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A selected number of global climate models (GCMs) from the fifth Coupled Model Intercomparison Project (CMIP5) were
evaluated over the Volta Basin for precipitation. Biases in models were computed by taking the differences between the averages
over the period (1950–2004) of the models and the observation, normalized by the average of the observed for the annual and
seasonal timescales. -e Community Earth System Model, version 1-Biogeochemistry (CESM1-BGC), the Community Climate
System Model Version 4 (CCSM4), the Max Planck Institute Earth System Model, Medium Range (MPI-ESM-MR), the
Norwegian Earth System Model (NorESM1-M), and the multimodel ensemble mean were able to simulate the observed cli-
matological mean of the annual total precipitation well (average biases of 1.9% to 7.5%) and hence were selected for the seasonal
and monthly timescales. Overall, all the models (CESM1-BGC, CCSM4, MPI-ESM-MR, and NorESM1-M) scored relatively low
for correlation (<0.5) but simulated the observed temporal variability differently ranging from 1.0 to 3.0 for the seasonal total. For
the annual cycle of the monthly total, the CESM1-BGC, theMPI-ESM-MR, and the NorESM1-Mwere able to simulate the peak of
the observed rainy season well in the Soudano-Sahel, the Sahel, and the entire basin, respectively, while all the models had
difficulty in simulating the bimodal pattern of the Guinea Coast. -e ensemble mean shows high performance compared to the
individual models in various timescales.

1. Introduction

Rainfall is an important component of the hydrological cycle
and plays an essential role in determining the amount of
water available at the surface. Most of the countries in West
Africa depend mainly on rainfed agriculture [1], and
therefore, the amount of rainfall affects the crop yield [2]. A
decrease in the amount of precipitation may lead to drought
[3, 4], while an increase can cause flooding [5]. In the past
years, incidents of floods in West Africa have caused
a devastating impact on people’s health and destruction to
properties and livelihood [6]. -e Volta Basin is a major
source of water to a number of countries [7] in the West
African region. It serves as a major driving force of the

economic progress of many countries in West Africa in-
cluding Ghana, Burkina Faso, Cote d’Ivoire Mali, and Togo
[8, 9]. In Ghana, the major source of energy (hydroelectric
power) is generated mainly from the Akosombo Dam,
Kpong Dam, and Bui Dam [9]. -ese dams have been
constructed at different locations within the basin and
contribute more than 60% [9, 10] of hydroelectric power, to
the total energy needs of the country. -e Volta Basin can be
divided into the Guinea Coast, the Soudano-Sahel, and the
Sahel [11, 12] agroecological zones (Figure 1), based on the
annual amount of precipitation received by these sub-
regions. -erefore, changes in the amount of precipitation
and hence changes in the amount of available water affect the
lives of the inhabitants [13]. Changes in the future climates
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of the globe and the West African region imply likely
changes in the hydrology and water resources of the Volta
Basin which raise serious concerns that demand urgent
attention for the region. Various climate studies (that mainly
apply GCMs) on the future of the earth’s climate system
suggest changes in the climate from global (e.g., [14–16]) to
the regional scales (e.g., [17, 18]).

Also, a regional climate model (RCM) takes its input
from a GCM, and therefore, the performance of the driving
GCM is a crucial issue that should not be ignored. In essence
of that, forcing data from a poorly performed GCM can
significantly affect the performances of the RCM. It is
therefore important to assess the performances of GCMs
over an economically important basin such as the Volta.

Mehran et al. [19] evaluated 34 CMIP5 GCMs in
reproducing observed precipitation over the globe using the
volumetric hit index (VHI) analysis. In their study, the
GCMs showed good agreement with the observed, but
reproducing the observed precipitation over arid regions
and certain subcontinental regions was problematic, for the
total monthly precipitation. -is confirms the assertion that
GCMs have limitations when it comes to the representation
of observed precipitation on both short temporal and small
spatial scales (e.g., [18]). -ey also indicated the superior
performance of the multimodel ensemble mean to the in-
dividual models. Kumar et al. [20] have also evaluated
temperature and precipitation trends in 19 CMIP5 GCMs,
focusing on continental areas (60°S–60°N) for the 1930–2004
period. -ey showed that there are large uncertainties in the
models in simulating local-scale temperature and pre-
cipitation trends. -ey also indicated the high performance
of the multimodel ensemble average compared to the in-
dividual models. Other studies have evaluated the perfor-
mance of CMIP5 models over other regions including North

Pacific [21], Europe [22–24], and Asia (e.g., [25–28]) and
reported high variations in the performances of the GCMs
over the different regions.

