Vector F-implicit complementarity problems in topological vector spaces

A.P. Farajzadeha*, J. Zafaranib

aDepartment of Mathematics, Razi University, Kermanshah, 67149, Iran
bDepartment of Mathematics, University of Isfahan, Isfahan 81745-163, Iran

Received 17 February 2006; received in revised form 9 June 2006; accepted 10 July 2006

Abstract

Recently, Huang and Li [J. Li, N.J. Huang, Vector F-implicit complementarity problems in Banach spaces, Appl. Math. Lett. 19 (2006) 464–471] introduced and studied a new class of vector F-implicit complementarity problems and vector F-implicit variational inequality problems in Banach spaces. In this work, we study this class in topological vector spaces and drive some existence theorems for the vector F-implicit variational inequality and vector F-implicit complementarity problem. Also, their equivalence is presented under certain conditions.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Vector F-implicit complementarity problems; Vector F-implicit variational inequalities; KKM-map; Positively homogeneous map; Topological vector space

1. Introduction and preliminaries

Vector variational inequalities were first introduced and studied by Giannessi [4] in the setting of finite-dimensional Euclidean spaces. There are generalizations of scalar variational to the vector case. Vector variational inequalities have many applications in vector optimization, approximate vector optimization, and other areas (see [5]).

In 2001, Yin et al. [12] introduced a class of F-complementarity problems (F-CP), which consist in finding $x \in K$ such that

$$
\langle Tx, x \rangle + F(x) = 0, \quad \langle Tx, y \rangle + F(y) \geq 0, \quad \forall y \in K,
$$

where X is a Banach space with topological dual X^*, and $\langle \cdot, \cdot \rangle$ duality pairing between them, K a closed convex cone of X, and $T : K \to X^*$, $F : K \to \mathbb{R}$. They obtained an existence theorem for solving (F-CP) and also proved that if F is positively homogeneous (i.e. $F(tx) = tF(x)$ for all $t > 0$ and $x \in K$) and convex, the problem (F-CP) is equivalent to the following generalized variational inequality problem (GVIP) which consists in finding $x \in K$ such that

$$
\langle Tx, y - x \rangle + F(y) - F(x) \geq 0, \quad \forall y \in K.
$$

* Corresponding author.

E-mail address: ali-ff@sci.ui.ac.ir (A.P. Farajzadeh).

0893-9659/S - see front matter © 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.aml.2006.07.015
In 2003, Fang and Huang [3] introduced a new class of vector F-complementarity problems with demipseudomonotone mappings in Banach spaces. They presented the solvability of this class of vector F-complementary problems with demipseudomonotone mappings and finite-dimensional continuous mappings in reflexive Banach spaces. Later, Huang and Li [6] introduced and studied a new class of (scalar) F-implicit complementarity problems and F-implicit variational inequality problems in Banach spaces. They obtained some existence theorems for F-implicit complementarity and F-variational problems. Also, under special assumptions, they established the equivalence between F-implicit complementarity and F-variational problems. Recently, in [7], they extended those problems to a vector valued setting.

In this work our aim is to generalize some results of [7] to topological vector spaces under certain weaker conditions. We first consider the following vector F-implicit variational inequality (in short, VF-IVIP). Find $x \in K$ such that

\[(VF-IVIP) \quad (Tx, y - x) + F(y) - F(x) \in C(x), \quad \forall y \in K,\]

and the second problem which we study, is called vector F-implicit complementarity problem (in short, VF-ICP) which consists of finding $x \in K$ such that

\[(VF-ICP) \quad (Tx, x) = 0, \quad (Tx, y) + F(y) \in C(x), \quad \forall y \in K,\]

where X, Y are topological vector spaces, K is a nonempty convex subset of X, $C : K \to 2^Y$ a multi-valued map with convex cone values, $T : K \to L(X, Y)$, and $F : K \to Y$.

In the rest of this section, we recall some definitions and preliminary results which are used in next sections.

We shall denote by 2^A the family of all subsets of A and by $\mathcal{F}(A)$ the family of all nonempty finite subsets of A. Let X be a real Hausdorff topological vector space (in short, t.v.s.). A nonempty subset P of X is called convex cone if (i) $P + P = P$, (ii) $\lambda P \subseteq P$, for all $\lambda \geq 0$. Let Y be a t.v.s. and $P \subseteq Y$ be a cone. The cone P induces an order in Y (in this case the pair (Y, P) is called an ordered t.v.s.) which is defined as follows:

$$x \leq y \iff y - x \in P.$$

This ordering is anti-symmetrical if P is pointed. Let X and Y be two t.v.s., K a nonempty subset of X, and $C : K \to 2^Y$ a multi-valued map with nonempty convex cone values.

