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A New Adaptive Sliding-Mode Control Scheme
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Abstract—This paper presents a new adaptive sliding-
mode control (ASMC) scheme that uses the time-delay
estimation (TDE) technique, then applies the scheme to
robot manipulators. The proposed ASMC uses a new adap-
tive law to achieve good tracking performance with small
chattering effect. The new adaptive law considers an arbi-
trarily small vicinity of the sliding manifold, in which the
derivatives of the adaptive gains are inversely proportional
to the sliding variables. Such an adaptive law provides
remarkably fast adaptation and chattering reduction near
the sliding manifold. To yield the desirable closed-loop
poles and simplify a complicated system model by adapt-
ing feedback compensation, the proposed ASMC scheme
works together with a pole-placement control (PPC) and a
TDE technique. It is shown that the tracking errors of the
proposed ASMC scheme are guaranteed to be uniformly
ultimately bounded (UUB) with arbitrarily small bound. The
practical effectiveness and the fast adaptation of the pro-
posed ASMC are illustrated in simulations and experiments
with robot manipulators, and compared with those of an
existing ASMC.

Index Terms—Adaptive sliding-mode control (ASMC),
fast adaptation, robot manipulators, time-delay estimation.

I. INTRODUCTION

R OBOT manipulators help human workers perform com-
plicated and repetitive tasks quickly and efficiently in a

variety of industrial processes such as assembling [1], assisting
[2], transportation [3], drilling [4], and deburring [5]. To per-
form such demanding and time-consuming tasks, recent robot
manipulators are required to follow the desired paths more
closely and have faster convergence to them [6], [7].

Generally, motion control of robot manipulators is a difficult
task because of high nonlinearity, coupling dynamics effects,
time-varying parameters, unknown disturbances, and modeling
uncertainties. Such undesirable factors may result in inaccu-
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rate motion of joints of robot manipulators and finally lead to
their instability. To solve these problems, various robust con-
trol algorithms have been developed, including sliding-mode
control (SMC) [8], [9], time-delay control [10], [11], neural
networks [12], [13], and finite-time control [14], [15].

As one of representative robust nonlinear control schemes,
SMC is well established, simple, and widely applicable [16],
[17]. The outstanding feature of SMC is its robustness to
unknown system dynamics. If the switching gains of SMC are
chosen to be greater than the upper bound on the uncertain or
unmodeled terms, robust stabilization is ideally achieved. In
reality, however, the upper bound is unknown , so the switch-
ing gains are chosen to be large enough to cover a wide range
of uncertainties. Such large switching gains may cause chat-
tering, in which the robot manipulator oscillates around the
sliding manifold because of physical imperfections in switch-
ing devices and the time delays that often occur in real systems
[18], [19]. Chattering results in serious problems such as high
heat losses in electrical power circuits and high wear of mov-
ing mechanical parts. Such chattering arising in SMC has
challenged ones to develop more effective control methods to
suppress them and then to satisfy given control objectives in
a more systematic way. These methods include the boundary
layer setting [20], [21], low-pass filtering [22], [23], and higher
order control [24], [25]. However, these approaches still have
the limitation that they require information about the upper
bound on the uncertain terms. For this reason, adaptive sliding-
mode control (ASMC) has been developed to provide more
fundamental remedies for chattering problems, whose adaptive
switching gains are adjusted regardless of the upper bound on
the uncertain terms.

Some approaches have been used to design ASMCs that do
not require knowledge of the upper bound on the uncertain
terms. ASMCs have been developed for use when upper bounds
are unknown and unstructured [26], [27]. These ASMCs may
provide conservative results since they consider the unstruc-
tured upper bounds. Furthermore, chattering still happens due
to monotonically increasing switching gains for guaranteeing
the asymptotic stability [26] and the slow adaptation speed
near the sliding manifold from slow-varying switching gains
[27]. As another approach, ASMCs with parameterized upper
bounds were proposed in consideration of unknown and struc-
tured upper bounds to reduce the conservatism of results [28],
[29]. These ASMCs also have the possibility of chattering
because of nondecreasing switching gains. Especially in [29],
the concept of the boundary layer has been applied to reduce
chattering, but this method may result in poor tracking per-
formance since the effort to reduce chattering degrades the
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tracking ability [30]. To the best of authors’ knowledge, there is
no result on ASMCs that are designed for achieving both good
tracking performance and chattering reduction simultaneously.
It would be practical and meaningful to develop a new version
of ASMCs that provides good tracking performance, chatter-
ing reduction, and simple structure for implementation without
using the knowledge of the upper bounds on uncertain terms.