Over Africa, Nikulin et al. [29] evaluated the perfor-
mance of CORDEX-RCMs in simulating precipitation. -ey
evaluated the simulated precipitation at seasonal, annual,
and diurnal timescales and indicated that all models sim-
ulated the seasonal and annual precipitation quite well. -ey
also indicated the superior performance of the ensemble
average of the RCMs to the individual models. Nikiema et al.
[30] reported better multimodel CMIP5 and CORDEX
simulations of historical summer temperature and pre-
cipitation variabilities over West Africa. -ey evaluated and
intercompared the multimodel ensembles of the CMIP5 and
the CORDEX and found that while CORDEX failed to
outperform the simulated mean climatology of temperature
by the CMIP5 ensembles, it substantially improved the
simulation of precipitation and provided a more realistic
fine-scale features tied to local topography and land use.
Over the Volta Basin, Annor et al. [31] evaluated the per-
formance of the Weather Research and Forecast (WRF)
model forced by the MPI-ESM-MR in reproducing the
present day (1980–2005) temperature and precipitation.
-ey reported the transfer of bias from the GCM to the RCM
and indicated that, at certain instances, the RCMminimized
the bias and at other instances increased the GCM bias in
both temperature and precipitation. Agyeman et al. [32]
assessed the best physics parameterization scheme combi-
nation for seasonal simulation over Ghana and showed that
scheme combinations are sensitive to the agroclimatic belts
within the country. Aziz and Obuobie [33] looked at trend
analysis in observed (1981–2010) and projected (2051–2075
and 2076–2100 under the IPCC Representative Concen-
tration Pathways RCP4.5 and RCP8.5) precipitation and
mean temperature over the Black Volta Basin using RCMs.
-ey showed a statistically significant (at the 5% significant
level) increase of 111mm in the annual rainfall, whereas
a significant increase of 0.9°C in temperature for the ob-
served period. For the future projection, there is high un-
certainty in the trend of rainfall (which is statistically
nonsignificant), as some ensemble members project positive
trends, while others gave negative trends. With regard to the
temperature, average annual projection showed increases
over the basin, with the warming being higher under the
RCP8.5 scenario than under the RCP4.5 scenario.

-e above studies have contributed immensely to the
assessment of the performance of GCMs and RCMs in
reproducing the observed climatology of various regions
including Africa, but very few focus on the Volta Basin and
the very few that targeted the basin in most cases assessed
single GCMs. -erefore, assessing the performances of
several GCMs from the CMIP5 over the Volta Basin will
contribute significantly to the efforts in climate modeling
over the region. Giorgi and Gutowski [34] indicated the
importance of analyzing the performance of GCMs before
they are used to drive RCMs.-is study therefore focuses on
the performance of 18 GCMs in simulating precipitation
over the Volta Basin and the three belts (Guinea Coast,
Soudano-Sahel, and Sahel).
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Figure 1: -e three ecological zones in the basin, from the humid
Guinea Coast to the semiarid Sahel (modified from Fujihara et al.
[45]).

2 Advances in Meteorology



In this paper, the performance of GCMs in simulating
observed precipitation is presented. Section 2 presents the
observational data and the models used for the study in-
cluding the methods used for the evaluation of models.
Section 3 discusses the results. -e summary and conclu-
sions are found in Section 4.

2. Materials and Methods

2.1. Data

2.1.1. Observational Data. In this study, the Global Pre-
cipitation Climatology Centre (GPCC) version seven (v7)
precipitation data [35] on a 0.5° × 0.5° grid resolution is used
as reference precipitation data that depict spatial variability
over the basin.-is data set comprises observations based on
three-dimensional variational assimilation [36]. Due to the
highly varying spatial distribution of precipitation, spatial
density of observed precipitation data is crucial over West
Africa. Studies (e.g., [37, 38]) have indicated that the
availability of high-quality data set especially in the case of
precipitation overWest Africa is problematic. Consequently,
gridded observational open-source data sets become the
practical option for model validation purposes within the
region. -e selection of the GPCC data as reference data for
this evaluation study is based on the fact that they have been
applied in similar model evaluation studies (e.g., [31, 32])
over the West African region. Other studies including
Gruber et al. [39], Nicholson et al. [37], Paeth et al. [38], and
Nikulin et al. [29] have demonstrated the robustness of
GPCC data in reproducing observed precipitation in the
West African region. -ese studies expressed confidence in
this particular data set. Moreover, there are a significant
number of gauge stations over West Africa that have been
incorporated in the development of the GPCC data set.
However, the GPCC data have low gauge station density
over the Sahara region [29].

2.1.2. Model Data. All the model outputs evaluated in this
study are from the CMIP5, used in the preparation of the
Fifth Assessment Report (AR5) of the Intergovernmental
Panel on Climate Change (IPCC). -is is the latest phase of
a coordinated effort by modeling groups across the globe to
systematically perform so many prescribed climate model
experiments [40]. -e study uses 18 GCM simulations
provided by 16 modeling centres and groups. -e model
names, acronyms, and their horizontal and vertical reso-
lutions are shown in Table 1. -e selection of these GCMs
are based on the fact that most of the GCMs have been
applied extensively over the basin (e.g., [18, 31]), and also our
selection was informed by the availability of model data with
similar ensemble members. Although these are not the only
models with similar ensemble members, all the ones we used
are of similar ensemble members for the present. All the
models are long-term historical runs from the CMIP5 ex-
periments which include a preindustrial control (piControl)
experiments. -ey all include the same ensemble member
(r1i1p1); that is, all the models are initialized from the same
initial observed conditions (initialization 1 (i1)), the same

methods (realization 1 (r1)), and the same “perturbed
physics” 1 (p1) [41]. For each model, total monthly pre-
cipitation data of 55 years (1950–2004) were used for the
study. -e Program for Climate Model Diagnosis and In-
tercomparison (PCMDI) collected the model data as part of
the process leading to the CMIP5 [42].

2.2. Methods. -e models’ performances in reproducing the
observed climatology are analyzed relative to the observa-
tional data. First, each of the model grids was bilinearly in-
terpolated [43, 44] to the GPCC grid of 0.5° × 0.5° resolution to
facilitate direct comparison of the models with the obser-
vational data. -e comparison was done over the Volta Basin
(4.9°N–16°N; 6°W–3°E) and the three subregions including
the Guinea Coast (4.9°N–8°N), the Soudano-Sahel (8°N–
12°N), and the Sahel (12°N–16°N) [12], for the annual, sea-
sonal, and monthly timescales. -e Guinea Coast (GC) is
characterized by a bimodal pattern of precipitation (a max-
imum peak in June and a second one in September), while the
Soudano-Sahel (SD) and the Sahel (SA) regions are charac-
terized by a unimodal pattern (the maximum peak in August
in both cases). -ese modes are influenced by the meridional
movements of the ITCZwithin the year. Figure 1 shows amap
of the Volta Basin including the three subregions.

