Journal of Chemical and Pharmaceutical Research, 2012, 4(5):2795-2802

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Synthesis and biological evaluation of some new Aryl acid N'-(1Hindazole-3-carbonyl)-hydrazide derivatives

T. Chandrasekhar, L. Vinay Kumar, A. Babul Reddy, P. Jagan Naik and G. Narayana Swamy*

Department of Chemistry, Sri Krishnadevaraya University, Anantapur, A.P. India

ABSTRACT

Amide coupling of 1H-Indazole-3-carboxylic acid hydrazide with substituted aryl acids affords thirteen novel Aryl acid N'-(1H-indazole-3-carbonyl)-hydrazide derivatives. The acid hydrazide was synthesized by the hydrazine reaction with 1-H-Indazole-3-carboxylic acid methyl ester which was obtained by esterification of indazole-3-carboxylic acid.

Keywords: 1H-Indazole-3-carboxylic acid, 1H-Indazole-3-carboxylic acid hydrazide, substituted aryl acids, diacyl hydrazines, HATU, antimicrobial activity.

INTRODUCTION

Recent drug discovery efforts are highly focused towards design and synthesis of small molecules of protein kinase C- β /AKt inhibitiors.^{1, 2} A wide ranges of heterocyclic ring systems has been studied for the development of novel chemical entities as lead molecules in the drug discovery paradigm. Indazole derivatives are one of the privileged structural fragments in medicinal chemistry having broad spectrum of potent pharmacological activities including anti-inflammatory, anti-tumor, or HIV protease inhibition.³⁻⁶ Numerous compounds containing Indazole moiety have been shown to exhibit estrogen receptor,⁷ antifungal, antibacterial activity.⁸ Among the important heterocycles, many of the natural and synthetic Indazole–based heterocycles with diverse mechanism of action have been reported as lead anticancer, ⁹ 5-HT₂, 5-HT₃ and 5-HT₄ receptor antagonisms.¹⁰⁻¹³

The search for an efficient synthesis of the indazole ring system has been a long standing goal. However to date, methods reported for the synthesis of indazoles have met with only limited success. Most of the syntheses of the indazole derivatives reported in the literature proceed from benzene precursors in which the pyrazole moiety was generated by ring closure starting from isatins, phenylhydrazines or o-toluidines.^{14,15} To the best our knowledge, indazole-3-carboxilic acid has been synthesized conveniently for many years.^{16, 17} However, further modifications were very limited.^{18, 19}

EXPERIMENTAL SECTION

Chemicals and solvents used were either purchased from commercial suppliers or purified by standard techniques. All experiments involving air-sensitive reagents were performed under an inert atmosphere in oven-dried glassware. The monitoring of reaction and checking of purity of the product were done using pre-coated Merck silica gel 60 F_{254} plates and compounds were visualized by irradiating with UV light or by exposing to I₂ vapours, and or by staining with Ninhydrine stain followed by heating. Melting points were measured on a yanagimoto micro melting

G. Narayana Swamy et al

apparatus and are uncorrected. The ¹H NMR spectra were recorded on a Varian 400 MHz spectrometer in DMSO as a solvent and TMS as an internal standard. IR spectra were recorded on Perkin-Elmer 1420 Spectrophotometer. The mass spectra were determined using a Thermo finnigan LCQ DECA XP MAX (ION TRAP) LCMS MS Mass spectrometer using direct infusion technique. The Elemental analyses were performed for C, H, and N using a Perkin-Elmer analyser.

