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Balancing selection is common on many defense genes, but it has rarely been reported for immune effector proteins such
as antimicrobial peptides (AMPs). We describe genetic diversity at a brevinin-1 AMP locus in three species of leopard
frogs (Rana pipiens, Rana blairi, and Rana palustris). Several highly divergent allelic lineages are segregating at this
locus. That this unusual pattern results from balancing selection is demonstrated by multiple lines of evidence, including
a ratio of nonsynonymous/synonymous polymorphism significantly higher than 1, the ZnS test, incongruence between
the number of segregating sites and haplotype diversity, and significant Tajima’s D values. Our data are more consistent
with a model of fluctuating selection in which alleles change frequencies over time than with a model of stable balancing
selection such as overdominance. Evidence for fluctuating selection includes skewed allele frequencies, low levels of
synonymous variation, nonneutral values of Tajima’s D within allelic lineages, an inverse relationship between the
frequency of an allelic lineage and its degree of polymorphism, and divergent allele frequencies among populations.
AMP loci could be important sites of adaptive genetic diversity, with consequences for host—pathogen coevolution and

the ability of species to resist disease epidemics.

Introduction

Genes encoding immune system proteins often harbor
adaptive variation maintained by balancing selection
(Garrigan and Hedrick 2003). For example, patterns of ge-
netic diversity consistent with balancing selection have
frequently been observed at the vertebrate major histocom-
patibility complex (Garrigan and Hedrick 2003; Piertney
and Oliver 2006), immunoglobulin genes (Su and Nei
1999), plant R-genes (Stahl et al. 1999; Bakker et al.
2006), and other immunity genes (Bamshad et al. 2002;
Jensen et al. 2008). Although extensive, these examples
are not equally distributed among all classes of immunity
genes. Nearly all immunogenetic adaptive variations have
been found in detection and signaling proteins, not in the
effector proteins that directly attack pathogens (Garrigan
and Hedrick 2003; Lazzaro et al. 2004; Tiffin and Moeller
2006). The high polymorphism at many of these pathogen-
detection genes, such as loci of the vertebrate adaptive
immune system and plant loci involved in gene-for-gene
interactions, is associated with either high specificity or
a cost of resistance (Garrigan and Hedrick 2003; Tian et al.
2003; Bakker et al. 2006). When immunity mechanisms are
highly specific, pathogens can easily counteract them by
altering the specific molecular target, so it benefits hosts
to carry a diversity of immunity molecules which are effec-
tive against different variants of the molecular target (Stahl
et al. 1999; Tiffin et al. 2004). Also, if alleles vary in overall
effectiveness but there is a cost to resistance, both resistance
and susceptibility alleles can be maintained at a locus (Tian
et al. 2003). Some effector molecules show high structural
and functional diversity across taxa, suggestive of specific
immunological roles, and some could impose a cost by
damaging host cells (Hancock 2001). Thus, we hypothesize
that balancing selection might be relatively common at cer-
tain effector genes, especially those that show high interspe-
cies divergence and/or are potentially costly. Testing this
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hypothesis would help to indicate the conditions under
which balancing selection occurs and further illuminate
host—pathogen coevolution at the molecular level.

Several mechanisms of balancing selection have been
proposed (Charlesworth 2006). Under overdominant selec-
tion, heterozygotes are consistently fitter than homozygotes.
Under instantaneous frequency-dependent selection or mi-
nority advantage, the fitness of an allele is directly and in-
versely proportional to its frequency (Takahata and Nei
1990). Instantaneous frequency-dependent selection can
arise due to behavioral interactions among individuals in
asingle species, but it is not thought to occur in host—parasite
interactions (Seger 1988). Under time-delayed frequency-
dependent selection, including the “trench warfare” model
of host—pathogen coevolution, there is a lag between the
change in host allele frequencies and the change in their fit-
nesses, owing to the need for the parasite to evolve first
(Seger 1988; Stahl et al. 1999). Finally, under spatiotempo-
rally varying selection, fitnesses of alleles vary over time
and/or space due to variation in the presence or absence
of pathogens which occurs independently of host allele fre-
quencies (Hedrick 2002). These various mechanisms of bal-
ancing selection can be categorized according to whether or
not allele frequencies change over time. Overdominance and
instantaneous frequency-dependent selection are mathemat-
ically equivalent, and both are forms of stable balancing se-
lection, predicting approximately constant intermediate
allele frequencies over long periods of time (Takahata and
Nei 1990). In contrast, the trench warfare model and spatio-
temporally varying selection are forms of fluctuating selec-
tion, in which allele frequencies change frequency
dynamically over time, becoming common when advanta-
geous and rare when disadvantageous (Stahl et al. 1999;
Tiffin et al. 2004).

Under stable balancing selection, allele frequencies
should change more slowly over time than they would under
neutral genetic drift, whereas under fluctuating selection, al-
lele frequencies should change more quickly over time than
they would under neutral genetic drift. Therefore, the two
categories of balancing selection can be distinguished from
each other by testing for evidence of substantial allele fre-
quency change over time. When two or more allelic lineages
are maintained by balancing selection, polymorphisms can
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be classified as either within-lineage variation or between-
lineage variation (Innan and Tajima 1999). Under stable bal-
ancing selection, Tajima’s D (Tajima 1989) for within-
lineage variation should be close to 0. Under fluctuating
selection, Tajima’s D should be negative within lineages that
have recently increased in frequency, which are analogous to
growing populations, and positive for lineages that have re-
cently decreased in frequency, which are analogous to pop-
ulations going through a bottleneck. Similarly, stable
balancing selection predicts highly similar allele frequencies
among populations, high synonymous variation due to the
antiquity of alleles at that locus, a correlation between the
frequency of allelic lineages and the neutral variation they
harbor, and a low probability of fixation for any allele. In
contrast, fluctuating selection permits divergent allele fre-
quencies among populations and predicts low synonymous
variation due to periodic bottlenecks forevery allelic lineage,
no correlation between the frequency of allelic lineages and
the neutral variation they harbor, and the occasional fixation
of particular alleles.

Antimicrobial peptides (AMPs) of the innate immune
system have only rarely been observed to be under pathogen-
driven balancing selection (Tennessen 2005b). These cat-
ionic, amphipathic mature peptides are cleaved off of
a larger protein and then bind to the cell membranes of bac-
terial, fungal, and enveloped viral pathogens, killing them
(Hancock 2001). Research on AMPs has been substantial in
recent years, due in part to an interest in developing them
for therapeutic application (Hancock 2001). Positive selec-
tion on AMP genes is very common and has resulted in an
enormous functional diversity of these molecules among
species and among loci in many taxa (Tennessen 2005b).
Some human and mussel AMP loci appear to be under
balancing selection (Hollox and Armour 2008; Pahdi and
Verghese 2008), but other studies of intraspecies genetic
diversity at AMP genes have revealed no evidence for
balancing selection (Clark and Wang 1997; Lazzaro and
Clark 2003; Tennessen and Blouin 2007).