In this paper, we propose a new model-free and simple
ASMC scheme with fast adaptation and powerful abilities for
tracking and chattering reduction. The adaptive law of the pro-
posed ASMC guarantees that within a finite time, the sliding
variables enter an arbitrarily small vicinity of the sliding man-
ifold and then stay around it. To achieve fast adaptation or
fast convergence to the sliding manifold, the derivatives of the
switching gains are proportional to the sliding variables away
from the sliding manifold. On the other hand, once the sliding
variables become close to the sliding manifold, the deriva-
tives of the switching gains are inversely proportional to them
in order to reduce chattering. Even though switching gains
become somewhat large to achieve good tracking performance
and robustness, chattering is not much influenced, because the
adaptation speed is fast. For these reasons, the adaptive law of
the proposed ASMC attains good tracking performance with
small chattering effect. To obtain the desired error dynamics
and cancel out uncertainties by feedback compensation, the
proposed ASMC works together with a pole-placement control
(PPC) and time-delay estimation (TDE) technique [31]–[36].
The TDE technique provides a simple system model by cancel-
ing out uncertainties, nonlinearities, and disturbances arising
in real systems. Hence, this technique enables increasing the
effectiveness with which control schemes can be designed.
However, the TDE technique causes the so-called TDE errors
because the estimation is delayed by one sampling step.
Fortunately, these errors are known to be bounded [37] and are
shown in this paper to be suppressed by the proposed ASMC.
It is ascertained that the auxiliary PPC and TDE technique
help improving the performance of the proposed ASMC. It is
shown that the tracking errors of the proposed ASMC scheme,
combined with PPC and TDE technique, are guaranteed to be
uniformly ultimately bounded (UUB) with an arbitrarily small
bound by using a Lyapunov approach. The practical feasibility
and the fast adaptation of the proposed ASMC are illustrated
in simulations and experiments with a robot manipulator, and
compared with those of an existing ASMC [27].

This paper is organized as follows. In Section II, we develop
a new version of ASMC for a robot manipulator. In Section
III, simulations of a two-link robot manipulator are presented.
In Section IV, the proposed ASMC scheme is applied to a
real robot manipulator. In Section V, we conclude with a brief
summary of this paper.

II. NEW ADAPTIVE SLIDING-MODE CONTROL SCHEME

The dynamics of a general robot manipulator [38] in n-
degree of freedom (DOF) can be described as

τ (t) = M (q(t)) q̈(t) +C (q(t), q̇(t)) q̇(t)

+ g (q(t)) + f (q̇(t)) (1)

where q(t) ∈ �n, q̇(t) ∈ �n, and q̈(t) ∈ �n are the angle,
the angular velocity, and the angular acceleration of the
joints, respectively, τ (t) ∈ �n is the control input torque,
M (q(t)) ∈ �n×n is the symmetric positive definite inertia
matrix, C (q(t), q̇(t)) ∈ �n is the Coriolis matrix, g(q(t)) ∈
�n is the gravity force, and f (q̇(t)) ∈ �n is the friction force.

Multiplying both sides of (1) by M−1 (q(t)) and solving for
q̈(t), we have

q̈(t) =−M−1 (q(t)) {C (q(t), q̇(t)) q̇(t) + g (q(t))}
−M−1 (q(t)) f (q̇(t)) +

{
M−1 (q(t))− M̄−1

}
τ (t)

+ M̄−1τ (t) (2)

where M̄ = diag(m̄1, m̄2, . . . , m̄n) ∈ �n×n is a constant
matrix to be determined later on for guaranteeing the stability.
Representing (2) in a compact and simple form yields

q̈(t) = Γ(t) + M̄−1τ (t) (3)

where Γ(t)=−M−1(q(t)){C(q(t), q̇(t))q̇(t)+g(q(t))}−
M−1(q(t))f(q̇(t))+{M−1(q(t))−M̄−1}τ (t) ∈ �n includes
all remaining terms except the last term in (2). In this paper,
we make the well-known and acceptable assumption that the
robotic dynamics in (1) satisfies ||M−1(q(t))||2 ≤ δM for a
positive constant δM .