2.2.1. Annual Scale Analysis. On the annual scale, biases in
models were computed by taking the differences between the
averages over the period (1950–2004) of the models and the
observation, normalized by the average of the observed as
shown in (1).

-is is done to assess the spatial biases in the models over
the entire basin for the study period (1950–2004):

Relative bias �
model− observed

observed
× 100%. (1)

2.2.2. Seasonal Scale Analysis. In the seasonal total, biases in
the models were computed in the same manner done for the
annual totals using (1). -is is done for the dry (November,
December, January, February, and March (NDJFM)) and
rainy (April, May, June, July, August, September, andOctober
(AMJJASO)) seasons of the Volta Basin. Secondly, the three
statistics, the standardized deviation (σ) (2), the correlation
coefficient (r) (3), and the root-mean-square error (RMSE)
(4) were computed, representing the temporal variability, the
temporal pattern, and the temporal errors in the models,
respectively. -is is done for the DJF, MAM, JJA, and SON
standard seasons for the entire basin and the three belts.
Lastly, trend analysis was done over the Volta Basin and the
three belts for the various seasons that are found over these
regions. -e standard deviation (σ) is given by

σ �

������������

1
N



N

i�1
xi −x( 

2




, (2)

where N is the total number of data points and x is the mean
of the individual data points, xi.

Advances in Meteorology 3



-e correlation coefficient r between the variables x and
y is defined as follows:

r �
(1/N)

N
i�1 xn −x(  yn −y( 

σxσy

. (3)

-e root-mean-square error (RMSE) for the fields f and
r is defined as follows:

RMSE �
1
N



N

i�1
fi − ri( 

2⎡⎣ ⎤⎦

1/2

. (4)

-e trends in the seasonal precipitation over the entire
basin and the three zones are also considered using the
Mann–Kendall (MK) test [46, 47]. Pettitt’s test [48] was
used for the change-point detection. -e -eil–Sen esti-
mator [49] was applied in the case of the slope.-eMK test
is a nonparametric rank-based statistical test used for
detecting monotonic trends in time-series data. In com-
parison with other nonparametric procedures, such as

Spearman’s rho test [50], the power of the Mann–Kendal
test is robust and similar to the extent of giving in-
distinguishable results in practice [51]. -e MK statistic
(Smk) is calculated theoretically using the following
equation:

Smk � 
N

i�1


N

j�i+1
sgn Xj −Xi , (5)

where Xj and Xi are the data values of j and i, such that
(j> i), and sgn is given as follows:

sgn Xj −Xi  � 0 if Xj −Xi � 0,

sgn Xj −Xi  � 1 if Xj −Xi > 0,

sgn Xj −Xi  � −1 if Xj −Xi < 0.

(6)

Under the null hypothesis of no trend and independence
of the series terms, the variance of the Mann–Kendall sta-
tistic is calculated as follows:

Table 1: Details of models used in the study (the descriptions are from Taylor et al. [42]), showing models’ spatial resolution for the
Atmospheric Global Climate Model (AGCM) and Oceanic Global Climate Model (OGCM) and the various institutions that produced the
models.

Model name Resolution, number of grids (lon.× lat.; levels)
of AGCM (OGCM) Institution

BCC-CSM1.1 128× 64; 26 (360× 232; 40) Beijing Climate Center, China Meteorological
Administration, China

BNU-ESM 128× 64; 26 (360× 200; 50) College of Global Change and Earth System Science,
Beijing Normal University

CanESM2 128× 64; 26 (360×192; 40) Canadian Centre for Climate Modelling and
Analysis, Canada

CCSM4 228×192; 26 (320× 384; 60) National Center for Atmospheric Research, USA
CESM1-BGC 288×192; 26 National Center for Atmospheric Research, USA

CMCC-CM 480× 240; 31 (182×149; 31) Centro Euro-Mediterraneo per I Cambiamenti
Climatici, Italy

CNRM-CM5 256×128; 31 (362× 292; 42)
Centre National de Rescherches

Meteorologiques/Centre Europeen de Recherche et
Formation Avances en Calcu Scientifique, France

CSIRO-Mk3.6.0 192× 96; 18 (192×189; 31)
Commonwealth Scientific and Industrial Research
Organisation in collaboration with the Queensland
Climate Change Centre of Excellence, Australia

EC-EARTH 320×160; 21 (182×149; 31) EC-Earth (European Earth System Model)

HadGEM2-AO 192×145; 60 (360× 216; 40) National Institute of Meteorological Research, Seoul,
South Korea

HadGEM2-CC 192×144; 60 (360× 216; 40) Met Office Hadley Centre, UK
INMCM4 180×120; 21 (360× 340; 40) Institute of Numerical Mathematics, Russia
IPSL-CM5A-MR 96× 96; 39 (182×149; 31) Institut Pierre Simon Laplace, France

MIROC5 256×128; 40 (256× 224; 50)

Atmosphere and Ocean Research Institute (-e
University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology, Japan

MIROC-ESM 128× 64; 80 (256×192; 44)

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research

Institute (-e University of Tokyo), and National
Institute for Environmental Studies, Japan

MPI-ESM-MR 192× 96; 47 (256× 220; 40) Max Planck Institute for Meteorology (MPI-M),
Germany

