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Abstract 
 

We introduce a reduced parameter synthesis model 
for the spectral synthesis of musical sounds, which 
preserves the timbre and the naturalness of the musical 
sound. It also provides large flexibility for the user and 
reduces the number of synthesis parameters compared 
to traditional analysis/re-synthesis methods. The 
proposed model is almost completely independent from 
a previous spectral analysis. We present a frequency 
estimation method using a random walk to keep the 
naturalness of the sound without using a separate 
noise model. Three different approaches have been 
tested to estimate the amplitude values for the 
synthesis, namely, local optimization, the use of a 
lowpass filter and polynomial fitting. All of these 
approaches give good results, especially for the sustain 
part of the signal.  
 
1. Introduction 
 

Unlike physical modeling, where a set of algorithms 
and equations is used to simulate the different parts of 
the sound source [8], spectral sound synthesis uses the 
spectral representation of the sound itself. 

This spectral approach has been applied to model 
speech signals based on their sinusoidal representation 
[10], before it was adapted to musical sounds for the 
Spectral Modeling Synthesis (SMS) framework 
[14,17]. The SMS framework provides separate models 
for the harmonic and the residual parts of the sound. 
This separation allows for a flexible transformation and 
synthesis framework. However, due to the 
characteristics of musical sounds, especially the 
complexity of the musical timbre [5,7], spectral 
modifications can lead to sound artifacts [6].  

Several methods have been suggested to improve 
the sound analysis, such as more accurate partial 
tracking by using linear prediction [9] or Hidden 
Markov Models [2]. Concerning the synthesis model, 

some approaches have been proposed to reduce the 
number of synthesis parameters [3,16]. Unlike the 
standard SMS, where the synthesis is based on the 
frequency, amplitude and phase parameters of the 
sound, these methods focus more on high level 
attributes of the musical sound.  

We propose a synthesis model, the Reduced 
Parameter Synthesis Model (RPSM), that is almost 
completely independent from a previous spectral 
analysis without using high level sound attributes. The 
method is based on a frequency and an amplitude 
model with a reduced number of synthesis parameters 
compared to the standard SMS. The model also allows 
the synthesis of musical sounds outside the range of a 
particular instrument by preserving the timbre of the 
instrument and the naturalness of the sound. 
 
2. Spectral Modeling Synthesis 
 

Spectral Modeling Synthesis (SMS) is a framework 
for spectral analysis, synthesis and transformations of 
musical sounds introduced by Serra [14]. The basic 
principle is to analyse the spectral content of a given 
sound sample in order to perform a spectral synthesis 
using the analysis results. Therefore, the SMS 
framework consists of a deterministic and a stochastic 
model. 

The deterministic model is used for the sinusoidal 
parts of the sound. Once the sound spectrum is 
obtained by means of the STFT, the prominent spectral 
peaks are detected and tracked using a peak tracking 
algorithm. The objective of this algorithm is to detect 
magnitude, frequency and phase parameters of the 
sinusoidal partials. In case the sound is pseudo-
harmonic a pitch detection method can be used to 
improve this process.  

Subsequently the sinusoidal part of the sound is 
subtracted from the overall signal to obtain the sound 
residual. This residual part of the sound – sometimes 
also referred to as the noise part - is modeled using a 



stochastic model, e.g., using a time varying filter [15]. 
The deterministic and the stochastic model are 
independent from each other, which allows a flexible 
analysis and re-synthesis process. Results obtained 
throughout the analysis/synthesis process can also be 
used for other music related applications like sound 
source separation or sound transformations. 

Since its introduction, the original framework has 
been further developed [15,1], and a number of 
extensions have been proposed, like additional models 
for transient parts of the sound [18] or feature based 
sound transformation methods [16]. 
 