General procedure for the preparation of 1H-Indazole-3-carboxylic acid methyl ester (2): To a solution of 1H-Indazole-3-carboxylic acid (1) (4 g, 24.66 mmol, 1equiv.) in methanol (40 mL) at R.T, catalytic amount of H_2SO_4 was added. The resulting solution was stirred at reflux temperature for 2h, briefly cooled to room temperature and methanol was evaporated under vacuo. The residue was treated with ice water (50 mL) and the precipitated product was extracted with Ethyl acetate (80 mL), washed with brine solution (50 mL), and dried over Na₂SO₄. The solvent was evaporated under vacuo to afford **2** (4.31 g), Yield - 98.99%, mp 162-164 0 C; IR (v_{max} , KBr/cm⁻¹): 3327 (br), 3211 (w), 2991 (m), 1731 (vs), 1638 (vs), 1535 (vs), 1467 (m), 1368 (s), 1232 (s), 1128 (s); ¹HNMR (DMSO-d₆) δ (ppm): 3.9 (s, 3H, CH₃), 7.32 (t, 1H, *J* = 4.2 Hz, ben-H), 7.4 (t, 1H, *J* = 4.4 Hz, ben-H), 7.65 (d, 1H, *J* = 6.4 Hz, ben-H), 8.18 (d, 1H, *J* = 6.2 Hz, ben-H), 13.98 (s, 1H, NH); LCMS MS (APCI, m/z): 177.02 (M + H)⁺; Anal.calcd for C₉H₈N₂O₂: C, 61.36; H, 4.58; N, 15.90. Found: C, 60.78; H, 4.12; N, 15.28.

General procedure for the preparation of 1H-Indazole-3-carboxylic acid hydrazide (3): To a solution of 1H-Indazole-3-carboxylic acid methyl ester (2) (4.2 g, 23.86 mmol, 1 equiv.) in ethanol (42 mL) at R.T, hydrazine hydrate was added (1.79 g, 35.79 mmol, 1.5 equiv) and resulting solution was stirred at reflex temperature for 4h. It was briefly cooled to room temperature and ethanol was evaporated at 60^oC under high vacuo. The solid material was washed with diethyl ether (40 mL × 2) to give 3 (4.12 g), Yield - 98%, mp 198-201 ^oC; IR (v_{max} , KBr/cm⁻¹): 3366 (br), 3327 (w), 3211 (s), 1731 (vs), 1673 (vs), 1608 (s), 1535 (vs), 1468 (m), 1349 (m), 1242 (s); ¹HNMR (DMSO-d₆) δ (ppm): 4.5 (s, 2H, NH₂), 7.23 (t, 1H, *J* = 4.2 Hz, ben-H), 7.4 (t, 1H, *J* = 4.4 Hz, ben-H), 7.68 (d, 1H, *J* = 6.4 Hz, ben-H), 8.08 (d, 1H, *J* = 6.2 Hz, ben-H), 9.6 (s, 1H, NH), 13.68 (s, 1H, N-NH); LCMS MS (APCI, m/z): 177.04 (M + H)⁺; Anal.calcd for C₈H₈N₄O: C, 54.54; H, 4.58; N, 31.80. Found: C, 53.86; H, 4.02; N, 31.12.

General procedure for the preparation of Aryl acid N'- (1H-indazole-3-carbonyl) - hydrazide derivatives (4a-m): To a solution of 1H-Indazole-3-carboxylic acid hydrazide (3) (0.100 g, 0.57 mmol, 1equiv) in DMF (5 mL), HATU (0.216 g, 0.57 mmol, 1 equiv), Aryl acids (0.57 mmol, 1equiv), DIPEA (0.146 g, 1.13 mmol, 2 equiv) were added and the mixture was stirred at room temperature for 2-6h. The ice water (10 mL) was poured into reaction mixture to precipitate solid which was filtered, washed with water (20 mL \times 2), and diethyl ether (20 mL \times 2). The solid material was recrystalized from Ethanol/DMF to give 4a-m. The melting points and yields are reported in Table - 1.

N'-(4-chlorobenzoyl)-1H-indazole-3-carbohydrazide (4a): IR (v_{max} , KBr/cm⁻¹): 3366 (br), 3227 (s), 1925 (w), 1614 (vs), 1568 (vs), 1483 (vs), 1238 (s), 1122 (m), 1014 (m), 937 (m), 741(s); ¹HNMR (DMSO-d₆) δ (ppm): 7.28 (t, 1H, J = 4.2 Hz, ben-H), 7.44 (t, 1H, J = 4.4 Hz, ben-H), 7.65 (m, 3H, ben-H), 7.99 (d, 2H, J = 6.4 Hz, ben-H), 8.12 (d, 1H, J = 6.2 Hz, ben-H), 10.45 (s, 1H, CONH), 10.52 (s,1H, CONH), 13.9 (s, 1H, N-NH); LCMS MS (APCI, m/z): 314.82, 315.82, (M + H)⁺; Anal.calcd for C₁₅H₁₁Cl N₅O₂: C, 57.24; H, 3.52; N, 17.80. Found: C, 56.64; H, 2.98; N, 17.12.