MRI-CGCM3 320×160; 48 (360× 368; 51) Meteorological Research Institute, Japan
NorESM1-M 144× 96; 26 (320× 384; 70) Norwegian Climate Centre, Norway
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var Smk(  �
N(N− 1)(2N + 5)−

M
i�1Ui(i)(i − 1)(2i + 5)

18
,

(7)

where M is the number of tied groups and Ui represents the
size of the Mth group. -e summation term in the nu-
merator is used only if the data series contains tied values.
For the sample size n≥ 10, the statistic S assumes normal
distribution, and the standard normal test statistic ZS is
computed as follows:

ZS � 0 for S � 0, (8)

ZS �
S− 1
������
var(S)

 for S> 0, (9)

ZS �
S + 1
������
var(S)

 for S< 0. (10)

And for the p values for the MK test,

p � 0.5−φ ZS


 . (11)

-e trend results in this study have been evaluated at the
5% significant level (95% confidence level). -e corre-
sponding threshold (Z) value is ±1.96. -is implies that the
null hypothesis is rejected when |ZS|≥Zα/2 in (8)–(10) at the
α � 0.05 level of significance.

For Pettitt’s test, which represents a sudden change in
the statistics of a record, (12)–(14) were used:

KT � max UtT


, (12)

where

UT � 
N

i�1


N

j�i+1
sgn Xj −Xi . (13)

-e change point is located at KT, provided the statistic
(p< 0.05) is significant:

p � 2 exp
−6K2

T

T3 + T2 . (14)

-e magnitude of the trend is estimated using the
-eil–Sen estimator which robustly fits a line to sample
points in the plane by choosing the median of the slopes of
all lines through pairs of points. -e estimation is given by

Qi �
Xj −Xk

j− k
for all k< j and i � 1, ... , N, (15)

where Qi � slope between the data points Xj and Xk,
Xj � data values at time j, and Xk � data values at time k.
N � (n(n− 1))/2, where 1< k< j< n and n is the total
number of observations for each period. -e N values of Qi

are ranked from the least to the largest, and the median of
these N values of Qi is Sen’s estimate of the slope computed
as follows:

Qmed � Q
N + 1
2

 , (16)

when N is an odd number, and

Qmed � Q
N

2
  + Q

N + 2
2

 , (17)

when N is an even number.
-e direction of the trend is given by the sign of Qmed,

while its magnitude indicates the steepness of the trend.

2.2.3. Annual Cycle of Monthly Total Precipitation Analysis.
In the annual cycle analysis, the climatological monthly
mean for all the models for the whole 55-year period was
compared to that of the GPCC precipitation data. First, area
averages over the whole Volta Basin and the three ecological
zones, the Guinea Coast, the Soudano-Sahel, and the Sahel,
were computed. -is is done to assess the models’ ability in
reproducing the bimodal pattern of precipitation over the
Guinea Coast and the unimodal pattern of precipitation over
the Volta Basin, the Soudano-Sahel, and the Sahel.

3. Results and Discussion

-e performance of the selected CMIP5 GCMs relative to
the GPCC precipitation data is presented on the annual,
seasonal, and monthly timescales.

3.1. Annual Total for Climatological Mean Bias. -e clima-
tological (1950–2004) mean biases in the annual total for the
individual models are presented in Figures 2–5. -ere are
overestimation and underestimation of the observed annual
precipitation over the basin by some of the models. Some
models simulated precipitation close to the observed pre-
cipitation over major parts of the basin.

Figure 2 shows the results of models overestimating the
observed precipitation over most parts of the basin with wet
bias up to 196%. -e MIROC5 overestimates the amount of
precipitation over the entire basin with the highest mean
relative bias of 102.5%. CSIRO-Mk3.6.0 overestimates the
Sahelian part of the basin with a maximum relative bias of
116.0% and underestimates the Guinea Coast with a mini-
mum relative bias of −42.0%, whereas the MIROC-ESM
overestimates mostly the southern part of the basin with
a mean relative bias over the whole basin of 23.0% where the
biases are ranging from −19.0% to 195.6%. -e CanESM2,
the CNRM-CM5, and the EC-EARTH overestimate pre-
cipitation almost over the entire basin with biases ranging
from −12.3% to 112.0%. -e Volta Basin’s precipitation
climatology is controlled mainly by the two winds [52]: the
northeasterlies, which are characterized by dry cold winds
from the Sahara, and the southwesterlies, characterized by
moist warm winds from the Atlantic Ocean. A proper
representation of these two air masses is relevant for the
simulation of the precipitation. Models that overestimate
precipitation could exaggerate the effects of the moist winds
from the Atlantic Ocean (e.g., [52, 53]).

Figure 3 represents the results of models generally
underestimating the observed precipitation over most parts
of the basin with bias up to −114%. -e MRI-CGCM3,
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Figure 2: -e climatological (1950–2004) mean bias in the annual total precipitation for the models: MIROC5 (a), CSIRO-Mk3.6.0 (b),
MIROC-ESM (c), CNRM-CM5 (d), CanESM2 (e), and EC-EARTH (f), overestimating the observed climatological mean overmajor parts of
the Volta Basin.
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Figure 3: -e climatological (1950–2004) mean bias in the annual total precipitation for the models: MRI-CGCM3 (a), INMCM4 (b),
HadGEM2-CC (c), IPSL-CM5A-MR (d), HadGEM2-AO (e), and CMCC-CM (f), underestimating the observed climatological mean over
major parts of the Volta Basin.
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INMCM4, HadGEM2-CC, IPSL-CM5A-MR, HadGEM2-AO,
and CMCC-CM underestimate the observed precipitation and
havemean biases of −50.8%, −49.1%,−32.7%,−31.5%, −34.8%,
and −28.1%, respectively. -ese models could probably ex-
aggerate the effects of the dry winds from the Sahara and also
the warming of the troposphere by greenhouse gases that
decrease the vertical temperature gradient inducing a stable
atmosphere (e.g., [54, 55]).