We say that $f : K \times K \to Y$ is vector C-upper semicontinuous (C-u.s.c.) in the first variable, if the set \(\{x \in K : f(x, y) \in C(x)\}\) is closed in K, for every $y \in K$. This definition reduces to vector 0-u.s.c., if $C(x) = P$ for every $x \in K$, where P is a constant convex cone.

Let X be a nonempty set, Y a topological space, and $\Gamma : X \to 2^Y$ a multi-valued map. Then, Γ is called transfer closed-valued if, for every $y \not\in \Gamma(x)$, there exists $x' \in X$ such that $y \not\in \text{cl} \Gamma(x')$, where cl denotes the closure of a set. It is clear that, $\Gamma : X \to 2^X$ is transfer closed-valued if and only if

$$\bigcap_{x \in X} \Gamma(x) = \bigcap_{x \in X} \text{cl} \Gamma(x).$$

If $B \subseteq Y$ and $A \subseteq X$, then $\Gamma : A \to 2^B$ is called transfer closed-valued if the multi-valued mapping $x \to \Gamma(x) \cap B$ is transfer closed-valued. In this case where $X = Y$ and $A = B$, Γ is called transfer closed-valued on A.

Let K be a nonempty convex subset of a t.v.s. X and let K_0 be a subset of K. A multi-valued map $\hat{\Gamma} : K_0 \to 2^K$ is said to be a KKM map if

$$\text{co}A \subseteq \bigcup_{x \in A} \Gamma(x), \quad \forall A \in \mathcal{F}(K_0),$$

where co denotes the convex hull.

In the next section, we need the following theorem.

Theorem 1.1 ([2]). Let X be a t.v.s. and K be a nonempty convex subset of X. Suppose that $\Gamma, \hat{\Gamma} : K \to 2^K$ are two multi-valued mappings such that:

(i) $\hat{\Gamma}(x) \subseteq \Gamma(x), \forall x \in K$;

(ii) $\hat{\Gamma}$ is a KKM map;
(iii) for each $A \in F(K)$, Γ is transfer closed-valued on $\text{co}A$;
(iv) for each $A \in F(K)$, $\text{cl}_{K}(\bigcap_{x \in \text{co}A} \Gamma(x)) \subseteq \text{co}A = (\bigcap_{x \in \text{co}A} \Gamma(x)) \cap \text{co}A$;
(v) there is a nonempty compact convex set $B \subseteq K$ such that $\text{cl}_{K}(\bigcap_{x \in B} \Gamma(x))$ is compact.

Then, $\bigcap_{x \in K} \Gamma(x) \neq \emptyset$.

2. Main results

Throughout this section, let X and Y be real Hausdorff t.v.s. and K be a nonempty convex subset of X. Denote by $L(X, Y)$ the space of all continuous linear mappings from X into Y, and $\langle t, x \rangle$ be the value of the linear continuous mapping $t \in L(X, Y)$ at x. Suppose that $C : K \to 2^{Y}$ is a multivalued map with nonempty convex cone values, $f : K \to L(X, Y)$, $g : K \to K$ and $F : K \to Y$. We consider the following vector F-implicit complementarity problem (VF-ICP).

Find $x \in K$ such that

$$\langle f(x), g(x) \rangle + F(g(x)) = 0 \quad \text{and} \quad \langle f(x), y \rangle + F(y) \in C(x), \quad \forall y \in K.$$

The above problem reduces to vector F-implicit complementarity problem considered in [7] for the case $C(x) = P$, where (Y, P) is an ordered t.v.s. and P is a convex cone subset of K.

Examples of (VF-ICP) in t.v.s.

(1) If g is an identity mapping on K, then (VF-ICP) reduces to the vector F-complementary problem (in short VF-CP) which consists in finding $x \in K$ such that:

$$\langle f(x), x \rangle + F(x) = 0 \quad \text{and} \quad \langle f(x), y \rangle + F(y) \in C(x), \quad \forall y \in K.$$

(2) If $F = 0$, then (VF-CP) reduces to the vector complementary problem (in short, VCP) which consists in finding $x \in K$ such that:

$$\langle f(x), x \rangle = 0 \quad \text{and} \quad \langle f(x), y \rangle \in C(x), \quad \forall y \in K,$n which has been studied by Chen and Yang [1], and Yang [11] in particular case $C(x) = P, \forall x \in K$.