N'-(4-(trifluoromethyl)benzoyl)-1H-indazole-3-carbohydrazide (4b): IR (v_{max} , KBr/cm⁻¹): 3292 (br), 1685 (vs), 1650 (s), 1622 (vs), 1542 (vs), 1482 (vs), 1239 (s), 1120 (m), 1021 (m), 924 (m), 756 (s); ¹HNMR (DMSO-d₆) δ (ppm): 7.28 (t, 1H, *J* = 4.2 Hz), 7.44 (t, 1H, *J* = 4.4 Hz), 7.7 (d, 1H, *J* = 4.2 Hz), 7.96 (d, 2H, *J* = 4.6 Hz), 8.18 (t, 3H), 10.5 (s, 1H), 10.75 (s, 1H), 13.9 (s, 1H); LCMS MS (APCI, m/z): 348.90 (M + H)⁺; Anal.calcd for C₁₆H₁₁F₃ N₄ O₂: C, 55.18; H, 3.18; N, 16.09. Found: C, 54.64 H, 2.68, N, 15.49.

N'-picolinoyl-1H-indazole-3-carbohydrazide (4c): IR (v_{max} , KBr/cm⁻¹): 3440 (br), 2111 (s), 1600 (m), 1114 (br), 843 (s); ¹HNMR (DMSO-d₆) δ (ppm): 7.2-7.3 (m, 3H), 7.45 (t, 1H, J = 4.4 Hz), 7.65 (d, 1H, J = 6.2 Hz), 8.18 (d, 1H, J = 6 Hz), 8.8 (d, 2H, J = 4 Hz), 10.5 (brs, 1H), 10.8 (brs, 1H), 13.8 (s, 1H); LCMS MS (APCI, m/z): 282.06, (M + H)⁺; Anal.calcd for C₁₄H₁₁N₅O₂: C, 59.78; H, 3.94; N, 24.90. Found: C, 59.06; H, 3.09; N, 24.10.

N'-(6-chloronicotinoyl)-1H-indazole-3-carbohydrazide (4d): IR (v_{max} , KBr/cm⁻¹): 3251 (br), 3148 (m), 2943 (w), 1674 (vs), 1647 (s), 1588 (vs), 1562 (s), 1456 (s), 1380 (s), 1286 (m), 1246 (s), 952 (m), 843 (m); ¹HNMR (DMSO-d₆) δ (ppm): 7.28 (t, 1H, *J* = 4.2 Hz), 7.44 (t, 1H, *J* = 4.4 Hz), 7.65-7.77 (m, 2H), 8.13 (d, 1H, *J* = 6.2 Hz), 8.35 (dd,

1H, J = 2 Hz and J = 4 Hz, pyridine-H), 8.95 (s, 1H), 10.5 (s, 1H), 10.8 (s, 1H), 13.9 (s, 1H); LCMS MS (APCI, m/z): 316.32, 317.22 (M + H)⁺; Anal.calcd for C₁₄H₁₀ ClN₅O₂: C, 53.26; H, 3.19; N, 22.18. Found: C, 52.64; H, 2.64; N, 21.54.

