
It also consumes 61.7% less slices than existing KA based
convolution. MKM may also be used to design cryptosystems.
Proposed multiplier is faster and hardware efficient compared
to existing Karatsuba multiplier.

REFERENCES
[1] Z. J. Shi and H. Yun, “ Software implementations of elliptic curve

cryptography,” International Journal of Network Security, vol. 7, no.
1, pp. 141-150, 2008.

[2] T. Zhang and K.K. Parhi, “Systematic Design of Original and Modified
Mastrovito Multipliers for General Irreducible Polynomials,” IEEE
Trans. Computers, vol. 50, no. 7, pp. 734-749, July 2001.

[3] C. Paar, P. Fleischmann, and P. Roeise, “Efficient Multiplier
Architectures for Galois Fields GF(24n)” , IEEE Trans. Computers, vol.
47, no. 2, pp. 162-170, Feb. 1998.

[4] C. A. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and
I. S. Reed, “VLSI architectures for computing multiplications and
inverses in GF(2m)”, IEEE Transactions on Computers,34(8):709- 717,
Aug 1985.

[5] A. Reyhani-Masoleh and M.A. Hasan, “A New Construction of
Massey- Omura Parallel Multiplier over GF(2m)”, IEEE Trans.
Computers, vol. 51, no. 5, pp. 511-520, May 2002.

[6] Berlekamp, E. R., “Bit-Serial Reed-Solomon Encoder”, IEEE Trans.
Inform. Theory, Vol. IT-28, pp. 869-874 (1982).

[7] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by
automatic computers”, in Doklady Akad. Nauk SSSR, vol. 145, no. 293-
294, pp. 85, 1962.

[8] Koc, Cetin K; Erdem, Serdar S,“A Less Recursive Variant of Karatsuba-
Ofman Algorithm for Multiplying Operands of Size a Power of Two”,
Proceedings of the 16th IEEE Symposium on Computer Arithmetic,
1063-1069,2003.

[9] Murat Cenk and Ferruh O¨ zbudak,“Improved Polynomial Multiplication
Formulas over F2 Using Chinese Remainder Theorem”, IEEE
Transactions on Computers, vol. 58, no. 4, pp. 572- 576, April 2009.

[10] Zhou, Gang; Michalik, Harald; Hinsenkamp, Laszlo, “Complexity
 Analysis and Efficient Implementations of Bit Parallel Finite Field
 Multipliers Based on Karatsuba-Ofman Algorithm on FPGAs”, IEEE
 Transactions on Very Large Scale Integration Systems,18 (7), pp.1057-

1066,2010.