The AMPs of leopard frogs (genus Rana; in this paper,
we ignore the recent proposal by Frost et al. [2006] to revise
the genus to Lithobates) are among the most well studied
(Conlon et al. 2004). Most of them consist of an a-helix
with a disulfide bridge forming a loop at the C-terminal
end. They are functionally diverse, frequently with activity
against both amphibian and human pathogens (Goraya et al.
2000; Chinchar et al. 2004; Rollins-Smith and Conlon
2005). Given the global crisis of amphibian population de-
clines mediated by emerging infectious diseases and the
immunological importance of AMPs, genetic diversity at
AMP loci could be an important determinant of amphibian
population stability (Daszak et al. 2003; Woodhams,
Rollins-Smith, et al. 2006; Woodhams, Voyles, et al.
2006). Of the four AMP families secreted by the northern
leopard frog, Rana pipiens (brevinin-1, ranatuerin-2,
temporin-1, and esculentin-2), the brevinin-1 family is both
the most diverse and the most active against microbes
(Goraya et al. 2000; Tennessen and Blouin 2007). Previ-
ously, we investigated allelic variation at the Ranatuerin2
AMP locus in R. pipiens and found that a single haplotype
had been fixed in the species by a positive selective sweep
(Tennessen and Blouin 2007). We also found substantial

FiG. 1.—Map of sampling localities in the United States and Canada.
Populations 1-13 are Rana pipiens, populations 14 and 15 are Rana
blairi, and populations 16 and 17 are Rana palustris. Exact population
locations are in supplementary table 1 (Supplementary Material online).

diversity among AMP sequences at five loci of the brevinin-1
family in R. pipiens, but we were unable to assess how much
of this variation was within versus between loci (Tennessen
and Blouin 2007). In this paper, we test whether some of
the brevinin-1 variants are allelic by designing primers thatam-
plify asingle brevinin- 1 locus. We examine patterns of genetic
diversity inover400individuals of R. pipiens.Inorderto assess
the generality of our observations across species, we also se-
quence this locus in a smaller number of plains leopard frogs
(Rana blairi) and pickerel frogs (Rana palustris). Several
highly divergent allelic lineages are segregating at this locus,
and we present evidence that the balanced maintenance of
these alleles is due to a dynamic process of fluctuating natural
selection.

Materials and Methods
Tissues

Samples of R. pipiens were collected from 13 sites
throughout its range across northern North America as de-
scribed previously (n = 20-46 individuals per site; supple-
mentary table 1, Supplementary Material online; fig. 1;
Hoffman et al. 2006). For one of the sites in New York,
we also obtained a historical sample of R. pipiens collected
in 1971 (approximately 15 generations earlier) as described
previously (n = 25; Hoffman et al. 2006). We collected
samples of R. palustris from two sites in Wisconsin and
Michigan (n = 23 and 40, respectively) and samples of
R. blairifrom asinglesite inIllinois (n = 27; supplementary
table 1, Supplementary Material online; fig. 1). Further sam-
ples of R. blairi were obtained from the Museum of Verte-
brate Zoology (MVZ Herp 240161-240184), having all
been originally collected from a single site in Missouri
(n = 24; supplementary table 1, Supplementary Material
online; fig. 1). The sample size at every site was at least
20 frogs (mean number of frogs per population = 28.8).
All tissues consisted of toe clips preserved by desiccation
in 1.5-ml tubes filled with Drierite desiccant (W. A. Ham-
mond Drierite Co., Xenia, OH), except for the MVZ sam-
ples, which had been frozen. DNA was extracted as
described previously (Hoffman and Blouin 2004) or using
DNeasy Blood and Tissue Kits (Qiagen Inc., Valencia, CA).

We carried out 25 pl polymerase chain reactions
(PCRs) using standard buffer conditions, 1.5 mM MgCI2,
0.2 mM each deoxyribonucleotide triphosphate, approxi-
mately 100 ng DNA, and 0.5 Units Tag DNA polymerase.



We visualized PCR products under ultraviolet light, puri-
fied them with the MoBio Ultraclean PCR cleanup kit
(Solana Beach, CA), and sequenced them through the
Nevada Genomics Center (Reno, NV).

Sequences

Previously, we had cloned two brevinin-1 sequences
from a single R. pipiens individual that were similar in the
intron but quite divergent in the mature peptide region
(GenBank  accession numbers DQ276967  and
DQ276968; Tennessen and Blouin 2007). In this study,
we tested whether they were allelic by assessing whether
the genotype frequencies were in Hardy—Weinberg equilib-
rium within populations. To do so, we designed a primer
(BrevlPF4; 5'-GAT GAC CCA ATA ATA ATT TTIT
C-3") that would bind to these sequences but not to any
other known brevinin-1 gene in R. pipiens. We used the
primers Brev1PF4 and BrevlPR1 (Tennessen and Blouin
2007), which bind outside of the coding region, to amplify
genomic DNA from R. pipiens, R. palustris, and R. blairi.
PCR amplification conditions consisted of an initial dena-
turation step at 94 °C for 5 min; 35 cycles of denaturation at
94 °C for 45 s, annealing at 51 °C for 30 s, and extension at
72 °C for 1 min; and a final single extension step at 72 °C
for 5 min. We sequenced the resultant PCR products with
an internal primer (BrevlPF5; 5'-GAA AGC TCT GTG
CCA TAG-3").

Due to difficulties amplifying some R. blairi individ-
uals with this primer pair, we designed a forward primer
specific to R. blairi. We sequenced the primer-binding site
in R. blairi using a cloning procedure described previously
(Tennessen and Blouin 2007). Briefly, we amplified R.
blairi genomic DNA using the more distal and degenerate
forward primer Brev1PF3 with Brev1PR1 in PCRs with the
high fidelity enzyme Pfu DNA polymerase (Promega, Mad-
ison, WI). The resultant PCR products were incubated with
Taq polymerase in order to add 3’ adenines and cloned into
Escherichia coli using the TOPO TA Cloning Kit (Invitro-
gen, Carlsbad, CA). The recombinant locus was amplified
from screened colonies using the primers T3 and T7, and
the resultant PCR products were sequenced with T7. We
used these sequences to design the primer BrevlBLF
(5'-TAG ATG ACCTAATAATAATTT TTC-3"), which
binds in the intron. We amplified and sequenced DNA from
all R. blairi individuals using both primer set (Brev1PF4
and Brev1PR1) and primer set (BrevlBLF and Brev1PR1).