Figure 4 shows the Beijing Climate Center Climate
System Model version 1.1 (BCC-CSM1.1) and the Beijing
Normal University Earth System Model (BNU-ESM)
underestimating the observed precipitation in the Sahel
while overestimating in the Guinea Coast. Averagely, both
models underestimate precipitation over the entire basin.

-eCESM1-BGC, CCSM4, NorESM1-M,MPI-ESM-MR,
and multimodel ensemble mean are able to simulate pre-
cipitation close to the observed precipitation value, withmean
biases of 4.6%, 7.5%, 2.8%, 6.1%, and 1.9%, respectively, as
shown in Figure 5. -ese models are able to simulate the
observed precipitation relatively well. Due to the ability of
these models to simulate the annual climatology over the
basin, they are then considered for the seasonal and monthly
timescale analyses.

3.2. Seasonal Total for Climatological Mean Bias. -e cli-
matological (1950–2004) mean biases in the seasonal totals
of the four models with the least annual climatological mean
biases are presented in Figures 6 and 7. -e two seasons: the
dry season (NDJFM) and the rainy season (AMJJASO), are
considered over the entire basin.

3.2.1. 0e Dry Season. -is season is characterized by small
amount of precipitation over the Volta Basin and coincides
with the Northern Hemispheric winter season. Excluding

the MPI-ESM-MR which underestimates the observed
precipitation (average bias of −47.5%) over the entire basin,
all the models including the ensemble mean (EM) of all the
18 models overestimate precipitation over the Sahelian re-
gion with biases up to 164.8%, whereas the precipitation over
the Guinea Coast and some parts of the Soudano-Sahel is
underestimated (up to 34%), as shown in Figure 6. Aver-
agely, the CESM1-BGC and the NorESM1-M estimate
seasonal precipitation close to the observed precipitation
with biases of 14.2% and 7.9%, respectively. Simulating
observed climatology for shorter timescales is a major
limitation of GCMs [56], as shown in the models’ inability to
reproduce the observed seasonal precipitation well though
these four models and ability to simulate the observed
precipitation well in the case of the annual total.

3.2.2. 0e Rainy Season. -is season follows the major dry
season with a gradual increase in precipitation which peaks
in August. During the rainy season, precipitation varies
greatly from one latitude to the other. For this season, as
shown in Figure 7, the NorESM1-M and the EM simulate
minimal seasonal mean biases of 4.0% and 4.3%, re-
spectively. All the models, including the EM, overestimate
the observed seasonal precipitation over the Guinea Coast
and some portions of the Soudano-Sahel. In addition to the
GCMs’ limitation in simulating shorter timescales for pre-
cipitation, their course grids pose a major challenge in
simulating subgrid features such as orography, convective
clouds, and vegetation [57] which might have impacted
significantly on the simulation of the precipitation.

3.3. Regional Differences in Precipitation

3.3.1. Annual Cycles of Monthly Total Precipitation. In the
annual cycle, as shown in Figure 8, the ability of the models
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Figure 4:-e climatological (1950–2004) mean bias in the annual total precipitation of BCC-CSM1.1 (a) and BNU-ESM (b).-ey averagely
underestimate the observed precipitation.
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Figure 5: -e climatological (1950–2004) mean bias in the annual total precipitation for the models: CESM1-BGC (a), CCSM4 (b),
NorESM1-M (c), MPI-ESM-MR (d), and ensemble mean (e), simulating the observed climatological mean relatively well over the Volta
Basin.
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Figure 6: -e climatological (1950–2004) mean bias in the seasonal totals of the models: CCSM4 (a), CESM1-BGC (b), MPI-ESM-MR (c),
NorESM1-M (d), and ensemble mean (e), with least annual climatological mean biases for the dry season over the Volta Basin.
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Figure 7: -e climatological (1950–2004) mean bias in the seasonal totals of the models: CCSM4 (a), CESM1-BGC (b), MPI-ESM-MR (c),
NorESM1-M (d), and ensemble mean (e), with least annual climatological mean biases for the rainy season over the Volta Basin.
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to simulate the unimodal (over the VB, the SD, and the SA)
and the bimodal (over the GC) nature of the precipitation
pattern [58] is examined. For the GC, precipitation increases
from January and peaks in June. -is is the first and major
peak. Precipitation then decreases in July to a minimum in
August and then increases until it peaks again in September
which is the second and minor peak [58]. For the whole
basin, the SD, and the SA, maximum precipitation occurs in
August [59]. -e observed data used (Figure 8) also confirm
these cycles for the various belts.

For the entire Volta Basin, the models are able to
simulate the unimodal pattern of precipitation. -e MPI-
ESM-MR (240.5mm) overestimates the observed maximum
precipitation (199.4mm), which occurs in August, while the
CESM1-BGC (202.8mm), the ensemble mean (204.2mm),
and the NorESM1-M (200.8mm) are all able to simulate the
maximum observed precipitation (209.5mm) well.

For the Guinea Coast, the models are unable to simulate
the bimodal nature accurately; for example, CESM1-BGC
simulates early peaks, while others, for instance, CCSM4,

simulate late peaks. Generally, most of the models over-
estimate the observed precipitation over the coast especially
in the months of July and August. -e ensemble mean of the
models simulates a unimodal pattern of precipitation.

