
Jaemin LeeDaegu Gyeongbuk Institute of Science and Technology (DGIST) · New Biology
Jaemin Lee
Doctor of Philosophy
About
27
Publications
4,977
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,120
Citations
Citations since 2017
Introduction
Additional affiliations
January 2010 - present
January 2010 - present
January 2009 - December 2009
Education
September 2003 - December 2008
Publications
Publications (27)
Neurodegenerative diseases are inseparably linked with aging and increase as life expectancy extends. There are common dysfunctions in various cellular events shared among neurogenerative diseases, such as calcium dyshomeostasis, neuroinflammation, and age-associated decline in the autophagy-lysosome system. However, most of all, the prominent path...
Aim:
To develop more effective and long-lasting anti-obesity and anti-diabetic therapeutics by employing novel chemical modifications of glucagon-like peptide-1 receptor (GLP-1R) agonists.
Methods:
We constructed novel unimolecular dual agonists of GLP-1R and glucagon receptor prepared by linking sEx-4 and native glucagon (GCG) via lysine or tri...
Accompanied by increased life span, aging-associated diseases, such as metabolic diseases and cancers, have become serious health threats. Recent studies have documented that aging-associated diseases are caused by prolonged cellular stresses such as endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress. Thus, ameliorating c...
Parkinson’s disease (PD) is a well-known age-related neurodegenerative disorder associated with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis. Age-mediated degenerative neurological disorders can reduce the qu...
Celastrol, a pentacyclic triterpene, is the most potent antiobesity agent that has been reported thus far ¹ . The mechanism of celastrol’s leptin-sensitizing and antiobesity effects has not yet been elucidated. In this study, we identified interleukin-1 receptor 1 (IL1R1) as a mediator of celastrol’s action by using temporally resolved analysis of...
Objective:
Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) promotes hepatic gluconeogenesis by activating HNF4α and FoxO1. PGC-1α expression in the liver is highly elevated in obese and diabetic conditions, leading to increased hepatic glucose production. We previously showed that the spliced form of X-box binding prot...
Type 2 diabetes (T2D) is a worldwide epidemic with a medical need for additional targeted therapies. Suppression of hepatic glucose production (HGP) effectively ameliorates diabetes and can be exploited for its treatment. We hypothesized that targeting PGC-1α acetylation in the liver, a chemical modification known to inhibit hepatic gluconeogenesis...
It is widely believed that inflammation associated with obesity has an important role in the development of type 2 diabetes. IκB kinase beta (IKKβ) is a crucial kinase that responds to inflammatory stimuli such as tumor necrosis factor α (TNF-α) by initiating a variety of intracellular signaling cascades and is considered to be a key element in the...
The increasing global prevalence of obesity and its associated disorders points to an urgent need for the development of novel and effective therapeutic strategies that induce healthy weight loss. Obesity is characterized by hyperleptinemia and central leptin resistance. In an attempt to identify compounds that could reverse leptin resistance and t...
Despite all modern advances in medicine, an effective drug treatment of obesity has not been found yet. Discovery of leptin two decades ago created hopes for treatment of obesity. However, development of leptin resistance has been a big obstacle, mitigating a leptin-centric treatment of obesity. Here, by using in silico drug-screening methods, we d...
Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation...
The endoplasmic reticulum (ER) is a central organelle for protein biosynthesis, folding, and traffic. Perturbations in ER
homeostasis create a condition termed ER stress and lead to activation of the complex signaling cascade called the unfolded
protein response (UPR). Recent studies have documented that the UPR coordinates multiple signaling pathw...
Misfolding of exportable proteins can trigger endocrinopathies. For example, misfolding of insulin can result in autosomal dominant mutant INS gene-induced diabetes of youth, and misfolding of thyroglobulin can result in autosomal recessive congenital hypothyroidism with deficient thyroglobulin. Both proinsulin and thyroglobulin normally form homod...