3. Parametric Synthesis Model 
 
3.1. Frequency estimation 
 

In order to determine the frequency values within 
the synthesis model we use a flexible model that is not 
based on a preceding spectral analysis but, on the basic 
knowledge about the sound. The fundamental 
frequency - or pitch - as well as the number of 
harmonic partials are user defined values. This is 
particularly important if the synthesised sound lies 
outside the range of the instrument the model is 
supposed to mimic. Also, within the range of an 
instrument there is no restriction of the pitch value or 
the number of harmonics that can be chosen, since both 
values are entirely user defined. Consequently we can 
model whole tones, semitones or quarter tones of an 
instrument as well as other notes whose pitch values is 
anywhere in between or outside these tones. 

Furthermore, we apply a random walk to several 
frequency partials in order to reconstruct the 
naturalness of the sound. Figure 1 shows a 
representative result of the SMS partial tracking 
algorithm; in this particular case the result for a flute 
note (A4, played forte, non Vibrato). As illustrated 
there, some of the partials, especially the upper ones, 
show a certain amount of variation or noisiness. Due to 
this noisiness a reconstruction of the sinusoidal parts of 
the sound does keep the sound characteristics of the 
original recording, although the residual part of the 
signal is neglected for the reconstruction. Because of 
this observation we incorporate this noisiness into the 
sinusoidal partials of our synthesis model rather than 
defining a separate noise model.  

This is achieved by the use of a one-dimensional 
random walk [4] to determine the frequencies of the 
upper harmonics. A one-dimensional random walk can 
be described as a path starting from a certain point, and 
then taking successive steps on a one-dimensional grid. 
The step size is constant and the direction of each step 

is chosen randomly with all directions being equally 
likely.  

 
  

Figure 1. SMS Frequency analysis result (flute, A4, 
played forte, non vibrato) 
 

 
 

Figure 2. Estimated frequency tracks for 20 
harmonics (f0: 440 Hz) 
 

For the purpose of our synthesis model random 
walks are applied to certain harmonic partials in the 
following way. First, the harmonic partials are divided 
into three groups, where each group represents a third 
of the overall number of harmonics. This follows from 
the results of the SMS analysis, which shows different 
levels of variations for the lower, the middle and the 
upper harmonics. Concerning the lowest third of the 
harmonic partials - starting from the fundamental 
frequency - no random walk is applied as the analysis 
of these lower partials shows very little variation. For 
the middle and the upper harmonic partials a random 
walk is applied, where the starting point of the random 
walk is determined by the basic frequency of the 
harmonic partial. Basic frequency in that case means 
the integer multiple of the fundamental frequency. 
Again, from the analysis result it can be seen that the 
upper harmonics show more variation than the middle 
ones. Due to that, and after testing several levels of 
noisiness, the step size of the random walk is set to 30 
Hz for the upper harmonics and to 15 Hz for the 



middle ones. Figure 2 shows the estimated frequency 
tracks for the synthesis model with the same conditions 
as the flute sound in Figure 1 (440 Hz fundamental 
frequency and 20 sinusoidal partials). 
 
3.2. Amplitude estimation 
 

In contrast to the frequency estimation, which is not 
directly taken from the sound analysis results, we use 
SMS analysis results as a basis for estimating the 
amplitude values of the harmonic partials. However, 
we reduce the number of parameters to provide a 
flexible synthesis model that is mostly independent 
from the preceding sound analysis process. 
Additionally, our main concern is to keep the quality 
and naturalness of the musical sound after the synthesis 
process in order to mimic real instruments. Therefore, 
different methods have been applied to the analysis 
amplitude data. We have carried out amplitude 
estimation by means of local optimization, lowpass 
filter estimation and polynomial fitting. A detailed 
discussion of all these methods will be provided in the 
following sections after a short description of the 
applied analysis procedure. 