(3) If $L(X, Y) = X^{*}$ and $F : K \to \mathbb{R}$, then (VF-ICP) reduces to the F-implicit complementarity problems (in short, F-ICP) which consists of finding $x \in K$ such that:

$$\langle f(x), g(x) \rangle + F(g(x)) = 0 \quad \text{and} \quad \langle f(x), y \rangle + F(y) \in C(x), \quad \forall y \in K$$

which were considered by Huang and Li [6] in the particular case, where $C(x) = P, \forall x \in K$.

(4) If g is the identity mapping, then (F-ICP) reduces to the F-complementary problem (in short, F-CP) which consists in finding $x \in K$ such that:

$$\langle f(x), x \rangle + F(x) = 0 \quad \text{and} \quad \langle f(x), y \rangle + F(y) \in C(x), \quad \forall y \in K,$n which was studied by Yin et al. [12] in the particular case, where $C(x) = P, \forall x$.

(5) If $F = 0$, then (F-ICP) reduces to the implicit complementary problem (in short ICP) which consists in finding $x \in K$ such that:

$$\langle f(x), g(x) \rangle = 0 \quad \text{and} \quad \langle f(x), y \rangle \in C(x), \quad \forall y \in K,$$n which has been studied by Isac [9,10].

(6) If g is the identity mapping and $F = 0$, then (F-ICP) reduces to the complementary problem (in short, CP) which consists in finding $x \in K$ such that:

$$\langle f(x), x \rangle = 0 \quad \text{and} \quad \langle f(x), y \rangle \in C(x), \quad \forall y \in K,$$n which has been studied by many authors, (for instance, see [10]). If $X = X^{*} = \mathbb{R}^{n}$, then (CP) becomes the classical complementary problem.
We also introduce the following vector F-implicit variational inequality problem (in short VF-IVIP) which consists in finding $x \in K$ such that

$$(f(x), y - g(x)) + F(y) - F(g(x)) \in C(x), \quad \forall y \in K.$$

This problem is a generalization of the problem (VF-IVIP) introduced in [7] in a Banach space setting.

Remark 2.1. Any solution of (VF-ICP) is a solution of (VF-IVIP). The following theorem says that the converse holds if F is positively homogeneous; the proof is similar to Theorem 3.1 in [7] and thus will be omitted.

Theorem 2.2. If $F : K \to Y$ is positively homogeneous, then (VF-IVIP) and (VF-ICP) are equivalent.

The following example shows that if F is not positively homogenous, the conclusion of Theorem 2.2 may be incorrect:

Example 2.3. Let $X = Y = \mathbb{R}$, $K = [0, +\infty)$, $g(x) = 0$, $F(x) = 1$, and $C(x) = [0, +\infty)$, for all $x \in K$. Define $f : K \to \mathbb{R}$ (note that $L(\mathbb{R}, \mathbb{R}) \equiv \mathbb{R}$) by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ -1 & \text{otherwise.} \end{cases}$$

Obviously, $x = 0$ is a solution of (VF-IVIP) but is not a solution of (VF-ICP).

In Theorem 2.2, if g is the identity mapping, then we have the following corollary:

Corollary 2.4. Let $F : K \to Y$ be positively homogeneous. Then any solution of (VF-VIP) is a solution for (VF-CP).

The following theorem provides an existence result for the (VF-IVIP) in t.v.s. which improves Theorem 3.2. in [7].

Theorem 2.5. Assume that:

(a) the function $G : \text{co}A \times \text{co}A \to Y$ where,

$$G(x, y) = \langle f(x), y - g(x) \rangle + F(y) - F(g(x))$$

is C-u.s.c. in the first variable, $\forall A \in \mathcal{F}(K)$;

(b) let $A \in \mathcal{F}(K)$, $x, y \in \text{co}A$. If (x_a) is any net on K converging to x then,

$$(f(x_a), tx + (1-t)y - g(x_a)) + F(tx + (1-t)y) - F(g(x_a)) \in C(x), \quad \forall t \in [0, 1]$$

implies

$$(f(x), y - g(x)) + F(y) - F(g(x)) \in C(x).$$

(c) There exists a mapping $h : K \times K \to Y$ such that:

(i) $h(x, x) \in C(x), \forall x \in K$;

(ii) $\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) - h(x, y) \in C(x), \forall x \in K, \forall y \in K$;

(iii) the set $\{y \in K : h(x, y) \notin C(x)\}$ is convex, $\forall x \in K$;

(d) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \setminus B$, there exists $y \in D$ such that $(f(x), y - g(x)) + F(y) - F(g(x)) \notin C(x)$.