The control objective in this paper is to make the joint angles
of a robot manipulator q(t) follow the reference qd(t) pre-
cisely, which means that the tracking error e(t) = qd(t)− q(t)
is suppressed as much as possible. To achieve such a control
objective, we shall first define the following sliding variable:

s(t) = ė(t) +Kse(t) (4)

where s(t) = [s1(t), s2(t), . . . , sn(t)]
T ∈ �n and Ks =

diag(ks1, . . . , ksn) ∈ �n×n. It is noted that Ks in (4) is a
design parameter to be determined for guaranteeing the stabil-
ity. In terms of the sliding variable s(t) in (4), we construct the
following control [39]:

τ̄ (t) = −M̄Γ̂(t) + M̄ (q̈d(t) +Ksė(t) + βs(t)) (5)

where β ∈ � is a positive scalar-design parameter. It is noted
that τ̄ (t) in (5) is distinguished from the real control input τ (t)
in (1) that will be determined by providing an additional con-
trol input term to τ̄ (t). Γ̂(t) is an estimate of Γ(t) in (3), and
it can be obtained from one sample-delayed measurement of
Γ(t), which is called the TDE technique. In other words, we
have

Γ̂(t) = Γ(t− L) = q̈(t− L)− M̄−1τ (t− L) (6)

where L is a sampling time period and the second equality
comes from (3). Substituting (6) into (5), we have

τ̄ (t) = −M̄q̈(t− L) + τ (t− L)︸ ︷︷ ︸
TDE

+M̄ (q̈d(t) +Ksė(t) + βs(t))︸ ︷︷ ︸
PPC

(7)
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Fig. 1. Block diagram of the proposed ASMC scheme.

where τ̄ (t) is called a PPC scheme through this paper.
Substituting the control input (7) into (3), replacing the sliding
variable s(t) with (4), and rearranging terms yield

ë(t) +Kdė(t) +Kpe(t) + Γ(t)− Γ̂(t) = 0 (8)

where Kd = Ks + βI = diag(kd1, kd2, . . . , kdn) ∈ �n×n and
Kp = βKs = diag(kp1, kp2, . . . , kpn) ∈ �n×n. If we can
make Γ(t)− Γ̂(t) = 0, or estimate Γ(t) exactly, the tracking
error e(t) in (8) goes to zero and its convergence speed can
also be adjusted by choosing proper Ks and β to obtain desired
poles. In this paper, we just choose a simple PPC to stabilize
a linear system that is obtained through TDE technique. If the
sampling time L is sufficiently small, the estimation in (6)
implies that Γ̂(t) can be as close to Γ(t) as possible. However,
in reality, Γ(t) cannot be estimated exactly even for small
sampling period L. This is because the error between Γ̂(t)
and Γ(t), called TDE errors, is inevitable due to inherent
measurement noises and hard nonlinearity as well as to a
limited sampling period [40]. It is necessary to suppress such
TDE errors by using a special control algorithm. We propose
a new version of ASMC and add it to the control in (7) as
follows:

τ (t) =−M̄q̈(t− L) + τ (t− L)︸ ︷︷ ︸
TDE

+ M̄ (q̈d(t) +Ksė(t) + βs(t))︸ ︷︷ ︸
PPC

+ M̄
(
K̂(t) · sgn(s(t))

)
︸ ︷︷ ︸

The proposed ASMC

(9)

where K̂(t) = diag(k̂1(t), k̂2(t), . . . , k̂n(t)) ∈ �n×n are pos-
itive switching gains to be determined for guaranteeing sta-
bility, and the proposed ASMC scheme (9) is the PPC
scheme (7) when the switching gains K̂(t) are set to be
zero. It is noted that we do not apply any approxima-
tion to the computation of the signum function sgn (s(t)) =
[sgn (s1(t)) , sgn (s2(t)) , . . . , sgn (sn(t))]T ∈ �n defined by

sgn(si(t)) =

{
1, if si(t) ≥ 0

−1, if si(t) < 0.
(10)

The proposed ASMC scheme in (9) can be depicted with a
block diagram as seen in Fig. 1. The proposed ASMC employs
a new adaptive law as follows:

˙̂
ki(t) =

{
ϕi ·

{
αi

−1 · |si(t)|
}θ(t) · θ(t), if k̂i(t) > 0

ϕi · αi
−1 · |si(t)|, if k̂i(t) = 0

(11)

where ϕi and αi are tunable positive gains for adaptation speed
and θ(t) is defined as sgn(||s(t)||∞ − ε) with a positive-design
parameter ε. The adaptation speed of switching gains k̂i(t) is
highly affected by ε.