In order to obtain the basic amplitude parameters a 
standard SMS analysis has been carried out, as 
described in [1]. The STFT is performed using a 
sampling rate of 44.1 kHz and a Blackman-Harris 
window with a window size of 1024 points and a hop 
size of 256 points. Zero-padding is applied in the time 
domain - using a zero-padding factor of 2 - to increase 
the number of spectral samples per Hz and, improve 
the accuracy of the peak detection process. From the 
resulting frequency spectrum after the Fourier analysis, 
100 spectral peaks per frame are detected and 
subsequently used to track the harmonic partials of the 
sound. The number of partials to be tracked was set to 
20. This analysis has been applied to sound samples 
taken from the RWC database [12]. In particular to all 
notes over the range of a flute, a violin and a piano. 
Given the amplitude tracking results one representative 
note for each instrument has been chosen to provide 
the basis for the amplitude values of the presented 
synthesis model. Figure 3 shows an example for the 
obtained SMS analysis results for a flute note. 
 
3.2.1. Local optimization. The SMS analysis provides 
one amplitude value for each harmonic partial and for 
each frame of a given sound signal. 
We reduce that parameter size by determining the local 
maxima of each amplitude track. This reduces the 
number of parameters to about a third of the SMS 
analysis result. For example, for the flute note (A4, 
played forte, non Vibrato) the SMS analysis consists of 
12680 amplitude values. This is reduced to 3015 

values, which represent all the local maxima of the 20 
harmonic partials. To determine the shape of each 
amplitude track, which is necessary for the synthesis 
process, we then perform a simple one-dimensional 
linear interpolation between the local maxima of the 
track. Figure 3 illustrates an estimation result. As can 
be seen the shape of the tracks are close to the SMS 
analysis result. However, this is not the case for the 
attack and the release part of the sound. 
 
3.2.2. Lowpass filter estimation. The second curve 
fitting method we chose to estimate the overall 
amplitude envelope of each harmonic partial uses a 
lowpass filter. Therefore we apply a 3rd order 
Butterworth lowpass filter to the analysis data. We 
perform zero-phase digital filtering by processing the 
input data in both the forward and reverse directions. 
After filtering in the forward direction, the filtered 
sequence is reversed and runs back through the filter. 
The resulting sequence has precisely zero-phase 
distortion and double the filter order. Figure 4 shows 
an example for amplitude tracks of a flute note 
estimated with the lowpass filter. 
   As with the local optimization the shape of the 
estimated amplitude tracks is very close to the SMS 
analysis result. However, the filter method takes 
significantly longer to be performed and is also not 
able to provide a sufficient estimate for the synthesis of 
the attack and the release part of the sound signal. 
 

 
 
Figure 3. Amplitude tracks for a flute note, A4, forte, 
non vibrato (SMS analysis result (left) and 
estimated tracks using local maxima estimation  
(right)) 
 

 
 
Figure 4. Estimated amplitude tracks for a flute 
note, A4, forte, non vibrato (using an LP filter (left) 
and using a polynomial fit (right)) 



 
3.2.3. Polynomial interpolation. Additionally we 
performed polynomial fitting to obtain an estimate for 
the several amplitude tracks. For each amplitude 
envelope the coefficients of a polynomial of degree 6 
are computed to fit the data - in our case the analysis 
result - in a least squares sense. This computation is 
performed using a Vandermonde matrix [11] 

 

 
 

since solving the system of linear equations Vu = y for 
u with V being an n x n Vandermonde matrix is 
equivalent to finding the coefficients uj of the 
polynomial 
 

 
 
of degree <= n-1 with the values yi at αi [11]. An 
example for the estimation results is shown in Figure 4. 
In contrast to the two other methods being used, the 
results are very smooth amplitude envelopes missing 
all the small variation that can be seen in the SMS 
analysis result. Nevertheless, the synthesized sounds 
preserve the timbre of the particular instrument and the 
sound quality of the original recordings. Regarding the 
flute and the violin the polynomial estimation also 
gives a sufficient estimate for the attack and the release 
part of the sound signal. 
 