In order to compare patterns of genetic diversity at the
brevinin-1 locus with other, putatively neutral, nuclear loci,
we sequenced 1,246 bp of four nuclear genes in a subset of
individuals: Arcadlin (primers ArcadF and ArcadR, 178 bp
coding, 87 bp intron; Tennessen and Blouin 2007), Myosin
(primers MyosinF and MyosinR, 65 bp coding, 85 bp in-
tron; Tennessen and Blouin 2007), FIBI7 (primers FIBI7U
and FIBI7L, 50 bp coding, 208 bp intron; Di Candia and
Routman 2007), and Tyrosinase (primers TyrlA and
TyrlG, 573 bp coding; Bossuyt and Milinkovitch 2000).
These loci were chosen because we had preexisting proto-
cols for amplifying them in Rana and because their poly-
morphisms are consistent with neutral evolution. We
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sequenced Arcadlin, Myosin, FIBI7, and Tyrosinase in
all frogs from six populations: populations 1, 2, 14, 15,
16, and 17 (fig. 1). These six populations represented all
R. palustris and R. blairi individuals but only a fraction
of all R. pipiens individuals (59 frogs). In order to obtain
a more representative sample of R. pipiens, we randomly
chose two frogs from each of the remaining 11 contempo-
rary R. pipiens populations and we sequenced Arcadlin,
Mpyosin, FIBI7, and Tyrosinase in these 22 frogs.

Analysis

All sequences have been deposited in GenBank under
accession numbers EU407141-EU407149, EU407151-
EU407176, and EU769510-EU769553. All loci were nu-
clear and diploid, so two alleles were obtained from all
individuals. Heterozygotes were identified by the presence
of double peaks in electropherograms. To determine com-
mon haplotypes, we noted all homozygous genotypes and
tested for recombination using the four-gamete test. Given
evidence for minimal recombination, we determined the re-
maining haplotypes by subtracting out previously observed
haplotypes from the heterozygous genotypes or, for some
R. blairi genotypes, by using allele-specific PCR. To con-
firm that observed polymorphisms were allelic and not due
to coamplification of duplicated loci, we tested whether
each population was in Hardy—Weinberg equilibrium. It
is highly unlikely that polymorphic sequences from multi-
ple loci would conform to Hardy—Weinberg expectations.

We used PAUP* (version 4.0b10, Swofford 2002) to
construct a maximum parsimony phylogeny of all brevinin-
1 sequences. We used DnaSP (version 4.0, Rozas et al.
2003) to calculate standard statistics of selective neutrality,
including ZnS (Kelly 1997), Tajima’s D (Tajima 1989),
haplotype diversity or expected heterozygosity (Hd), the
number of haplotypes (%), genetic variation (7), and the
number of segregating sites (S), and to test their significance
using coalescent simulations (conditioned on § with no re-
combination and 1,000 replicates). To minimize the effects
of population subdivision on these test statistics, we per-
formed each test within individual populations. We used
MEGA (version 2.1; Kumar et al. 2001) to test whether
the ratio of nonsynonymous variation to synonymous var-
iation (7,/ms) was significantly greater than 1. If observed 7
was 0, we estimated /7, to be greater than what the value
would be if a single synonymous polymorphism had been
observed in a single sequence. Neutrality tests were con-
ducted on the mature peptide region only because that is
the region where nonneutral evolution most frequently oc-
curs (Tennessen 2005b). We represented relationships
among alleles with a haplotype network, as opposed to
a phylogenetic tree, because networks show allele frequen-
cies and because there is little evidence for recombination at
this locus.

To distinguish between fluctuating and stable balanc-
ing selection, we performed several tests of allelic stasis. A
model of stable balancing selection predicts that the silent
variation at the selected locus should be higher than else-
where in the genome because allelic lineages have been
maintained at intermediate frequency for a very long time
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and many mutations have been able to accumulate over this
long coalescence period (Charlesworth 2006). In contrast,
under fluctuating selection each allelic lineage spends some
time being rare when selection favors the other allelic lin-
eage. Thus, the effective population size of the locus, esti-
mated as the sum of the harmonic means of the effective
sizes of all allelic lineages over time, is small. As a result,
silent variation will be purged by genetic drift, making
silent variation lower than silent variation at neutral loci
(Tiffin et al. 2004). Thus, we calculated genetic variation
(m) at silent sites (synonymous and noncoding) for Arca-
dlin, Myosin, FIBI7, Tyrosinase, and the brevinin-1 locus.
We used equation 12.63 of Nei and Kumar (2000) to cal-
culate the variance in 7, and we used the square root of this
variance as the standard error in #-tests comparing mean 7
values. Similarly, stable balancing selection predicts
within-lineage Tajima’s D values near 0, while fluctuating
selection predicts high or low Tajima’s D values for line-
ages that have been shrinking or growing, respectively.
Thus, we calculated Tajima’s D within each allelic lineage.
Our five easternmost populations of R. pipiens are the
“Eastern” populations used by Hoffman et al. (2006) to
generate a neutral distribution of the expected Fgr value,
based on microsatellite markers and intersimple sequence
repeat loci, using the method of Beaumont and Nichols
(1996). Under stable balancing selection, Fgy would be
lower than the neutral expectations. Under fluctuating se-
lection, Fsr could be higher than the neutral expectation
if selection coefficients varied substantially among popula-
tions or if the effective population size at the selected locus
is substantially lower than at neutral loci. Therefore, we
compared Fgr at the brevinin-1 locus with this distribution.
Furthermore, we used the previously described genotype
data from the R. pipiens individuals at nine microsatellite
loci (Hoffman et al. 2006) to construct phylogenies of
the R. pipiens populations east of the Mississippi River
based on both the microsatellites and the brevinin-1 locus.
We used the Fitch method based on the genetic distance of
Reynolds et al. (1983) in PHYLIP (version 3.65; Felsen-
stein 1989). We only used the eastern populations because
the high genetic divergence between eastern and western R.
pipiens could result in substantial homoplasy at the micro-
satellite markers (Hoffman and Blouin 2004; Hoffman et al.
2006). Although microsatellites have a higher mutation rate
than coding sequences, among closely related populations
genetic distances based on both marker types should be cor-
related under neutrality (Richard and Thorpe 2001), and
therefore differences between the brevinin-1 phylogeny
and the microsatellite phylogeny could be due to selection.
To formally evaluate the difference between interpopula-
tion divergences at the brevinin-1 locus and at the micro-
satellite loci, we performed a Mantel test of pairwise genetic
distances in FSTAT version 2.9.3 (Goudet 1995).
Populations with low genetic diversity at the brevinin-
1 locus could have recently experienced a selective sweep,
or they could simply have low genome-wide variation due
to a low effective population size. To distinguish between
these two hypotheses, we calculated the mean expected het-
erozygosity (H,) for each R. pipiens population using the
previously described genotypes at the nine microsatellite
loci (Hoffman et al. 2006). This analysis was restricted

to R. pipiens because we lacked microsatellite data for
the other species. We compared population H. values at
the brevinin-1 locus with the population H, values at the
microsatellite loci, which we assumed to be selectively neu-
tral. If populations with low brevinin-1 diversity also have
low microsatellite diversity, genetic drift is probably re-
sponsible in both cases. If not, the low brevinin-1 diversity
could be due to a recent or ongoing selective sweep.