For the Soudano-Sahel, all the models are able to sim-
ulate the maximum precipitation which occurs in August.
-e MPI-ESM-MR although simulates the peak over-
estimates the observed precipitation. -e NorESM1-M
(214.63mm), the CESM1-BGC (216.74mm), the CCSM4
(224.34mm), and the ensemble mean (220.39mm) are all
able to simulate the maximum precipitation close to the
observed precipitation (216.56mm).

For the Sahel, all the models underestimate the maxi-
mum precipitation (209.5mm) with the exception of the
MPI-ESM-MR (211.5mm) which is able to simulate well the
maximum observed precipitation.

-e models’ ability to simulate precipitation patterns
(unimodal or bimodal) is dependent on their abilities to
simulate the meridional movement of the intertropical
convergent zone (ITCZ) [52, 60, 61]. -e models have less
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Figure 8: Annual cycles of monthly total precipitation for the period mean showing the bimodal (over the GC (b)) and the unimodal
patterns (over the VB (a), the SD (c), and the SA (d)).
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difficulty in simulating the unimodal pattern over the basin,
the Soudano-Sahel, and the Sahel. Over the Guinea Coast, the
bimodal pattern is poorly simulated. -e models had less
difficulty in simulating the dry season precipitation due to the
less spatial variation in precipitation during the dry season.
Compared to the dry season, precipitation varies spatially
during rainy seasons due to differential occurrence of con-
vection activities across the regions, and another factor is the
coarse resolution of the GCMs which makes it difficult to
simulate these mesoscale features (e.g., [57, 62, 63]).

3.3.2. Seasonal Trend Analysis. -e Mann–Kendall test was
used to analyze the trend in the rainy and dry seasons over
the GC, SD, SA, and VB. -e results are presented in
Tables 2–5. -e trend results in this study have been eval-
uated at the 5% significant level (95% confidence level), and
the corresponding threshold (Z) value is ±1.96. -is implies
that the null hypothesis is rejected when |ZS|≥Zα/2 in
(8)–(10) at the α � 0.05 level of significance.

For the change-point detection (12)–(14), Pettitt’s test
was used to indicate the year (KT) of change in the trend and

Table 2: Trend test for the Volta Basin rainy and dry seasons.

Z p value Slope p value (change point) Change point year
Dry season (NDJFMA)
Observed −2.9 0.004 −0.85 0.003 1970
CCSM4 −1.5 0.135 −0.53 0.419 1960
CESM1-BGC 0.9 0.376 0.28 0.527 1981
MPI-ESM-MR 1.8 0.079 0.51 0.338 1995
NorESM1-M 1.3 0.182 0.30 0.527 1976
Ensemble −0.8 0.429 −0.05 0.415 1967
Rainy season (MJJASO)
Observed −2.3 0.022 −1.58 0.024 1970
CCSM4 −0.1 0.919 −0.09 1.384 1965
CESM1-BGC 1.3 0.207 1.04 0.130 1983
MPI-ESM-MR 1.8 0.079 0.51 0.338 1995
NorESM1-M −0.6 0.532 −0.56 0.603 1957
Ensemble 1.8 0.076 0.39 0.059 1985

Table 3: Trend test for the Guinea Coast major rainy/dry and minor rainy/dry seasons.

Z p value Slope p value (change point) Change point year
Major dry season (DJFM)
Observed −4.6 5.14E− 06 −1.83 0.0002 1979
CCSM4 −0.9 0.368 −0.27 0.513 1955
CESM1-BGC −0.2 0.828 −0.04 0.885 1979
MPI-ESM-MR −1.8 0.079 −0.52 0.383 1970
NorESM1-M −1.0 0.303 −0.21 0.317 1963
Ensemble −2.9 0.003 −0.16 0.009 1972
Major rainy season (AMJ)
Observed −1.2 0.212 −0.69 0.027 1970
CCSM4 0.1 0.942 0.04 1.283 1961
CESM1-BGC 0.0 0.977 0.01 1.558 1961
MPI-ESM-MR 2.0 0.050 1.31 0.269 1970
NorESM1-M −0.8 0.400 −0.46 1.019 1967
Ensemble 0.1 0.905 0.02 1.209 1984
Minor dry season (JA)
Observed 1.7 0.089 1.44 0.157 1962
CCSM4 −1.1 0.276 −0.88 0.603 1957
CESM1-BGC 0.1 0.885 0.12 0.701 1965
MPI-ESM-MR 0.8 0.408 0.50 0.635 1987
NorESM1-M 0.2 0.850 0.15 0.940 1984
Ensemble −1.9 0.054 −0.3 0.020 1968
Minor rainy season (SON)
Observed −1.9 0.063 −1.14 0.061 1964
CCSM4 −0.7 0.486 −0.52 0.882 1975
CESM1-BGC 1.2 0.245 0.72 0.146 1983
MPI-ESM-MR 3.8 0.0001 2.43 0.002 1974
NorESM1-M 0.2 0.805 0.146 1.160 1977
Ensemble 0.4 0.687 0.06 0.620 1991
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the significance, which is also analyzed at the 95% confidence
level.