N'-(pyrazine-2-carbonyl)-1H-indazole-3-carbohydrazide (4e): IR (v_{max} , KBr/cm⁻¹): 3254 (br), 1692 (vs), 1663 (s), 1578 (vs), 1438 (vs), 1351 (s), 1246 (m), 1084 (m), 1020 (m), 935 (m), 875 (m), 744 (s); ¹HNMR (DMSO-d₆) δ (ppm): 7.28 (t, 1H, J = 4.2 Hz), 7.44 (t, 1H, J = 4.4 Hz), 7.68 (d, 1H, J = 6.4 Hz), 8.15 (d, 1H, J = 6.2 Hz), 8.82 (d, 1H, J = 2.8 Hz), 8.92 (d, 1H, J = 3.2 Hz), 9.25 (s, 1H, Py-H), 10.5 (s, 1H), 10.88 (s, 1H), 13.9 (s, 1H); LCMS MS (APCI, m/z): 283.28 (M + H)⁺; Anal.calcd for C₁₃H₁₀N6O₂: C, 55.32; H, 3.57; N, 29.77. Found: C, 54.94; H, 2.92; N, 29.05.

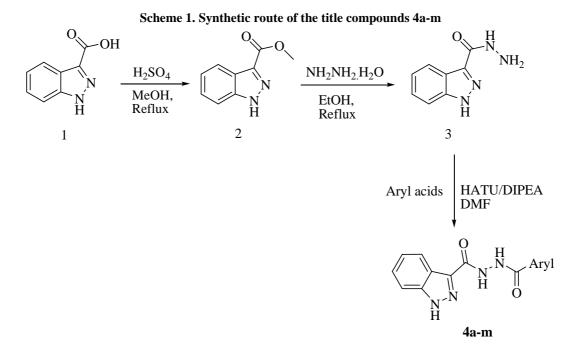
N'-(1H-pyrrole-2-carbonyl)-1H-indazole-3-carbohydrazide (4f): IR (v_{max} , KBr/cm⁻¹): 3360 (br), 3233 (w), 3068 (s), 1954 (w), 1691(vs), 1660 (s), 1572 (vs), 1543 (s), 1443 (vs), 1369 (s), 1111 (m), 1003 (m), 916 (m), 858 (m), 749 (s); ¹HNMR (DMSO-d₆) δ (ppm): 7.28 (t, 1H, J = 4.2 Hz), 7.44 (t, 1H, J = 4.4 Hz), 7.6-7.7 (m, 4H,), 8.15 (d, 1H, J = 6.2 Hz), 8.3 (s, 1H, pyrrole-NH), 10.5 (s, 1H), 10.63 (s, 1H), 13.9 (s, 1H); LCMS MS (APCI, m/z): 270.16 (M + H)⁺; Anal.calcd for C₁₃H₁₁N₅O₂: C, 57.99; H, 4.12; N, 26.01. Found: C, 57.06; H, 3.68; N, 25.48.

N'-(3-methylthiophene-2-carbonyl)-1H-indazole-3-carbohydrazide (4g): IR (v_{max} , KBr/cm⁻¹): 3268 (vs), 1688 (vs), 1672 (m), 1583 (vs), 1481 (s), 1381 (s), 1227 (m), 1118 (m), 858 (m), 726 (s); ¹HNMR (DMSO-d₆) δ (ppm): 2.3 (s, 3H, Me), 7.05 (d, 1H, J = 5.4 Hz), 7.28 (t, 1H, J = 4.2 Hz), 7.45 (t, 1H, J = 4.4 Hz), 7.68 (d, 2H, J = 4.4 Hz), 7.68 (d, 2H, J = 5.6 Hz), 8.18 (d, 1H, J = 6.2 Hz), 10.18 (brs, 1H), 10.6 (brs, 1H), 13.9 (s, 1H); LCMS MS (APCI, m/z): 301.15, (M + H)⁺; Anal.calcd for C₁₄H₁₂N₄O₂ S: C, 55.99; H, 4.03; N, 18.65. Found: C, 55.28; H, 3.62; N, 17.92.