Then (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.

Proof. We define $\Gamma, \hat{\Gamma} : K \to 2^K$ as follows:

$$\Gamma(y) = \{x \in K : (f(x), y - g(x)) + F(y) - F(g(x)) \in C(x)\},$$

$$\hat{\Gamma}(y) = \{x \in K : h(x, y) \in C(x)\}.$$

We show that $\Gamma, \hat{\Gamma}$ satisfy conditions of Theorem 1.1. From assumption (ii) of (c), $\hat{\Gamma}(y) \subseteq \Gamma(y)$, for all $y \in K$.

If $A = \{x_1, x_2, \ldots, x_n\} \subseteq K, z \in \text{co}A$ and $z \in \bigcup_{i=1,2,\ldots,n} \hat{\Gamma}(x_i)$, then $h(z, x_i) \notin C(z)$ for $i = 1, 2, 3, \ldots, n$. It follows by (c)(iii) that, $h(z, z) \notin C(z)$ contradicting (c)(i). So $\hat{\Gamma}$ is a KKM map. Let $A \in \mathcal{F}(K), x \in \text{co}A$ and
\((x_a) \in \Gamma(x) \cap \text{co}A\) converges to \(z\). Then, \((f(x_a), x - g(x_a)) + F(y) - F(g(x_a)) \in C(x_a)\). By (a), we conclude that \(z \in \Gamma(x) \cap \text{co}A\). Since \(x\) is an arbitrary element of \(\text{co}A\), we obtain:

\[
\bigcap_{x \in \text{co}A} \Gamma(x) \cap \text{co}A = \bigcap_{x \in \text{co}A} \text{cl}(\Gamma(x) \cap \text{co}A).
\]

Similarly, using (b) we get:

\[
\bigcap_{x \in \text{co}A} \Gamma(x) \cap \text{co}A = \text{cl}_K \left(\bigcap_{x \in \text{co}A} \Gamma(x) \right) \cap \text{co}A, \quad A \in \mathcal{F}(K).
\]

From (d) we deduce that \(\text{cl}(\bigcap_{x \in K} \Gamma(x)) \subseteq B\). Hence, \(\Gamma, \hat{\Gamma}\) satisfy the conditions of Theorem 1.1. Then

\[
\bigcap_{x \in K} \Gamma(x) \neq \emptyset,
\]

which shows that the problem (VF-IVIP) has a solution. Now, let \((x_a)\) be a net of solutions of (VF-IVIP) which converges to \(x\). Then, for all \(y \in K\) and all \(t \in [0, 1]\), we have

\[
(f(x_a), tx + (1-t)y - g(x_a)) + F(tx + (1-t)y) - F(g(x_a)) \in C(x_a).
\]

Thus, from assumption (b) we obtain

\[
(f(x), y - g(x)) + F(y) - F(g(x)) \in C(x).
\]

Therefore, the solution set of (VF-IVIP) is closed and thanks to (d), it is a subset of \(B\) and consequently is compact. Thus the proof is completed. □

Remark 2.6. Let us endow \(L(X, Y)\) with the following topology. We say that a net \(F_a \in L(X, Y)\) converges to \(F \in L(X, Y)\) if, for each convergent net \(x_a \to x\) we have \(\langle F_a, x_a \rangle \to \langle F, x \rangle\). Now if, \(f, g, F\) are continuous and \(C\) is a map with the closed graph then, the assumptions (a) and (b) are satisfied. Also, if \(K\) is compact then, the condition (d) trivially holds.

Corollary 2.7. Assume that:

(a) the function \(G : \text{co}A \times \text{co}A \to Y\) where,
\[
G(x, y) = \langle f(x), y - x \rangle + F(y) - F(x)
\]
is \(C\)-u.s.c. in the first variable, \(\forall A \in \mathcal{F}(K)\);

(b) Let \(A \in \mathcal{F}(K), x, y \in \text{co}A\). If \((x_a)\) be any net on \(K\) converging to \(x\) then
\[
\langle f(x_a), tx + (1-t)y - g(x_a) \rangle + F(tx + (1-t)y) - F(g(x_a)) \in C(x_a), \quad \forall t \in [0, 1]
\]
implies
\[
\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \in C(x).
\]