Table 2 shows results for the trends in seasonal (dry and
rainy seasons) precipitation over the Volta Basin. -ere is
a significant (99.6% confidence level) decrease in dry sea-
sonal (November (Nov), December (Dec), January (Jan),
February (Feb), March (Mar), and April (Apr)) precipitation
over the basin for the study period (1950–2004) as seen in the
observed data.-emagnitude of the decrease is 0.85mm per
season. -is denoted an increase in dryness over the basin
during the dry seasons over that 55-year period. All the
models are unable to simulate this decreasing trend with the
exception of the CCSM4 and the EM which simulate a de-
creasing trend of 0.54 and 0.05mm per season, respectively.
For the rainy season (May, June (Jun), July (Jul), August
(Aug), September (Sept), and October (Oct)), there is also
a significant (97.8% confidence level) decreasing trend in
seasonal precipitation with the magnitude of 1.58mm per
season. -e CCSM4 and the NorESM1-M simulate the
decreasing trend, with the NorESM1-M (0.6mm per season)
simulating the observed trend relatively well. Over the Volta
Basin generally, there is a decrease in seasonal precipitation
as shown in the results.

For the change-point detection (the last two columns of
Table 2), there is a change in the trend which occurs in 1970
for both seasons, that is, statistically significant (about 99%
and 98% confidence levels for dry and rainy seasons, resp.).

All the models are unable to reproduce this change point.
Table 3 gives the results of the major dry/rainy and the

minor dry/rainy seasons over the Guinea Coast. In the major
dry season (Dec, Jan, Feb, and Mar), there is a significant
(99.9% confidence level) decrease in seasonal precipitation of
1.83mm per season. All the models including the EM are able
to simulate this decreasing trend, with the MPI-ESM-MR
(0.52mm per season) doing relatively well as compared to
the other models. A statistically significant (about 99%
confidence level) change in the trend occurs in 1979, in
which all the models are unable to simulate with the ex-
ception of the CESM1-BGC. In the major rainy season (Apr,
May, and Jun), there is a decreasing trend in seasonal
precipitation which is not statistically significant. With the
exception of the NorESM1-M (decreasing at 0.46mm per
season) which is able to simulate the decreasing trend, all the
models simulate an increasing trend. -e change-point year
as seen in the observational data occurs in 1970, and it is
statistically significant (about 97% confidence level). Only

Table 4: Trend test for the Soudano-Sahel rainy and dry seasons.

Z p value Slope p value (change point) Change point year
Dry season (NDJFMA)
Observed −2.3 0.024 −0.75 0.013 1970
CCSM4 −1.4 0.155 −0.55 0.513 1994
CESM1-BGC 0.7 0.459 0.26 0.651 1981
MPI-ESM-MR 1.9 0.052 0.65 0.235 1995
NorESM1-M 1.1 0.276 0.27 0.771 1986
Ensemble −0.9 0.387 −0.05 0.556 1967
Rainy season (MJJASO)
Observed −1.7 0.081 −1.29 0.157 1972
CCSM4 −0.1 0.896 −0.15 1.039 1965
CESM1-BGC 1.4 0.168 1.50 0.176 1986
MPI-ESM-MR 3.6 0.0003 3.89 0.009 1984
NorESM1-M −0.6 0.561 −0.44 0.587 1957
Ensemble 2.0 0.047 0.41 0.035 1985

Table 5: Trend test for the Sahel rainy and dry seasons.

Z p value Slope p value (change point) Change point year
Dry season (NDJFMA)
Observed −0.2 0.873 −0.01 0.979 1969
CCSM4 −1.8 0.074 −0.40 0.042 1994
CESM1-BGC 1.1 0.264 0.17 0.110 1981
MPI-ESM-MR 2.8 0.005 0.27 0.106 1965
NorESM1-M 1.1 0.251 0.28 0.513 1974
Ensemble −0.9 0.355 −0.04 0.76 1967
Rainy season (MJJASO)
Observed −4.8 1.54E− 06 −3.84 8.13E− 06 1970
CCSM4 0.3 0.760 0.28 1.201 1994
CESM1-BGC 1.2 0.245 0.82 0.115 1983
MPI-ESM-MR 3.3 0.001 3.40 0.106 1965
NorESM1-M −0.6 0.561 −0.28 0.771 1959
Ensemble 2.2 0.025 0.60 0.071 1985
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the MPI-ESM-MR is able to reproduce this change point.
For the minor dry season (Jul and Aug), an increasing trend,
although statistically not significant, is observed. All the
models simulate this increasing trend with the exception of
the CCSM4 and the EM. -e MPI-ESM-MR best simulates
the observed trend. -e change-point year occurs in 1962.
Although this change point is statistically not significant, it is
not simulated by the models. In the minor rainy season
(Sept, Oct, and Nov), the CCSM4 simulates the decreasing
trend in the observed seasonal precipitation which is sta-
tistically insignificant. All the other models simulate an
increasing trend. Also, all the models are unable to simulate
the change-point year of 1964 which is statistically not
significant.

In the Soudano-Sahel, the trend for the dry (Nov, Dec,
Jan, Feb, Mar, and Apr) and rainy (May, Jun, Jul, Aug, Sept,
and Oct) seasons is shown in Table 4. In the dry season,
a decreasing trend which is statistically significant (97.4%
confidence level) is observed, with a magnitude of 0.75mm
per season. All the models simulate an increasing trend with
the exception of the CCSM4 (decreasing trend at 0.55mm
per season) and the EM (decreasing trend at 0.1mm per
season). For the dry season, a decreasing trend of 1.3mm per
season, although statistically insignificant, is observed in the
reference data. -e NorESM1-M (decreasing trend at
0.44mm per season) is able to simulate the decreasing trend
well as compared to the other models.

-e change-point year of the dry season occurs in 1970
which is statistically significant (about 99% confidence level),
while that of the rainy season occurs in 1972 which is not
significant statistically. All the models are unable to simulate
these change points in both seasons.