N'-(1H-indazole-3-carbonyl)-1,2,3-thiadiazole-4-carbohydrazide (4h): IR (v_{max} , KBr/cm⁻¹): 3379 (br), 3272 (m), 3076 (w), 1705 (vs), 1651 (s), 1586 (vs), 1536 (m), 1473 (vs), 1401 (s), 1374 (s), 1249 (m), 1173 (m), 1003 (m), 916 (m); ¹HNMR (DMSO-d₆) δ (ppm): 7.28 (t, 1H, J = 4.2 Hz), 7.45 (t, 1H, J = 4.4 Hz), 7.68 (d, 1H, J = 6.4 Hz), 8.18 (d, 1H, J = 6.2 Hz), 9.93 (s, 1H, thiadiazole-H), 10.65 (brs, 1H), 11.10 (brs, 1H), 13.9 (brs, 1H); LCMS MS (APCI, m/z): 289.18, (M + H)⁺; Anal.calcd for C₁₁H₈N₆O₂S: C, 45.83; H, 2.80; N, 29.15. Found: C, 45.24; H, 2.20; N, 28.12.

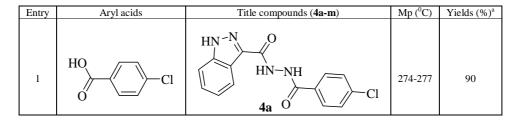
N'-(1H-indazole-3-carbonyl)-5-methylisoxazole-3-carbohydrazide (4i): IR (v_{max} , KBr/cm⁻¹): 3428 (br), 3304 (s), 2950 (w), 1694 (s), 1664 (vs), 1568 (vs), 1458 (vs), 1178 (m), 1010 (m), 916 (m), 848 (m),740 (s); ¹HNMR (DMSO-d₆) δ (ppm): 2.82 (s, 3H, Me), 6.66 (s, 1H, isoxazole-H), 7.28 (t, 1H, *J* = 4.2 Hz), 7.46 (t, 1H, *J* = 4.4 Hz), 7.68 (d, 1H, *J* = 6.4 Hz), 8.18 (d, 1H, *J* = 6.2 Hz), 10.5 (s, 1H), 10.7 (s, 1H), 13.9 (s, 1H); LCMS MS (APCI, m/z): 286.13, 287.13, (M + H)⁺; Anal.calcd for C₁₃H₁₁N₅O₃: C, 54.74; H, 3.89; N, 24.55. Found: C, 54.04; H, 3.16; N, 23.68.

N'-(3-methyl-1H-pyrazole-5-carbonyl)-1H-indazole-3-carbohydrazide (4j): IR (v_{max} , KBr/cm⁻¹): 3436 (br), 3019 (w), 1634 (br), 1401 (vs), 1215 (m), 1046 (m), 847 (m), 757 (vs); ¹HNMR (DMSO-d₆) δ (ppm): 2.3 (s, 3H, Me), 6.5 (s, 1H, pyrazole-H), 7.28 (t, 1H, J = 4.2 Hz), 7.45 (t, 1H, J = 4.4 Hz), 7.68 (d, 1H, J = 6.4 Hz), 8.18 (d, 1H, J = 6.2 Hz), 9.9 (s, 1H), 10.25 (s, 1H), 13.13 (s, 1H), 13.9 (s, 1H); LCMS MS (APCI, m/z): 285.08, (M + H)⁺; Anal.calcd for C₁₃H₁₂N₆O₂: C, 54.93; H, 4.25; N, 29.56. Found: C, 54.63; H, 3.89; N, 29.01.