As seen in (11), the proposed adaptive law does not require
the information on the upper bound of uncertain and unmodeled
terms. For k̂i(t) > 0, the adaptive law has two different forms
according to the output of the signum function: ||s(t)||∞ ≥ ε

and ||s(t)||∞ < ε. When ||s(t)||∞ ≥ ε, the switching gain k̂i(t)

increases until ||s(t)||∞ < ε. As the switching gains k̂i(t) are
more and more increasing, the sliding variable s(t) goes to
the vicinity of the sliding manifold more quickly. Once the
sliding variable enters the vicinity of the sliding manifold,
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i.e., ||s(t)||∞ < ε, the switching gain k̂i(t) decreases while
the sliding variable stays in the vicinity of the sliding mani-
fold. Furthermore, such decreasing speed of the switching gains
becomes fast and then the corresponding adaptation speed also
increases, because the proposed adaptive law (11) is inversely
proportional to the sliding variable when ||s(t)||∞ < ε. For this
reason, even though the switching gains keep high temporarily
for a small ε, the proposed adaptive law reduces chattering. The
proposed adaptive law can be said to provide better tracking
performance and chattering reduction simultaneously due to its
high switching gains and fast adaptation speed. Before showing
the UUB property of the proposed adaptive law (11), we intro-
duce two Lemmas that will be helpful in the proof of the main
results.

Lemma 1: [37] If the control gain M̄ in (9) is chosen to
satisfy the following condition:

||I−M−1 (q(t)) M̄||2 < 1

for all t ≥ 0, then ||q̈(t− L)− q̈(t)||2 → 0 as L → 0 and the
TDE errors are bounded by constant Γ∗

i for all i = 1, 2, . . . , n,
i.e., |Γi(t)− Γ̂i(t)| ≤ Γ∗

i .
Lemma 2: For a robot manipulator (1) controlled by (9) and

(11), the switching gain k̂i(t) is upper bounded by a positive
constant k̂∗i as follows:

k̂i(t) < k̂∗i

for t ≥ 0.

Proof: The proof is given in Appendix. �
Theorem 1: For a robot manipulator (3) controlled by (9)

and (11), the sliding variables enter the vicinity of the sliding
manifold, ||s(t)||∞ < ε, within a finite time tε > 0, and then
they are guaranteed to be UUB for t ≥ tε as follows:

||s(t)||2 <

√√√√ n∑
i=1

ε2 + k̃M

where k̃M is the maximum value of
∑n

i=1
αi

ϕi

(
Γ∗
i − k̂i(t)

)2

.

Proof: We choose a Lyapunov function as

V (t) =
1

2
sT (t)s(t) +

1

2

n∑
i=1

αi

ϕi
(Γ∗

i − k̂i(t))
2. (12)

Taking the derivative of the Lyapunov function with respect
to the time t, we have

V̇ (t) = sT (t)ṡ(t)−
n∑

i=1

αi

ϕi

(
Γ∗
i − k̂i(t)

)
˙̂
ki(t). (13)

Substituting (3) and (4) into (13) yields

V̇ (t) = sT (t)
(
−N(t)− Γ̂(t) + δ(t)

)
− Λ(t) (14)

where Λ(t), δ(t), and the TDE errors N(t) are defined

by
∑n

i=1
αi

ϕi

(
Γ∗
i − k̂i(t)

)
˙̂
ki(t) ∈ �, −M̄−1τ (t) + q̈d(t) +

Ksė(t)∈ �n, and Γ(t)− Γ̂(t) ∈ �n, respectively. Substituting
(6) and (9) into (14), we have

V̇ (t)=
n∑

i=1

si(t)
(
−N i(t)− βsi(t)− k̂i(t)sgn(si(t))

)
− Λ(t)

≤
n∑

i=1

|si(t)||Ni(t)| −
n∑

i=1

|si(t)|k̂i(t)

− β

n∑
i=1

s2i (t)− Λ(t)

=

n∑
i=1

(
|si(t)| − αi

ϕi

˙̂
ki(t)

)(
Γ∗
i − k̂i(t)

)
− β ·

n∑
i=1

s2i (t)

(15)

where N(t) = [N1(t), N2(t), . . . , Nn(t)]
T ∈ �n and the sec-

ond equality comes from the proposed adaptive law (11). We
consider two cases: ||s(t)||∞ ≥ ε and ||s(t)||∞ < ε. In the case
of ||s(t)||∞ ≥ ε, it follows from (15) that we have

V̇ (t) ≤ −β

n∑
i=1

s2i (t). (16)

The inequality (16) means that V (t) is decreasing and
bounded since 0 ≤ V (t) ≤ V (0) < ∞. From (16), we also
have

V̇ (t) ≤ −β
n∑

i=1

s2i (t) ≤ −βε2 (17)

which means that the sliding variable s(t) arrives at the small
vicinity of the sliding manifold, i.e., ||s(t)||∞ < ε within a
finite time tε > 0.