Results
Brevinin-1 Locus

We consistently obtained readable brevinin-1 sequen-
ces 236 bp in length, which consisted of a 98-bp partial in-
tron followed by a 138-bp partial exon. The exon contained
61 bp of the C-terminal end of the propiece, the entire 72-bp
mature peptide region, a stop codon, and 2 bp of postcoding
sequence. Out of 517 frogs, 344 were homozygous. All
common haplotypes (seen more than five times) were ob-
served as homozygotes and showed no evidence of recom-
bination. All remaining haplotypes (1% of the total) could
easily be resolved, either because there was only one way to
resolve the heterozygous genotypes such that at least one
allele in every genotype matched an allele previously ob-
served in that population or by using allele-specific PCR.
It remains possible that some of these nonhomozygous hap-
lotypes were erroneously resolved, which could bias our
results, but they are so rare that they are unlikely to affect
our conclusions substantially. All populations were found
to be in Hardy—Weinberg equilibrium, and there was no ev-
idence of more than two alleles in any one individual, con-
firming that only a single locus was amplified, here named
the Brevininl.l locus.

Within R. pipiens, four common, highly divergent al-
leles were observed at the Brevininl.l locus: alleles Rpl,
Rp2, Rp3, and Rp4 (fig. 2). These four alleles accounted
for 97% of the sequences; all remaining minor variants were
one or two steps away from one of them (fig. 3). Allele Rp/
encoded the previously described peptide brevinin-1Pa, and
allele Rp2 encoded the previously described peptide
brevinin-1Pg (Goraya et al. 2000; Tennessen and Blouin
2007). Alleles Rp3 and Rp4 both encoded a peptide,
brevinin-1PLa, which previously had only been described
in R. palustris (Basir et al. 2000). The distances among
these four major R. pipiens alleles ranged from 1 to 13 sub-
stitutions (fig. 3). The species overall showed an excess of
homozygotes, probably owing to population subdivision,
because every individual population was in Hardy—
Weinberg equilibrium (supplementary table 1, Supplementary
Material online) and because this species shows substan-
tial population structure at neutral markers (Hoffman and
Blouin 2004; Hoffman et al. 2006). We observed similar
patterns of diversity in R. blairi. A single R. blairi sample,
MVZ Herp 240161, was homozygous for unique alleles at
both Brevininl.l and Arcadlin and carried a unique allele
at Myosin. Because this individual could be mislabeled or
a migrant, we excluded it from all further analyses. Allele
RbI accounted for 86% of the R. blairi sequences at the
Brevininl .1 locus (figs. 2 and 3). The remaining R. blairi
alleles differed from allele RbI by 1-13 substitutions,



| propiece (partial) | mature peptide |

Rana pipiens:
AEEERRDEPDETDVEVEKRFLPIIAGVAAKVFPKIFCAISKKC

.................... F..V....GQ.LK....T.....
.................... F.NV.S.PGQ.LK..........
.......................... Tt e i ie et
.................... F.NV.S.PGQ.LR....vuu...
..................................... T.....
......................... S et
Rana blairi:

.......................... I...FL.....T.....
T ottt i ettt et neennnns M...LL....oouunn.
.................... F..V..M.GQ.LK Teon..
..... S.G.ovvvveeee L JFLUVLLLUGOULK.LYLT. L.
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Peptide name Frequency Alleles Lineage
Brevinin-1Pa 58.6% Rp1 1
Brevinin-1Pg 34.1% Rp2 2
Brevinin-1PLa 6.0% Rp3, Rp4 3
Brevinin-1Pb 0.5% 1
Brevinin-1Pj 0.4% 3
Brevinin-1Pk 0.4% 1
Brevinin-1Pe 0.1% 1
Brevinin-1BLa 87.0% Rb1 1
Brevinin-1BLb 5.0% Rb2 1
Brevinin-1BLc 6.0% Rb3 2
Brevinin-1BLd 2.0% 2
Brevinin-1PLa 100.0% Rp4 3

FiG. 2.—Alignment of Brevininl.l locus amino acid sequences from all species, the frequencies of these sequences in each species, the alleles
encoding them (some rare alleles were not named), and the allelic lineage.

including a single-nucleotide indel in the intron. In con-
trast to the other species, in R. palustris, we observed only
two alleles which were separated by a single mutational
step in the intron. Both coded for the peptide brevinin-
1PLa (figs. 2 and 3). The more common allele (allele
Rp4) was identical to an allele observed in R. pipiens.
Haplotype networks of the Brevininl.l locus alleles
are shown in figure 3. There were three main allelic line-
ages, separated by substantial and mostly nonsynonymous
divergence. There was no reciprocal monophyly between R.
pipiens and either of the other two species, but R. palustris

and R. blairi were reciprocally monophyletic with respect
to each other. Although there were no shared Brevininl .l
alleles between R. pipiens and R. blairi, both species had
alleles belonging the same divergent allelic lineages,
Lineage 1 and Lineage 2 (table 1 and fig. 3).

Other Loci

For all individuals, preexisting protocols for amplifying
and sequencing Arcadlin, Myosin, FIBI7, and Tyrosinase
(Bossuyt and Milinkovitch 2000; Di Candia and Routman

Rb2 ()

Lineage 1

Lineage 2

Lineage 3

FiG. 3.—Maximum parsimony haplotype network for a 236-bp segment of the Brevininl .l locus. White circles represent Rana pipiens haplotypes,
gray circles represent Rana blairi haplotypes, and black circles represent Rana palustris haplotypes. Gray squares represent inferred nodes that were not
observed. The size of the circles indicates the frequency of each allele in the respective species. Nonsynonymous substitutions are indicated by small
black rectangular bars, and synonymous substitutions are indicated by small white rectangular bars; thus, branch lengths represent the total number of
substitutions. Common alleles are labeled. Allelic lineages are surrounded by large rectangles. Highly divergent alleles, separated mostly by
nonsynonymous substitutions, occur in both R. pipiens and R. blairi, causing several tests of selective neutrality to be significant (table 1). A haplotype
is shared between R. pipiens and R. palustris, indicated by a white circle superimposed on a black circle. A pattern of both very common and very rare
alleles can be seen, especially for the Lineage 1 lineage in R. pipiens, suggestive of a recent rapid increase in allele frequency.
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Table 1

Population Genetic Parameters for the Brevininl.1 Mature Peptide Region (72 bp) in Three Frog Species

Species 2N®  Lineage 1® Lineage 2° Lineage 3  §° he Hd* 7 7 ZnS" /7 Tajima’s D!
Rana pipiens 848 60% 34% 6% 16 8%* 0.55 0.06*  0.009  0.32% 8.67%* 2.23%
Rana blairi 100 92% 8% 0% 12 4% 0.24%  0.02 0.001  0.48*  25.00%* —0.81
Rana palustris 86 0% 0% 100% 0 1 0.00 0.00 0.000  0.00 — —

Note.—For all statistical tests, *P < 0.05 and **P < 0.01.