(c) there exists a mapping \(h : K \times K \to Y\) such that
(i) \(h(x, x) \in C(x), \forall x \in K\);
(ii) \(\langle f(x), y - x \rangle + F(y) - F(x) - h(x, y) \in C(x), \forall x \in K, \forall y \in K\);
(iii) the set \(\{y \in K : h(x, y) \notin C(x)\}\) is convex, \(\forall x \in K\);

(d) there exist a nonempty compact subset \(B\) and a nonempty convex compact subset \(D\) of \(K\) such that, for each \(x \in K \setminus B\), there exists \(y \in D\) such that \(\langle f(x), y - x \rangle + F(y) - F(x) \notin C(x)\).

Then, (VF-VIP) has a solution. Moreover, the solution set of (VF-VIP) is compact.

By slight modifications of the proof of Corollary 2.4, we can obtain the following existence theorems.

Theorem 2.8. Assume that:

(a) the function \(G : \text{co}A \times \text{co}A \to Y\) where
\[
G(x, y) = \langle f(x), y - g(x) \rangle + F(y) - F(g(x))
\]
is \(C\)-u.s.c. in the first variable, \(\forall A \in \mathcal{F}(K)\);
(b) Let $A \in \mathcal{F}(K)$, $x, y \in \text{co}A$. If (x_α) be any net on K converging to x then, for all $t \in [0, 1]$ the following implication holds:

$$\langle f(x_\alpha), tx + (1-t)y - g(x_\alpha) \rangle + F(tx + (1-t)y) - F(g(x_\alpha)) \in C(x_\alpha)$$
then $$\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \in C(x).$$

(c) $\langle f(x), x - g(x) \rangle + F(x) - F(g(x)) \in C(x), \forall x \in K$;

(d) the set $\{y \in K : \langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \notin C(x)\}$ is convex, $\forall x \in K$;

(e) there exist a nonempty compact set $B \subseteq K$ and a nonempty convex compact subset D of K such that, for each $x \in K \setminus B$, there exists $y \in D$ such that $\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \notin C(x)$.

Then, (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.

Theorem 2.9. Suppose that:

(a) the function h is C-u.s.c. in the first variable on $\text{co}A$, $\forall A \in \mathcal{F}(K)$;

(b) for each $A \in \mathcal{F}(K)$, let $x, y \in \text{co}A$ and (x_α) be a net on K converging to x, then, the following implication holds,

if $h(x_\alpha, tx + (1-t)y) \in C(x_\alpha), \forall t \in [0, 1]$, then $h(x, y) \in C(x)$;

(c) $h(x, x) \in C(x), \forall x \in K$;

(d) the set $\{y \in K : h(x, y) \notin C(x)\}$ is convex, $\forall x \in K$;

(e) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \setminus B$, there exists $y \in D$ such that $h(x, y) \notin C(x)$.

If, for every $y \in K$, the following implication holds:

$$\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) - h(x, y) \in C(x), \forall x \in K.$$

Then, (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.

The following theorem improves Theorem 3.3. in [7].

Theorem 2.10. Suppose that all assumptions of one of the Theorems 2.5 and 2.8 or 2.9 are satisfied. If F is positively homogeneous, then, (VF-ICP) has a solution. Moreover, the solution set of (VF-ICP) is compact.

Proof. The result follows by Theorems 2.2 and 2.5.

Remark 2.11. Consider the following vector F-implicit complementarity problems in t.v.s. which was studied in the special case $F(x) = 0$ and $g(x) = x$ in [8].

(Weak) vector F-implicit complementarity problem (W-VF-ICP): Find $x \in K$ such that:

$$\langle f(x), g(x) \rangle + F(g(x)) \notin \text{int}C(x), \forall y \in K.$$

(Positive) vector F-implicit complementarity problem (P-VF-ICP): Find $x \in K$ such that:

$$\langle f(x), g(x) \rangle + F(g(x)) \notin \text{int}C(x), \forall y \in K.$$

It is clear that the solution set of (VF-ICP), is a subset of the solution sets of (P-VF-ICP) and (W-VF-ICP). Thus, Theorems 2.5, 2.8 and 2.9 provide existence results for (W-VF-ICP) and (P-VF-ICP). If we take $F = 0$, which is obviously positively homogenous, then Theorem 2.8 gives a solution for the problems considered in [8].

Acknowledgments

The authors are very thankful to the referees for their careful reading and helpful suggestions to make this paper in its present form.

References