Even though within a finite time, the sliding variable s(t)
enters the region ||s(t)||∞ < ε, it may move in and out since
V̇ (t) is not guaranteed to be nonpositive in this vicinity of the
sliding manifold. If the sliding variable s(t) leaves the region
||s(t)||∞ < ε, V̇ (t) becomes negative again according to (16),
which steers it back toward the sliding manifold.

Now, we shall obtain the upper bound of ||s(t)||2, which will
be valid since the first time when the sliding variable s(t) enters
the region ||s(t)||∞ < ε. To begin with, it can be seen in (12)
that the Lyapunov function V (t) is bounded as

1

2
||s(t)||22 ≤ V (t) ≤ 1

2
||s(t)||22 +

1

2

n∑
i=1

αi

ϕi

(
Γ∗
i − k̂i(t)

)2

.

(18)

It is noted that 1
2

∑n
i=1

αi

ϕi
·
(
Γ∗
i − k̂i(t)

)2

in (18) is bounded

because Γ∗
i is constant and k̂i(t) is bounded according to

Lemma 2. It follows then that we have

V (t) <
1

2

n∑
i=1

ε2 +
1

2

n∑
i=1

k̃M . (19)
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Putting (18) and (19) together yields

1

2
||s(t)||22 <

1

2

n∑
i=1

ε2 +
1

2
k̃M (20)

which means that

||s(t)||2 <

√√√√ n∑
i=1

ε2 + k̃M . (21)

Equation (21) implies that the sliding variable s(t) is UUB
for t ≥ tε. Although the sliding variable s(t) moves in and out
of the small vicinity of the sliding manifold due to the attrac-
tivity from (16), it is guaranteed to be upper -bounded by (21).
The upper bound in (21) can be adjusted by parameters ϕi, αi,
and ε. �

According to Theorem 1, ||s(t)||2 is upper-bounded and
serves as a bounded input for a dynamic system (4). Since
ė(t) = −Kse(t) in (4) is asymptotically stable and s(t) is
bounded, the tracking error e(t) is also bounded, which means
bounded input and bounded output (BIBO) stability [41].

III. SIMULATION

A. Simulation Setup

To illustrate the performance of the proposed ASMC scheme,
we conducted simulations with a two-link robot manipulator
depicted in Fig. 2. Its dynamics [42] is given as

M(q)

=

[
l22m2 + 2l1l2m2c2 + l21(m1 +m2) l22m2 + l1l2m2c2

l22m2 + l1l2m2c2 l22m2

]

C(q, q̇)q̇ =

[
−m2l1l2s2q̇

2
2 − 2m2l1l2s2q̇1q̇2

m2l1l2s2q̇
2
2

]

G(q) =

[
m2l2gc12 + (m1 +m2)l1gc1

m2l2gc12

]

F(q̇) =

[
α1 · sgn(q̇1)

α2 · sgn(q̇2)

]

where qi is the angle for the joint i, and si, ci, and cij
are defined by sin (qi(t)), cos (qi(t)), and cos (qi(t) + qj(t)),
respectively. The lengths of the links are set to be l1 = 0.2 m
and l2 = 0.1 m, the gravitational acceleration to be g = 9.81
m/s2, the friction coefficient to be α1 = α2 = 50, and the end
tip loads of the joints 1 and 2 to be m1 = 10 kg and m2 = 5
kg, respectively. The control objective is to make the angles of
the joints 1 and 2 follow the desired reference trajectories well.
We choose the desired trajectories as in Figs. 3 and 4. In Fig. 4,
it is only used to confirm the tracking errors.

B. Simulation Results

The practical efficiency and the fast adaptation speed of the
proposed ASMC are shown through simulations and compar-
isons with the existing ASMC [27] and the boundary layer-
based SMC control (BSMC) [43]. For fairness, all controls for

Fig. 2. Two-link robot manipulator.