? 2N = number of alleles = twice the number of individuals.

Lineages 1, 2, and 3 refer to the percentage of alleles in each species belonging to each of these three allelic lineages.

S, number of segregating sites.

h, number of haplotypes; tested whether / is significantly low given S.

Hd, haplotype diversity, equivalent to expected heterozygosity; tested whether Hd is significantly low given S.

7, mean number of pairwise differences among sequences; tested whether 7 is significantly extreme given S.

€ m,, mean number of pairwise differences among sequences at silent sites; tested whether 7, is significantly extreme given silent S.
" ZnS, linkage disequilibrium statistic of Kelly (1997); tested whether Zn$ is significantly high given S.

/T, ratio of nonsynonymous nucleotide variation to synonymous nucleotide variation; tested whether significantly different than 1.
Tajima’s D, statistic of Tajima (1989); tested whether significantly different than 0.

o o o o

2007; Tennessen and Blouin 2007) were successful. In total,  of variation did not deviate from neutral expectations. In R.
we obtained 1,246 bp of nuclear sequence unlinked to palustris, several neutrality tests indicated an excess of diver-
Brevininl .1, including 866 bp of coding sequence and 380  gent, intermediate frequency haplotypes. Because these pat-
bp of intronic sequence. These loci showed moderate levels terns were observed across all loci, they probably have
of variation (fig. 4 and table 2; supplementary table 2, Supple- demographic causes such as population subdivision or recent
mentary Material online). In R. pipiens and R. blairi, patterns  migration from genetically distinct populations and are not

Tyrosinase: FIBIT:

Arcadlin:

F1G. 4—Maximum parsimony haplotype networks for four putatively neutral non-AMP nuclear loci unlinked to Brevininl.l: Arcadlin, Myosin,
FIBI7, and Tyrosinase. Symbols are the same as in figure 3. In contrast with the Brevinini .l locus (fig. 3), nonsynonymous substitutions (small black
rectangular bars) are rarer than synonymous substitutions (small white rectangular bars). In both Rana pipiens (white circles) and Rana blairi (gray
circles), non-AMP loci show intermediate frequency alleles and few missing transitional haplotypes (gray squares), in contrast with the Brevininl.l
locus (fig. 3), which shows high- and low-frequency alleles forming divergent lineages separated by many missing transitional haplotypes. In Rana
palustris (black circles), non-AMP loci show diverse, moderately divergent alleles, in contrast with the Brevininl.I locus (fig. 3), which shows very low
diversity.



Table 2

Population Genetic Parameters for Four Putatively Neutral Nuclear Loci Unlinked to Brevininl.1 (1,246 bp) in Three Frog Species (Arcadlin, Myosin, FIBI7, and Tyrosinase)

f

Species 2N Locus Length® S° ne Hd* b e ZnS" T/ Tajima’s D!
Rana pipiens 162 Arcadlin 265 6 9 0.75 0.01 0.010 0.06 0.04%** 0.54
Myosin 150 7 10 0.76 0.01 0.020 0.12 0.00* 1.27
FIBI7 258 12 9 0.57 0.01 0.010 0.24 0.00 0.12
Tyrosinase 573 17 17 0.84 0.00 0.016 0.06 0.08%* —0.41
Mean * standard deviation 312 £ 182 105 £ 5.1 113 + 39 0.73 £ 0.11 0.01 + 0.00 0.014 £ 0.005 0.12 £ 0.08 0.03%** 0.38 £ 0.71
Rana blairi 100 Arcadlin 265 2 3 0.46 0.00 0.004 0.02 0.00%* 0.35
Myosin 150 2 3 0.50 0.00 0.006 0.04 0.00 0.66
FIBI7 258 2 3 0.10 0.00 0.000 0.00 0.00 —1.15
Tyrosinase 573 3 4 0.56 0.00 0.000 0.02 >8.7 0.07
Mean + standard deviation 312 + 182 23+0.5 33+0.5 0.40 £ 0.21  0.00 = 0.00 0.002 + 0.003 0.02 + 0.02 0.14 —0.02 £ 0.79
Rana palustris 86 Arcadlin 265 4 4 0.56 0.00 0.009 0.33 0.00%* 1.09
Myosin 150 4 2% 0.34 0.01 0.010 1.00%* 0.64 1.39
FIBI7 258 14 7 0.72 0.02%* 0.024%%* 0.37* 0.00%* 2.53%
Tyrosinase 573 7 5 0.75 0.00 0.011 0.38 0.07%* 0.56
Mean + standard deviation ~ 312 + 182 73 +£47 45+ 2.1% 059 £0.19 0.01 £0.01** 0.014 £ 0.007**  0.52 £ 0.32**  0.13** 1.39 + 0.83%*

Note.—For all statistical tests, *P < 0.05 and **P < 0.01.

2N = number of alleles = twice the number of individuals.

Length, locus length in base pairs.

S, number of segregating sites.

h, number of haplotypes; tested whether £ is significantly low given S.

Hd, haplotype diversity, equivalent to expected heterozygosity; tested whether Hd is significantly low given S.
m, mean number of pairwise differences among sequences; tested whether 7 is significantly extreme given S.

- 0 a o o »

E

ZnS, linkage disequilibrium statistic of Kelly (1997); tested whether ZnS is significantly high given S.

Tajima’s D, statistic of Tajima (1989); tested whether significantly different than 0.

ms, mean number of pairwise differences among sequences at silent sites; tested whether 7 is significantly extreme given silent S.

/T, ratio of nonsynonymous nucleotide variation to synonymous nucleotide variation; tested whether significantly different than 1.
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due to selection. There were no fixed differences between R.
blairi and R. pipiens. There were eight fixed differences be-
tween R. palustris and R. blairi; of these, four were also fixed
between R. palustris and R. pipiens.