Here we show that p38 mitogen-activated protein kinase (p38 MAPK) phosphorylates the spliced form of X-box binding protein 1 (Xbp1s) on its Thr48 and Ser61 residues and greatly enhances its nuclear migration in mice, whereas mutation of either residue to alanine substantially reduces its nuclear translocation and activity. We also show that p38 MAP...
In vertebrates, the thyroglobulin (Tg) gene product must be exported to the lumen of thyroid follicles for thyroid hormone synthesis. In toto, Tg is composed of multiple type-1 repeats connected by linker and hinge (altogether considered as "region I," nearly 1,200 residues); regions II-III (~720 residues); and cholinesterase-like (ChEL) domain (~5...
Thyroglobulin (precursor for thyroid hormone synthesis) is a large secreted glycoprotein comprising contiguous region I (multiple type-1 repeating units engaging the first ∼1,191 residues, followed by a ∼245-residue hinge region), regions II-III (multiple type-2 and 3 repeating units, comprising ∼720 residues), and the C-terminal cholinesterase-lik...
To date, the only known role of the spliced form of X-box-binding protein-1 (XBP-1s) in metabolic processes has been its ability to act as a transcription factor that regulates the expression of genes that increase the endoplasmic reticulum (ER) folding capacity, thereby improving insulin sensitivity. Here we show that XBP-1s interacts with the For...
Increased endoplasmic reticulum (ER) stress is one of the central mechanisms that lead to dysregulated metabolic homeostasis in obesity. It is thus crucial to understand the underpinnings of the mechanisms that lead to the development of ER stress. A high level of ER Ca(2+) is imperative for maintenance of normal ER function and this high Ca(2+) co...
Thyroglobulin (TG) gene mutations cause congenital hypothyroidism (CH) with goiter. A founder effect has been proposed for some frequent mutations. Mutated proteins have a defect in intracellular transport causing intracellular retention with ultrastructural changes that resemble an endoplasmic reticulum storage disease.
To reveal new aspects of th...
Thyroglobulin (Tg, precursor for thyroid hormone synthesis) is a large secreted glycoprotein composed of upstream regions I-II-III, followed by the approximately 570 residue cholinesterase-like (ChEL) domain. ChEL has two identified functions: 1) homodimerization, and 2) binding to I-II-III that facilitates I-II-III oxidative maturation required fo...
The carboxyl-terminal cholinesterase-like (ChEL) domain of thyroglobulin (Tg) has been identified as critically important in Tg export from the endoplasmic reticulum. In a number of human kindreds suffering from congenital hypothyroidism, and in the cog congenital goiter mouse and rdw rat dwarf models, thyroid hormone synthesis is inhibited because...
Thyroid hormonogenesis requires secretion of thyroglobulin, a protein comprising Cys-rich regions I, II, and III (referred to collectively as region I-II-III) followed by a cholinesterase-like (ChEL) domain. Secretion of mature thyroglobulin requires extensive folding and glycosylation in the ER. Multiple reports have linked mutations in the ChEL d...
It has been suggested that a thyroglobulin (Tg)-R19K missense mutation may be a newly identified cause of human congenital goiter, which is surprising for this seemingly conservative substitution. Here, we have examined the intracellular fate of recombinant mutant Tg expressed in COS-7 cells. Incorporation of the R19K mutation largely blocked Tg se...
Thyroid hormone synthesis requires secretion of thyroglobulin, a precursor protein comprising Cys-rich regions I, II, and III (referred to collectively as regions I-II-III) followed by a cholinesterase-like (ChEL) domain. Secretion of mature thyroglobulin requires extensive folding and oligomerization in the ER. Multiple reports have linked mutatio...
Newly synthesized thyroglobulin (Tg), the secretory glycoprotein that serves as precursor in thyroid hormone synthesis, normally
forms transient covalent protein complexes with oxidoreductases of the endoplasmic reticulum (ER). The Tg-G2320R mutation
is responsible for congenital hypothyroidism in rdw/rdw rats, in which a lack of secondary thyroid...