Fig. 3. Trajectories of the desired smooth reference angles. (a) Joint 1.
(b) Joint 2.

Fig. 4. Trajectories of the desired step reference angles. (a) Joint 1.
(b) Joint 2.

comparison use the PPC scheme (7) as in the proposed ASMC
scheme of Fig. 1. The existing ASMC combined with the PPC
scheme is called “existing ASMC scheme,” and BSMC com-
bined with the PPC scheme is called “BSMC scheme” through
this paper.

The control gain M̄ is chosen to be diag(0.01, 0.01) so that
Lemma 1 is satisfied. Actually, ||I−M−1 (q(t)) M̄||2 is com-
puted to be between 0.9869 and 0.9886. The gain Ks, the
positive constant β, and the sampling period L are taken to be
diag(1, 1), 1, and 1 ms, respectively. The additional parame-
ters for the proposed adaptive law (11) are given as ϕ1 = 4000,
ϕ2 = 3000, α1 = 0.60, α2 = 1.57, and ε = 0.015.

Fig. 5(a), (d), and (e) shows the switching gains computed
by the existing and proposed ASMC schemes. The proposed
ASMC scheme involves two independent switching gains for
the joints 1 and 2, while the existing one does the same switch-
ing gain for the joints 1 and 2. This use of the same switching
gain means that controllers for the joints 1 and 2 share the
same logic in general and that freedom of design for con-
trols is restricted. It is observed from Fig. 5 that, when the
sliding variables move out of the vicinity of sliding mani-
fold, i.e., ||s(t)||∞ ≥ ε, the switching gains increase until the
sliding variable approaches the region ||s(t)||∞ < ε. On the
other hand, the switching gains decrease when the sliding vari-
ables stay at the vicinity of sliding manifold, i.e., ||s(t)||∞ < ε.
Lemma 2 tells us that such switching gains do not diverge and
have upper bounds.
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Fig. 5. Comparison of the switching gains and sliding variables gen-
erated by two controls. (a) Switching gain of the existing ASMC
scheme. (b) Sliding variable of the existing ASMC scheme for the
joint 1. (c) Sliding variable of the existing ASMC scheme for the
joint 2. (d) Switching gain of the proposed ASMC scheme for the joint 1.
(e) Switching gain of the proposed ASMC scheme for the joint 2.
(f) Sliding variable of the proposed ASMC scheme for the joint 1.
(g) Sliding variable of the proposed ASMC scheme for the joint 2.

Parameter ε in the adaptive law (11) has a critical role in
the tradeoff between tracking ability and chattering reduction.
If ε is too small, the existing ASMC scheme has significant
chattering due to the slow adaptation speed. On the contrary,
if ε is too large, the existing ASMC scheme suffers from poor
tracking performance. However, the proposed ASMC scheme
has fast adaptation speed of the switching gains according to
(11), so it permits more freedom for selecting ε. Even though
the proposed ASMC scheme applies large switching gains to
achieve good tracking performance and robustness, chattering
is not affected much because the large switching gains can be
reduced rapidly according to (11). In addition, the trajectories
of the sliding variables can be seen in Fig. 5(b), (c), (f), and (g).
When the sliding variables leave the vicinity of sliding mani-
fold, the y are strongly influenced by the switching gains. Thus,
the sliding variables generated by the proposed ASMC ha ve
less chattering, which is in accordance with Fig. 6. This reduc-
tion in chattering results from the fast adaptation speed that is
confirmed in Fig. 5(d) and (e). For this reason, the proposed

Fig. 6. Comparison of the control inputs. (a) PPC scheme for the joint 1.
(b) PPC scheme for the joint 2. (c) Existing ASMC scheme for the joint 1.
(d) Existing ASMC scheme for the joint 2. (e) Proposed ASMC scheme
for the joint 1. (f) Proposed ASMC scheme for the joint 2.

Fig. 7. Comparison of the tracking errors for smooth reference angles
of the PPC scheme (dashed line), the BSMC scheme (dashed dotted
line), the existing ASMC scheme (dotted line), and the proposed ASMC
scheme (solid line). (a) Joint 1. (b) Joint 2.

ASMC scheme provides good tracking performance with less
chattering, which will be illustrated in subsequent simulations
and experiments.