Neutrality Tests

To test whether the high allelic variation at the Brevi-
ninl.I locus in R. pipiens and R. blairi was maintained by
balancing selection, we conducted multiple tests of selec-
tive neutrality (table 1; supplementary table 1, Supplemen-
tary Material online). Neutrality tests were not conducted
on R. palustris because that species had no variation in
the mature peptide region. The ratio of mature peptide re-
gion nonsynonymous variation to synonymous variation
(mn/ms) was significantly greater than 1 in most populations
as well as in R. pipiens overall and R. blairi overall (table 1;
supplementary table 1, Supplementary Material online;
fig. 5). For both species, nonsynonymous variation in the
mature peptide region was also significantly higher than
synonymous variation at Arcadlin, Myosin, FIBI7, and
Tyrosinase (fig. 5). Coalescent simulations of several pop-
ulation genetic parameters in DnaSP demonstrated that
polymorphisms were structured into divergent allelic line-
ages, with skewed frequencies, more so than would be ex-
pected under neutrality given the number of segregating
sites (table 1; supplementary table 1, Supplementary Mate-
rial online; fig. 3). Given the number of segregating sites,
the number of haplotypes (%) was too low for all popula-
tions that had any variation and the haplotype diversity
(Hd) was too low for nearly all populations. Linkage dis-
equilibrium (ZnS) was significantly higher than neutral ex-
pectations for all populations that had any variation. In
R. pipiens, the presence of several common, divergent al-
leles made pairwise variation () significantly higher than
expected given the number of segregating sites, resulting in
significantly positive values of Tajima’s D. In contrast,
Tajima’s D was negative in R. blairi, owing to rare but
divergent alleles.

Multiple tests rejected neutrality in both R. pipiens and
R. blairi, providing strong evidence for balancing selection.
In R. pipiens, neutrality was also rejected if the sequences
from any one allelic lineage were removed (significant ZnS
and /& values, 7, /m, > 1). This result suggested that all three
allelic lineages are adaptively divergent R. pipiens. Simi-
larly, in R. blairi, if Lineage 2 sequences were removed,
multiple tests still rejected neutrality (significant ZnS and
h values, m,/mg > 1). This result suggested that alleles
RbI and Rb2, while both in Lineage 1, might be adaptively
divergent.

Distinguishing Stable from Fluctuating Selection

The first indication about the type of balancing selec-
tion acting was that allele frequencies were not intermediate
but skewed. In R. pipiens, Lineage 1 alleles were 10 times
more common than Lineage 3 alleles. In R. blairi, allele
frequencies were even more skewed, with 86% of the se-
quences consisting of the same allele, and other alleles be-
ing quite rare. In R. palustris, only a single allelic lineage

0.12 4
. non-AMP silent
0.10 [ ] AMP silent
|:| AMP nonsynonymous
0.08 *
B 0.06
0.04
*
0.02
s :
*
0.00 T T 1

R. pipiens R. blairi R. palustris

Fic. 5.—Genetic diversity (m) at the Brevininl.I locus compared
with neutral 7 for three frog species. “Non-AMP silent” is synonymous
and noncoding 7 at four putatively neutral nuclear loci: Arcadlin, Myosin,
FIBI7, and Tyrosinase. “AMP silent” is synonymous and noncoding 7 at
Brevininl.l. “AMP nonsynonymous” is nonsynonymous 7 in the mature
peptide region of Brevininl.l. Asterisks represent values that are
significantly different from the corresponding non-AMP silent value
(P < 0.05). For Rana pipiens and Rana palustris, Brevininl .1 silent sites
show lower variation than is seen at non-AMP silent sites. For R. pipiens
and Rana blairi, Brevininl .1 shows higher nonsynonymous variation than
is seen at silent sites; R. palustris has no nonsynonymous variation at
Brevininl .1.

was observed. The other allelic lineages could be so rare
they were not sampled in R. palustris or they might not exist
in this species. No species showed a pattern of equally fre-
quent allelic lineages consistent with symmetrical models
of stable balancing selection. The observed skew was more
consistent with fluctuating selection or highly asymmetrical
overdominance.

To formally distinguish between stable balancing se-
lection and fluctuating selection, we compared silent vari-
ation at four non-AMP nuclear loci (Arcadlin, Myosin,
FIBI7, and Tyrosinase) with silent variation at the Brevi-
ninl.I locus (fig. 5). Silent variation at the Brevininl .l lo-
cus was lower than at all the non-AMP loci for both R.
pipiens (Brevininl.I g = 0.005; P = 0.08) and R. palust-
ris (Brevininl.l w, = 0.002; P = 0.02). Silent variation
was extremely low at all loci for R. blairi (Brevininli.l
e = 0.002; P > 0.1). These results were consistent with
fluctuating selection, which predicts low synonymous di-
versity, but not with stable balancing selection, which pre-
dicts high synonymous diversity. Although demographic
processes appeared to have caused nonneutral patterns at
the non-AMP loci R. palustris, these processes could not
explain the difference in genetic diversity between Brevi-
ninl.l and the other loci, which therefore is more likely
to be due to selection.

We calculated values of Tajima’s D within allelic lin-
eages (table 3). In R. pipiens, Tajima’s D was significantly
negative within the common Lineage 1 (D = —1.84;
P < 0.01). Because we did not sequence non-AMP loci
in all R. pipiens individuals, we cannot completely under-
stand possible demographic factors that could affect
Tajima’s D, so this result should be interpreted with cau-
tion. In both R. pipiens and R. blairi, there was a nonsignif-
icant trend of other common allelic lineages having
negative Tajima’s D values and rare allelic lineages having



Table 3
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Values of Tajima’s D (Tajima 1989) within Allelic Lineages within Species

Species Lineage D? Frequency® N¢ Population D (Mean)* Population D (range)®
Rana pipiens 1 —1.84%%* 60% 7 —1.11 —1.69 to —0.53

2 -0.79 34% 3 —-0.95 —1.09 to —0.84

3 0.62 6% 1 1.45 1.45
Rana blairi 1 —1.26 87% 1 —-0.42 —-0.42

2 0.16 8% 0 — —

Note.—Only lineages displaying variation for the species considered are shown. In both R. pipiens and R. blairi, common lineages have negative Tajima’s D values
and rare lineages have positive Tajima’s D values, consistent with fluctuating selection. This trend is statistically significant for Lineage 1 in R. pipiens. Only a single
polymorphism occurs in Rana palustris, so Tajima’s D cannot be meaningfully estimated.

* D, within-lineage Tajima’s D; tested whether significantly different than 0; **P < 0.01.

® Frequency, frequency of each allelic lineage in each species.

o

positive Tajima’s D values consistent with fluctuating se-
lection (table 3). Because population subdivision can affect
Tajima’s D, we also calculated within-lineage Tajima’s D
values for individual populations of R. pipiens and R. blairi.
For all populations, including those shown to have neutral
Tajima’s D values at non-AMP loci (populations 1, 2, 14,
and 15; supplementary table 2, Supplementary Material on-
line), the trend was the same as for the whole species (table 3).
Only one allelic lineage with a single polymorphism occur-
red in R. palustris, so within-lineage Tajima’s D could not
be meaningfully estimated.