3.3. Spectral synthesis 
 

For the synthesis we use an implementation of 
additive synthesis based on the inverse FFT [1,13]. 
Compared to the traditional use of oscillator banks for 
additive synthesis, this is a more efficient and faster 
approach. The method takes advantage of the fact that 
a sinusoid in the frequency domain is a sinc-type 
function, using the transform of the window, and not 
all samples in these functions have the same weight 
[1]. So we only need to calculate the main lobe 
samples of the window transform with the specific 
amplitude, frequency and phase values to generate a 
sinusoid in the frequency domain. All the main lobes 
of the sinusoids we want to compute are then placed 

into an FFT buffer and by performing an inverse FFT 
we obtain the synthesized time-domain signal. 
Applying an overlap-add method then gives the time 
varying characteristics of the sound. 

 
3.4. Empirical evaluation 
 

The presented model has been tested for notes 
covering the whole range of a flute (37 notes), a violin 
(64 notes) and a piano (88 notes). An SMS analysis has 
been carried out for all these notes using recorded 
samples from the RWC database [12]. The analysis 
was performed to find a representative note for the 
presented amplitude model and to compare the RPSM 
synthesis results with the standard SMS results. As 
mentioned before, the amplitude analysis results of 
only one note per instrument have been used as a basis 
for the synthesis model. This way the amplitude shape 
stays the same for all notes of an instrument and only 
the frequencies are changed to obtain the presented 
synthesis results. However, the model also allows to 
modify the amplitude data if desired. For example, 
different amplitude templates can be used for different 
parts of the range of an instrument. 

The frequency estimation works well and allows a 
large flexibility when choosing the fundamental 
frequency. Due to the random walk that is applied to 
higher frequency partials the synthesised sound keeps 
the natural noisiness of the real instrument recording 
without the need for a separate noise model. From the 
 

 
 
Figure 5. Violin: original signal, SMS result and 
sustain part of RPSM result with local maxima 
estimation (left), Flute: original sound, SMS result 
with polynomial fit (right) - time domain plots 
 
three different amplitude estimation methods the 
polynomial fit gives overall the best results. The 
estimation is fast and although the resulting envelopes 
are very smooth, the synthesised sound is of high 
quality. This is also the only method that gives a 
satisfactory estimate for the attack and the release parts 
of the signal. The local optimization is also fast and 
performs well for the sustain part of the signal, but 
does not give a satisfactory estimate of the shape of the 
attack and the release part. Applying a lowpass filter to 



estimate the amplitude tracks performs rather poorly 
compared to the other methods. The estimation results 
can be compared with the local optimization but the 
computation is significantly slower.  

Figure 5 shows comparisons of SMS and RPSM 
synthesis results in the time domain for different 
instruments and different RPSM amplitude estimation 
techniques. When modeling the amplitudes with local 
optimization, the sustain part of the synthesised sound 
is very close to the original. Attack and release are not 
shown here, as the amplitude values are very high. 
Using a polynomial fit the resulting signal has a highly 
smoothed envelope, but gives good results for the 
attack and the release part. 
 
4. Conclusion and future work 
 

We introduced a flexible parametric synthesis 
model for the spectral synthesis of musical sounds. 
Unlike traditional spectral analysis/synthesis methods, 
the model is largely independent from a previous 
analysis of a recorded sound. The model has been 
tested for notes covering the whole range of three 
different instruments. The timbre and the perceptual 
quality of the sound is preserved even for notes at the 
upper end of the instrument range and for sounds that 
are outside the range of the instrument. This is not 
always the case for traditional analysis/re-synthesis 
approaches, mostly due to the quality of the recorded 
sound samples and the complex analysis procedure. 
The synthesis of sounds outside the instrument range 
by means of an analysis/re-synthesis method also 
requires additional transformations after the analysis, 
which can lead to artifacts in the synthesised sound 
too. Future work will be focused on defining a 
sufficient model for the attack and release part of the 
sound signals and on carrying out listening tests to gain 
more detailed results for a comparison between the 
recorded sounds, the SMS synthesis results and the 
RPSM results.  
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