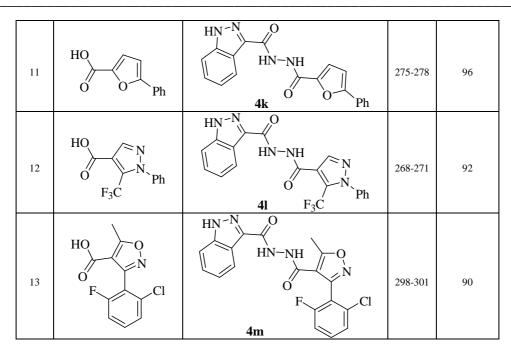

N'-(5-phenylfuran-2-carbonyl)-1H-indazole-3-carbohydrazide (4k): IR (v_{max} , KBr/cm⁻¹): 3272 (br), 1682 (vs), 1654 (s), 1580 (vs), 1479 (s), 1449 (m), 1349 (vs), 1193 (m), 1020 (m), 917 (m), 862 (m); ¹HNMR (DMSO-d₆) δ (ppm): 7.28 (t, 1H, J = 4.2 Hz), 7.4-7.55 (m, 7H), 7.68 (d, 1H, J = 6.4 Hz), 8.0 (d, 1H, J = 5.6 Hz), 8.18 (d, 1H, J = 6.2 Hz), 10.42 (s, 1H), 10.61 (s, 1H), 13.89 (s, 1H); LCMS MS (APCI, m/z): 346.91, (M + H)⁺; Anal.calcd for C₁₉H₁₄N₄O₃: C, 65.89; H, 4.07; N,16.18. Found: C, 65.45; H, 3.62; N, 15.76.

N'-(1-phenyl-5-(trifluoromethyl)-1H-pyrazole-4-carbonyl)-1H-indazole-3-carbohydrazide (4l): IR (v_{max} , KBr/cm⁻¹): 3468 (br), 3237 (m), 1655 (vs), 1629 (s), 1536 (vs), 1470 (vs), 1439 (m), 1347 (vs), 1202 (m), 1165 (m), 921 (m), 776 (m), 750 (s); ¹HNMR (DMSO-d₆) δ (ppm): 6.9-7.1 (m, 5H), 7.28 (t, 1H, J = 4.2 Hz), 7.45 (t, 1H, J = 4.6 Hz), 7.65 (d, 1H, J = 6.4 Hz), 8.18 (d, 1H, J = 6.2 Hz), 10.05 (s, 1H), 10.25 (brs, 1H), 11.75 (s, 1H, pyrazole-H), 13.8 (brs, 1H); LCMS MS (APCI, m/z): 415.22, 416.22, (M + H)⁺; Anal.calcd for C₁₉H₁₃F ₃N₆O₂: C, 55.08; H, 3.16; N, 20.28. Found: C, 54.68; H, 2.86; N, 19.64.

3-(2-chloro-6-fluorophenyl)-N'-(1H-indazole-3-carbonyl)-5-methylisoxazole-4-carbohydrazide (4m): IR (v_{max} , KBr/cm⁻¹): 3336 (br), 3253 (w), 1688 (vs), 1652 (s), 1610 (s), 1571 (s), 1479 (vs), 1410 (s), 1370 (vs), 1352 (m), 1251 (m), 1192 (m), 1020 (m), 925 (m), 898 (m), 790 (m); ¹HNMR (DMSO-d₆) δ (ppm): 2.81 (s, 3H, Me), 7.28 (t, 1H, *J* = 4.2 Hz), 7.4-7.5 (m, 3H), 7.62-7.76 (m, 2H), 8.18 (d, 1H, *J* = 6.2 Hz), 10.25 (s, 1H), 10.45 (s, 1H), 13.8 (s, 1H); LCMS MS (APCI, m/z): 414.11, 415.11 (M + H)⁺; Anal.calcd for C₁₉H₁₃ Cl F N₅O₃: C, 55.15; H, 3.17; N, 16.92. Found: C, 54.68; H, 2.79; N, 16.38.


RESULTS AND DISCUSSION

Thus, we are very interested in transforming indazole-3-carboxilic acid to some novel Aryl acid N'-(1H-indazole-3-carbonyl)-hydrazidederivatives (4a-m), which should be useful precursors for achieving new biologically active indazole-3-substituted compounds.



Here in, we wish to report the synthesis of aryl acid N'-(1H-indazole-3-carbonyl)-hydrazide derivatives by the reaction of 1H-Indazole-3-carboxylic acid hydrazide (3) with some substituted aryl acids (Table 1, Entry 1-13) as shown in scheme 1. Initially, treatment of 1H-Indazole-3-carboxylic acid (1) with catalytic amount of H_2SO_4 in refluxing methanol produced 1H-Indazole-3-carboxylic acid methyl ester (2). Treatment of (2) with Hydrazine hydrate in refluxing EtOH gave a 1H-Indazole-3-carboxylic acid hydrazide (3). Finally this was coupled with some substituted aryl acids in the presence of O-(7-Azabenzotriazole-1-Yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) as amide coupling agent and Ethyl-diisopropyl-amine (DIPEA) as base in N,N-Dimethyl-formamide (DMF) to give Aryl acid N'-(1H-indazole-3-carboxyl)-hydrazide derivatives (4a-m, Table 1).