Fig. 6 shows the control inputs generated by the PPC scheme,
the existing ASMC scheme, and the proposed ASMC scheme.
The proposed ASMC scheme provides excellent chattering
reduction, compared with the existing one. The control trajec-
tory of the proposed ASMC scheme is very similar to that of
the chattering-free PPC scheme.

Figs. 7 and 8 compare the tracking errors of the PPC scheme,
BSMC scheme, the existing ASMC scheme, and the proposed
ASMC scheme. To begin with, it can be easily seen in Figs. 7
and 8 that the BSMC scheme, the existing ASMC scheme, and
proposed ASMC scheme are superior to the PPC scheme in
terms of tracking errors since they have abilities to suppress
TDE errors. The tracking errors of the proposed ASMC scheme
are even further reduced in comparison to other controllers
because the former can achieve higher switching gains than
the latters while still maintaining a small chattering amplitude.
Root-mean-square (rms) values of measured errors are given
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Fig. 8. Comparison of the tracking errors for step reference angles of the
PPC scheme (dashed line), the BSMC scheme (dashed dotted line), the
existing ASMC scheme (dotted line), and the proposed ASMC scheme
(solid line). (a) Joint 1. (b) Joint 2.

TABLE I
RMS VALUES OF THE TRACKING ERRORS FOR SMOOTH REFERENCE

TRAJECTORIES

TABLE II
RMS VALUES OF THE TRACKING ERRORS FOR STEP REFERENCE

TRAJECTORIES (UP TO 2 S)

Fig. 9. MITSUBISHI RV-4FD robot manipulator.

in Tables I and II for smooth and step reference trajectories,
respectively.

IV. EXPERIMENT

A. Experimental Setup

As seen in Fig. 9, a MITSUBISHI robot manipulator with
two joints is used in the experiments. The maximum torque,
the gear reduction ratio, and the motor encoder resolution of
the joints are given as 4.5 Nm, 80:1, and 22 bits, respectively.
This robot manipulator is controlled by a PC-based controller
running on a real-time operating system and has a sampling
period of 4 ms.

The control parameters are set to be β = 20, ε = 35,
M̄ = diag(0.07, 0.12), Ks = diag(20, 20), α1 = 300, α2 =

Fig. 10. Trajectories of the desired reference angles. (a) Joint 1.
(b) Joint 2.

Fig. 11. Comparison of the switching gains and sliding variables gener-
ated by two controls. (a) Switching gain of the existing ASMC scheme
(×103). (b) Sliding variable of the existing ASMC scheme for the joint 1
(×102). (c) Sliding variable of the existing ASMC scheme for the joint 2
(×102). (d) Switching gain of the proposed ASMC scheme for the joint 1
(×103). (e) Switching gain of the proposed ASMC scheme for the joint 2
(×103). (f) Sliding variable of the proposed ASMC scheme for the joint 1
(×102). (g) Sliding variable of the proposed ASMC scheme for the joint
2 (×102).

200, ϕ1 = 4× 105, and ϕ2 = 3.6× 105. The initial conditions
are chosen to be q(0) = [0, 0], q̇(0) = [0, 0]T , and K̂(0) =
[0, 0]T . In other words, the robot manipulator is relaxed at t =
0. The trajectories for the desired angles are given as Fig. 10.

B. Experimental Results

The proposed ASMC scheme combined with the PPC
scheme (7) has been verified in experiments and by comparison
with the PPC scheme and the existing ASMC scheme. When we
applied the proposed adaptive law (11) to a real robot manipula-
tor, the conditions, k̂i(t) > 0 and k̂i(t) = 0, were replaced with
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Fig. 12. Comparison of the control inputs. (a) PPC scheme for the joint
1. (b) PPC scheme for the joint 2. (c) Existing ASMC scheme for the
joint 1. (d) Existing ASMC scheme for the joint 2. (e) Proposed ASMC
scheme for the joint 1. (f) Proposed ASMC scheme for the joint 2.

k̂i(t) > 0.0001 and 0.0001 ≥ k̂i(t) ≥ 0, respectively, to allow
practical numerical computation.

Fig. 11(a), (d), and (e) shows the switching gains of the exist-
ing ASMC scheme and the proposed one. The switching gains
of the proposed ASMC scheme increase or decrease depending
on whether the sliding variables of the proposed ASMC scheme
are close to the sliding manifold or not. Such time-varying
switching gains of the proposed ASMC scheme have fast adap-
tation speed, and they do not diverge according to Lemma 2.
In addition, the sliding variables can be seen in Fig. 11(b), (c),
(f), and (g). The trajectories of the sliding variables of the pro-
posed ASMC scheme have effects on the switching gains and
are bounded according to Theorem 1.