Under asymmetrical stable balancing selection, such
as asymmetrical overdominance, the more favored allelic
lineage will be more common and harbor most of the neu-
tral genetic variation, owing to its larger effective size (In-
nan and Tajima 1999; Stahl et al. 1999). We therefore
compared levels of silent variation among allelic lineages.
Within R. pipiens, values of silent = were 0.0004 £ 0.0011
for Lineage 1, 0.0002 £ 0.0008 for Lineage 2, and
0.0038 + 0.0037 for Lineage 3. Within R. blairi, values
of silent ©= were 0.0018 * 0.0018 for Lineage 1 and
0.0053 + 0.0042 for Lineage 2. Thus, for both species, ge-
netic variation was relatively low in the more common al-
lelic lineages and much higher in the rarest allelic lineages.

We tested for excessive differentiation among popula-
tions, a signature of fluctuating selection. The Fgr value
among the five easternmost populations of R. pipiens
was 0.20, and the expected neutral value of Fgr at the same
level of heterozygosity was approximately 0.06 (fig. 2A in
Hoffman et al. [2006]). Thus, the observed Fgr value at the
Brevininl .l locus was higher than the mean neutral expec-
tation but not significantly so. The high Fst value is primar-
ily due to population 2, where allele Rp/ predominates, in
contrast to the other four populations, where allele Rp2 pre-
dominates (supplementary table 1, Supplementary Material
online). In addition, Fst between populations 1 and 2 was
0.02 at the four non-AMP loci sequenced in this study and
0.04 at the microsatellites, but 0.34 at Brevininl.1. The high
divergence of population 2 at Brevininl.I but not at micro-
satellites is shown in figure 6. The matrix of pairwise micro-
satellite differences among eastern populations was not
correlated with the corresponding matrix of Brevininl.l
pairwise differences (Mantel test; P > 0.1). Therefore,
the high genetic divergence between population 2 and

N, number of populations in each species displaying sufficient variation in that allelic lineage such that within-lineage Tajima’s D could be calculated.
Population D (mean), mean within-lineage Tajima’s D value among individual populations.
Population D (range), range of within-lineage Tajima’s D values among individual populations.

the other eastern populations is inconsistent with neutral ex-
pectations and could be due to spatially differing selective
pressures.

The two R. pipiens populations with the lowest mi-
crosatellite H, values were fixed for the allele Rp/, in con-
trast to the high genetic variation seen in other populations
(supplementary table 1, Supplementary Material online).
This result was consistent with the hypothesis that these
two populations had lower effective sizes than the others,
in which case genetic drift would be more likely to fix al-
leles in these two populations. After these two fixed pop-
ulations, the R. pipiens population with the lowest
Brevininl .l Hd was population 2 (supplementary table 1,
Supplementary Material online), which had slightly higher
than average microsatellite H. (0.84), and therefore its
effective population size did not appear to be substantially
lower than the other populations. Because population 2
had a very different allele frequency pattern than its closest
geographic neighboring populations (fig. 6), and because
it showed an unusually low Brevininl.l Hd value for its
microsatellite H, value, population 2 was the population
most likely to have undergone a recent shift in allele fre-
quencies at the Brevininl.l locus due to selection. How-
ever, allele frequencies were nearly identical between the
1971 sample and the 2001 sample, both at the Brevininl .l
locus (Fst = 0.0; supplementary table 1, Supplementary
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Fi6. 6.—Distance-based phylogenies of contemporary Rana pipiens
populations east of the Mississippi River, populations 1-6 (fig. 1;
supplementary table 1, Supplementary Material online). (A) Phylogeny
based on genetic distance at nine microsatellite loci. All populations show
intermediate divergence from each other. (B) Phylogeny based on the
Brevininl.l locus. All populations show intermediate divergence from
each other except for population 2, which has highly different allele
frequencies. Very little branching is apparent because almost all alleles at
the Brevininl.l locus in these populations are either allele Rp/ or allele
Rp2, so populations are effectively differentiated from each other in
a single dimension (i.e., frequency of allele Rp/). Because the high
divergence between population 2 and the other populations is only
apparent at Brevininl.l, not at the microsatellites, it is likely adaptive.
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Material online) and at the nine microsatellite loci
(FST = 00)

Discussion

Patterns of genetic diversity at the Brevininl.l locus
are highly unusual in three species of leopard frogs, and
multiple lines of evidence suggest that strong balancing se-
lection is maintaining adaptive variation in the mature pep-
tide region. Evidence for nonneutrality includes high ratios
of nonsynonymous/synonymous variation, unusual values
of Hd, h, and ZnS given the number of segregating sites, and
significant values of Tajima’s D (table 1; supplementary
table 1, Supplementary Material online). Because we did
not sequence non-AMP loci from all R. pipiens individuals,
we cannot rule out the possibility that demographic factors
have contributed to some nonneutral patterns; however, in
populations 1 and 2, neutrality is strongly rejected the
Brevininl.l locus but not at other loci (supplementary
tables 1 and 2, Supplementary Material online), suggest-
ing that our results are not an artifact of demography.
Likewise, we cannot rule out the possibility that the high
variation at the Brevininl.I locus arose not merely
through point mutations but also through gene conversion
from other loci, which can contribute to a pattern of strik-
ingly divergent alleles (Storz et al. 2007). Several Lineage
1 alleles, including allele Rp!, are identical in the mature
peptide region to other brevinin-1 loci that exist in leopard
frog genomes (Tennessen and Blouin 2007). Lineage 2
and Lineage 3 sequences have not been observed at other
brevinin-1 loci (Tennessen and Blouin 2007). However,
even if demographic processes or gene conversion have
enhanced the diversity at this locus, they must have acted
in concert with selection as this is the only explanation for
some nonneutral patterns such as an elevated m,/m ratio.
The role played by these peptides in amphibian immunity
indicates that pathogens are the most likely selective pres-
sure acting on this locus. Perhaps this locus is specialized
on a particular pathogen that is coevolving with leopard
frogs, and alleles differ in their ability to defend against
different strains. Alternatively, perhaps some alleles are
more effective than others overall but there is a cost to
resistance.