Table 1. Synthesis of Aryl acid N'-(1H-indazole-3-carbonyl)-hydrazide derivatives (4a-m):

2	HO O CF ₃	$ \begin{array}{c} HN^{-N} & O \\ HN^{-NH} & - CF_3 \\ 4b & O \\ \end{array} $	303-306	91
3	HO N	$HN^{-N} \xrightarrow{O} HN^{-NH} \xrightarrow{N=} 4c^{O}$	225-228	64
4	HO O Cl	$HN^{-N} \xrightarrow{O} HN - NH \xrightarrow{=N} Cl$	272-275	92
5	HO O	$HN^{-N} O HN^{-NH} N $	276-279	94
6	HO H O	$HN^{-N} \xrightarrow{O} HN^{-NH} \xrightarrow{H} O$	248-251	87
7	HO	HN ^{-N} HN-NH 4g	269-272	95
8	HO O N [×] N	$HN^{-N} \xrightarrow{O}_{HN-NH} \xrightarrow{S}_{N = N}$	228-231	91
9	HO O	$HN^{-N} O HN^{-NH} N^{-}O $	210-213	96
10	HO O N-N H	$HN^{-N} O HN^{-NH} HN^{-NH} HIN^{-NH} HH^{-NH} HH^{-NH}$	272-275	94

^a Isolated yields

In addition, we also attempted the reaction with other reagents such as N-Hydroxybenzotrizole (HOBT) and (3-Dimethylamino-propyl)-ethyl-carbodiimide (EDC.HCl), but the yield could not be improved further. Some representative results are summarized in **Table 1**.

Biological activity

Antibacterial activity: The compounds **4a-m** were screened for their antibacterial activity against human pathogenic bacteria such as Escherichia coli (MTCC46), Pseudomonas aeruginosa (MTCC442), Staphylococcus aureus (MTCC87) and Streptococcus pyogene. The minimum inhibition concentration (MIC) was determined using the tube dilution method.²⁰ DMF was used as a blank and Ciprofloxacin as standard and the results are reported in **Table 2**.

Compounds **4b-i**, and **4k-m** showed moderate activity against Escherichia coli, Pseudomonas aeruginosa, staphylococcus aureus and streptococcus pyogene. Compound **4a** showed moderate activity against Pseudomonas aeruginosa, staphylococcus aureus and streptococcus pyogene but didn't exhibit activity against Escherichia coli. Compound **4j** showed moderate activity against Escherichia coli, staphylococcus aureus and streptococcus pyogene but didn't exhibit activity against Escherichia coli. Compound **4j** showed moderate activity against Escherichia coli, staphylococcus aureus and streptococcus pyogene but didn't exhibit activity against Pseudomonas aeruginosa.

	Zone of Inhibition (mm)			
Compounds	Escherichia	Pseudomonas	Staphylococcus	Streptococcus
Compounds	coli	aeruginosa	aureus	pyogene
4a	-	12	12	14
4b	11	12	14	14
4c	11	14	11	09
4d	12	14	16	14
4e	13	13	12	11
4f	12	13	15	12
4g	14	13	10	10
4h	12	11	15	12
4i	10	12	12	11
4j	13	-	12	12
4k	14	13	15	15
41	13	14	12	15

Table 2. In Vitro antibacterial activity for compounds 4a-	Table 2. In	Vitro antibacteria	l activity for	compounds 4a-m
--	-------------	--------------------	----------------	----------------

G. Narayana Swamy et al

4m	11	14	14	13
Ciprofloxacin	17	21	21	23

Antifungal activity: The compounds 4a-m were screened also for antifungal activities (Table 3) against Aspergillus niger and Helminthosporium oryzae using fungicide Griseofulvin in DMF as the standard.