Fig. 12 shows the control inputs obtained from the PPC
scheme , the existing ASMC scheme, and the proposed ASMC
scheme. It is observed that three control schemes are affected
by inherent noises almost in the same degree. How much
robot manipulators are affected by disturbances and noises is
mostly dependent on their hardware performance. It is noted
that the oscillation in Fig. 12 is basically different from chat-
tering. In addition to such oscillation, the existing ASMC
scheme suffers from chattering due to slow adaptation speed in
Fig. 11(a).

Fig. 13 compares the tracking errors generated from the PPC
scheme, the existing ASMC scheme, and the proposed ASMC
scheme. The proposed ASMC scheme has smaller errors than
the PPC scheme and the existing ASMC scheme since TDE
errors are suppressed by the former and the proposed ASMC
scheme has fast adaptation speed. The rms values of tracking

Fig. 13. Comparison of the tracking errors generated from the PPC
scheme (dashed line), the existing ASMC scheme (dotted line), and the
proposed ASMC scheme (solid line). (a) Joint 1. (b) Joint 2.

TABLE III
RMS VALUES OF THE TRACKING ERRORS FOR REFERENCE

TRAJECTORIES

errors are given in Table III. These results of simulations and
experiments confirm the practical efficiency and fast-adaptation
speed of the proposed ASMC scheme.

V. CONCLUSION

We presented a new ASMC scheme combined with the PPC
and TDE technique, and applied it to robot manipulators in
simulations and experiments. The proposed ASMC scheme
does not require any information of the upper bounds on the
uncertain or unmodeled terms, and it can provide the desirable
closed-loop poles and a simple model by feedback compen-
sation. The adaptive law employed in the proposed ASMC
scheme offers remarkably fast adaptation and chattering reduc-
tion by considering an arbitrarily small vicinity of the sliding
manifold. It was shown that the tracking error is guaranteed
to be UUB with arbitrarily small bound while not having
much effect on chattering. The proposed ASMC could be a
good replacement of existing ASMC to achieve good tracking
performance and reduce chattering.

APPENDIX

PROOF OF LEMMA 2

To prove Lemma 2, we need to only show that the Lyapunov
function (12) is bounded. To begin with, we consider a suf-
ficiently large number V ∗. We assume that the Lyapunov
function (12) has the value V ∗ as follows:

V (t) =
1

2
sT (t)s(t) +

1

2

n∑
i=1

αi

ϕi
(Γ∗

i − k̂i(t))
2 = V ∗. (22)

Since the Lyapunov function (22) has two terms, at least
one of them should be sufficiently large. If ||s(t)||22 is suffi-
ciently large, the derivative of the Lyapunov function (22) is
negative according to (16). If the second term of the Lyapunov
function (22), 1

2

∑n
i=1

αi

ϕi
(Γ∗

i − k̂i(t))
2 is sufficiently large,
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the derivative of the Lyapunov function (22) can be shown
to be also negative by considering the following optimization
problem:

max

n∑
i=1

αi

ϕi

(
Γ∗
i − k̂i(t)

)
(23)

subject to

1

2

n∑
i=1

αi

ϕi
(Γ∗

i − k̂i(t))
2 = R ≤ V ∗,Γi ≥ 0, k̂i(t) ≥ 0

where R is a sufficiently large number less than or equal to V ∗.
The optimization problem in (23) clearly provides a negative
optimal value since R is taken to be sufficiently large. In other
words, we have

n∑
i=1

αi

ϕi
·
(
Γ∗
i − k̂i(t)

)
< 0 (24)

for a sufficiently large R. It follows then that we have

V̇ (t) ≤
n∑

i=1

(
|si(t)|+ α2

i

|si(t)|
)(

Γ∗
i − k̂i(t)

)
− β

n∑
i=1

s2i (t).

In both cases where one of two terms in (22) is signifi-
cantly large, V̇ (t) < 0 holds. In other words, if V (t) has the
value V ∗, the derivative of V (t) is negative. It means that V (t)
cannot exceed V ∗ and hence we have V (t) ≤ V ∗. Finally, it fol-
lows that V (t) is globally upper bound and k̂i(t) is also upper
bounded as follows:

k̂i(t) ≤ k̂∗i (25)

for t ≥ 0.
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