Stable balancing selection includes both overdomi-
nance and instantaneous frequency-dependent selection,
while fluctuating selection can be caused by time-delayed
frequency-dependent selection (Seger 1988) or spatiotem-
porally varying selection (Hedrick 2002). Although we can-
not determine with absolute certainty which type of
balancing selection is acting, our data support the fluctuat-
ing selection hypothesis more strongly than the stable bal-
ancing selection hypothesis. First, allele frequencies are
skewed instead of intermediate in all three species. Second,
Tajima’s D for within-lineage variation is negative for com-
mon lineages and positive for rare lineages in both R. blairi
and R. pipiens (table 3). This result suggests that now-
common alleles were recently rare and have rapidly increased
in frequency. Third, synonymous variation is lower at the
Brevininl .I locus than at unlinked, putatively neutral loci,
the opposite of the prediction from stable balancing selection;
for R. palustris, this difference is statistically significant, con-

sistent with a recent selective sweep fixing Lineage 3 in this
species (fig. 5). This effect holds despite evidence that am-
phibian mature peptide regions feature an elevated mutation
rate and/or positive selection on synonymous sites, which
would tend to cause the opposite pattern (Tennessen
2005a). Fourth, the allelic lineages with the most variation
are not the most common, again suggesting that allele frequen-
cies were quite different in the recent past. Finally, genetic
distance at Brevininl.l is exceptionally high among some
R. pipiens populations, and stable balancing selection would
predict a trend in the opposite direction (fig. 6).

Our results provide unique insight into the evolution of
immunity genes. Nearly all examples of pathogen-induced
balancing selection are detection and signaling proteins,
such as those of the vertebrate adaptive immune system
(Garrigan and Hedrick 2003). The Brevininl.l locus repre-
sents a rare example of an effector gene harboring an adap-
tive polymorphism. Loci encoding AMPs in mussels and
humans also show high variation consistent with balancing
selection (Hollox and Armour 2008; Pahdi and Verghese
2008). Drosophila AMPs are not under balancing selection
(Clark and Wang 1997; Lazzaro and Clark 2003), possibly
because fly AMPs, which also show little evidence for pos-
itive selection, may have less specific targets than AMPs in
other taxa (Sackton et al. 2007). The AMP locus Ranatuer-
in2 has undergone a selective sweep in R. pipiens and
shows no evidence of balancing selection (Tennessen
and Blouin 2007), but this pattern is also consistent with
fluctuating selection if the other alleles are extremely rare
or have recently been eliminated. Fluctuating selection in
particular has only occasionally been convincingly demon-
strated for any immunity locus, effector or otherwise. Many
of the best examples of fluctuating selection on defense
genes are from plants (Stahl et al. 1999; Tiffin et al.
2004; Tiffin and Moeller 2006), but a few animal examples
also exist (Jensen et al. 2008). Even for well-studied loci
under balancing selection like the genes of the major his-
tocompatibility complex, the importance of stable versus
fluctuating selection is not clear (Piertney and Oliver
2006); the universally observed high allelic diversity at
these loci suggests that if fluctuating selection occurs,
the fluctuations are nearly instantaneous and, therefore,
closer to stable balancing selection than they are at the
Brevininl .1 locus. Microbes can evolve resistance to detec-
tion mechanisms by simply substituting one or more amino
acid residues on their surface proteins. In contrast, micro-
bial resistance to AMPs involves changing the biochemis-
try of the cell membrane or producing AMP-degrading
enzymes, adaptations which might involve several coordi-
nated changes across multiple genes. Thus, we hypothesize
that it is more difficult for microbes to evolve resistance to
AMPs than to detection mechanisms, resulting in longer lag
periods between host evolution and pathogen evolution and
therefore greater fluctuations in allele frequencies, includ-
ing occasional allele fixation. Fluctuating selection may be
difficult to distinguish from positive selection if divergent,
low-frequency alleles are not sampled, which may be partly
why documented examples of balancing selection on
effector molecules are rare. Overall, our results help to
illustrate when and how balancing selection can act on
effector loci.



Allele frequency differences among populations are ei-
ther due to genetic drift or different selective pressures in dif-
ferent habitats. In R. pipiens, allele frequencies differ
substantially between populations east and west of the Mis-
sissippi River (supplementary table 1, Supplementary Ma-
terial online), but this differentiation is consistent with
genetic drift, given the high east—-west mitochondrial
DNA divergence also observed in this species (Hoffman
and Blouin 2004). The high differentiation among the east-
ern populations at Brevininl .1, despite low differentiation at
neutral markers, is more likely to be due to selection (fig. 6).
Population 2 is the most likely candidate for a recent popu-
lation-specific shift in allele frequencies because it is quite
divergent from other populations nearby and because its hap-
lotype diversity is low despite having normal levels of neu-
tral genetic diversity. Allele frequencies in this population
have not changed noticeably between 1971 and 2001, so
if there is a difference in selective pressures between popu-
lation 2 and its neighbors, it is more than a few decades old.

Variation at AMP loci is likely to be an important
contributor to the ability of amphibian species to adapt
to novel disease threats. Agents of emerging infectious
diseases are causing precipitous declines, and in some
cases extinction, in many amphibian species (Carey
et al. 1999; Daszak et al. 2003). It is thought that AMPs
are an important defense against these pathogens
(Chinchar et al. 2004; Rollins-Smith and Conlon 2005;
Woodhams, Rollins-Smith, et al. 2006; Woodhams, Voy-
les, et al. 2006). Several epizootics of the fungal pathogen
Batrachochytrium dendrobatidis and iridovirus have
caused declines of R. pipiens populations in recent deca-
des (Carey et al. 1999; Green et al. 2002; Greer et al.
2005). Although these epizootics could be selective agents
on the Brevininl.l locus, we did not observe any historic
allele frequency change in population 2, and allelic line-
ages are too divergent to have arisen within a few decades.
Therefore, nonneutral patterns of genetic diversity are
probably primarily due to long-term allelic fluctuations
caused by unidentified native diseases, with recent disease
outbreaks possibly shaping this variation.

Our study adds to the growing body of knowledge on
diversifying selection among AMPs by demonstrating that
AMPs encoded by alleles at the same locus can show
evidence of major adaptive differences. We have shown that
genes encoding immune effector proteins can harbor balanced
polymorphisms comparable to many pathogen-detection
genes. Researchers developing AMPs for therapeutic applica-
tions (Hancock 2001) should consider examining multiple in-
dividuals of the same species to encounter functionally novel
allelic variants. Our data are consistent with a model of fluctu
ating selection, likely caused by pathogens. However, be-
cause the results of many of our tests were merely suggestive,
we are reluctant to completely reject the hypothesis of stable
balancing selection. Further study is required to determine
the specific functional difference among these peptides,
the particular pathogens that are driving selection, and the
precise mechanism maintaining variation. We are currently
examining the antimicrobial effects of these peptides in vitro
(Tennessen JA, Woodhams DC, Reinert LK, Blouin MS, and
Rollins-Smith LA, unpublished data). Loci encoding AMPs,
such as Brevininl .1, can be important sites of adaptive genetic
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diversity and major players in the coevolutionary arms race
between hosts and pathogens.

Supplementary Material

Supplementary tables 1 and 2 are available at
Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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