	Zone of Inhibition (mm)		
Compounds	Aspergillus	Helminthosporium	
Compounds	niger	oryzae	
4a	07	06	
4b	10	09	
4c	09	09	
4d	10	08	
4e	11	09	
4f	12	11	
4g	09	11	
4h	13	11	
4i	11	13	
4j	12	09	
4k	08	09	
41	10	09	
4m	10	10	
Griseofulvin	15	14	

Table 3. In Vitro antifungal activity for compounds 4a-m

Antifungal activity of compounds **4a-m** was compared with that of the antifungal drug Griseofulvin. **Table-3** showed that compounds **4b**, **4d-f**, **4h-j**, **4l** and **4m** showed high activity against fungi Aspergillus niger. Where as compounds **4a**, **4c**, **4g** and **4k** exhibited moderate activity against fungi Aspergillus niger when compared with Griseofulvin. Compounds **4f-l** and **4m** showed high activity against Helminthosporium oryzae. Where as compounds **4a-e** and **4j-l** exhibited moderate activity against fungi Helminthosporium oryzae.

CONCLUSION

We have successfully prepared 13 novel aryl acid N'-(1H-indazole-3-carbonyl)-hydrazide derivatives (4a-m) by amide coupling of some substituted aryl acids with 1H- indazole-3- carboxylic acid hydrazide and also assayed for their invitro antibacterial activity and antifungal activity, because the literature gives results enormously interesting on these subjects.

Acknowledgements

The authors are thankful to the University Grants Commission, New Delhi for financial assistance.

REFERENCES

- [1] K. W. Woods, J. P. Fischer and L. Qun, Bioorg. Med. Chem. 14, 6832 (2006).
- [2] Z. Han-Cheng, K. D. Claudia and E. B. Maryanoff, J. Med. Chem. 48, 1725 (2005).
- [3] Stefan, B.; Carmen, G.; Kerstin, K. Bioorg. Med. Chem., 10, 2415 (2002).
- [4] J. D. Rodgers and C. H. Chang, Bioorg. Med. Chem. Lett., 6, 2919 (1996).
- [5] J. A. Vicente and E.C. Eduardo, Bioorg. Med. Chem., 13, 3197 (2005).
- [6] B. Michel, L. Elodie and R. Sylvain, Bioorg. Med. Chem. Lett., 17, 3177 (2007).
- [7] R. J. Steffan, M. Edward and C. H. Douglas, J. Med. Chem. 47, 6435 (2004).
- [8] K. T. Vishnu, B. Y. Dharmendra and K. S. Praveen, Bioorg. Med. Chem. Lett., 15, 3288 (2005).
- [9] H. D. Hollis Showalter, M. M. Angelo, L. S. Leopold, J. Med. Chem. 31, 1527 (1988).
- [10] A. M. Jesse, A. P. Dantanarayana, and N. A. Sharif, J. Med. Chem., 49, 318 (2006).
- [11] I. Shimada, M. Kyoichi and T. Shin-Ichi, Bioorg. Med. Chem., 16, 1966 (2008).
- [12] P. Fludzinski, D. A. Evrard and M. L. Cohen, J. Med. Chem. 30, 1535 (1987).
- [13] H. Hiroshi, and K. Shiro, Chem. Pharm. Bull. 43, 1912 (1995).
- [14] Y. Toyokichi, S. Kanji and K. Shiro, Heterocycles.43, 2701 (1996).
- [15] C. Ainsworth, J. Am. Chem. Soc. 79, 5242 (1957).

- [16] V. V. Sanjeev Kumar, G. Clarkson and L. Martin, J. Med. Chem. 53, 2324 (2010).
- [17] H. Hiroshi and K. Shiro, Tetrahedron: Asymmetry. 8, 2367 (1997).
- [18] J. M. Schaus, D. C. Thompson and M. L. Cohen, J. Med. Chem., 41, 1943 (1998).
- [19] L. Guanglin, C. Ling, and G. Duboechik, J. Org. Chem. 71, 5392 (2006).

[20] J. G. Colle, J. P. Duguid and B. P. Mannion, Meckie & Mecartney Practical Medicinal Microbiology, 13th edn; Churchill Livingstone: Edinburgh. **1989**.