Table 5 shows the dry (Nov, Dec, Jan, Feb, Mar, and Apr)
and rainy (May, Jun, Jul, Aug, Sept, and Oct) seasonal trends
over the Sahel. In the dry season, a slight decreasing trend of
0.1mm per season which is not significant statistically is
observed. -e CCSM4 (0.4mm) and the EM (0.04mm)
simulate well this trend, whereas the rest of the models
simulate an increasing trend. For the rainy season, there is
a strong decrease in seasonal precipitation (3.84mm per
season) which is significant (99.9% confidence level) in the
observational data set. All the models simulate increasing
trends with the exception of the NorESM1-M (decreasing
trend at 0.28mm per season) that simulates the decreasing
trend, but the magnitude is far less than the observed trend.

-e change-point year of the dry season although sta-
tistically insignificant occurs in 1969, while that of the rainy
season occurs in 1970, but this is statistically significant. All
the models are unable to simulate these change point
years well.

Generally, there is a decrease in seasonal precipitation of
the three belts and the basin. Dry seasons are becoming
drier, while rainy season precipitation is decreasing. -is
trend, if it continues, could significantly affect the pro-
duction of crops and also the shifting of the rainy season
(e.g., [64–66]). -e trends also show changes in the 1960s
and 1970s, shown in the change-point years. -is could be
a result of the several droughts that occurred within theWest
African subregions in the 1960s–80s [67].

3.3.3. Temporal Seasonal Patterns. For the seasonal scale, the
ability of the CCSM4, CESM1-BGC, NorESM1-M, MPI-
ESM-MR, and ensemble mean of all the 18 models to
simulate the temporal seasonal variability and the temporal
precipitation patterns is presented. -e first four models are
selected because of their ability to simulate the observed
precipitation on the annual time scale. -e variability, the
pattern, and the errors are represented by the normalized
standard deviation, the correlation coefficient, and the root-
mean-square difference, respectively, in the Taylor diagrams
[68]. -e results are presented for the standard seasons:
winter (DJF), spring (MAM), summer (JJA), and fall (SON).
In these diagrams (Figures 9–12), the correlation coefficient
(r) (main arc) and the root-mean-square (RMS) difference
(inner arcs) between the models and the GPCC data, along
with the standard deviation (SD) (horizontal axis/vertical
axis), are all indicated by points. Also, models with negative
correlation are represented below the diagrams. In addition
to the three statistics, the biases between the models and the
observed data are also included in the diagram, with right
triangles giving positive biases and left triangles giving
negative biases.

(1) Over the Entire Volta Basin. For the Volta Basin (Figure 9),
the performances of the models vary for the four seasons.
Temporal correlation for all the seasons and for all the models
is less than 0.3.-is indicates the models’ inability to simulate
the observed pattern in seasonal precipitation over the Volta
Basin. In winter (DJF), all the models underestimate the
observed variability (σ < 1) with the CCSM4 (σ � 0.6) and the
ensemble mean (EM) (σ � 0.5) simulating variability close to
the observed. In spring (MAM), the MPI-ESM-MR (σ � 2.3),
the NorESM1-M (σ �1.8), the CESM1-BGC (σ �1.6), and the
EM (σ �1.6) simulate relatively high variability, whereas the
CCSM4 (σ �1.2) simulates variability close to the observed
variability. In summer (JJA), high variability is simulated by
the EM (σ �1.5), the CESM1-BGC (σ �1.4), the MPI-ESM-
MR (σ �1.4), and the NorESM1-M (σ �1.3), whereas the
CCSM4 (σ �1.2) is able to simulate variability close to the
observed. In fall (SON), maximum variability is simulated by
the MPI-ESM-MR (σ �1.8) and NorESM1-M (σ �1.5).
However, the EM (σ �1.1), the CCSM4 (σ �1.1), and the
CESM1-BGC (σ �1.2) simulate variability close to the ob-
served data. -e CCSM4 and the EM relatively perform fairly
well in simulating the observed variability over the entire
basin.

(2) 0e Guinea Coast. Temporal correlations for all the
models in all the seasons over the Guinea Coast (Figure 10)
are also less than 0.3. In winter again, all the models un-
derestimate the observed variability with the CCSM4
(σ � 0.7) and the EM (σ � 0.5) simulating variability close to
the observed. In spring, the MPI-ESM-MR (σ �1.9) and the
EM (σ �1.4) simulate fairly high variability. -e NorESM1-
M (σ � 0.9) and the CESM1-BGC (σ �1.0) simulate vari-
ability close to the observed but fail totally in reproducing
the observed pattern due to their negative correlations. -e
CCSM4 (σ � 0.6) reasonably simulates the observed vari-
ability. In summer, all the models underestimate the
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Figure 9: Taylor diagram for the Volta Basin showing the normalized standard deviation, the correlation, and the RMSE representing the
variability, pattern, and errors, respectively, within the models and the reference data: DJF (a); MAM (b); JJA (c); SON (d).
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Figure 10: Taylor diagram for the Guinea Coast showing the normalized standard deviation, the correlation, and the RMSE representing the
variability, pattern, and errors, respectively, within the models and the reference data: DJF (a); MAM (b); JJA (c); SON (d).
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Figure 11: Taylor diagram for the Soudano-Sahel showing the normalized standard deviation, the correlation, and the RMSE representing
the variability, pattern, and errors, respectively, within the models and the reference data: DJF (a); MAM (b); JJA (c); SON (d).
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Figure 12: Taylor diagram for the Sahel showing the normalized standard deviation, the correlation, and the RMSE representing the
variability, pattern, and errors, respectively, within the models and the reference data: DJF (a); MAM (b); JJA (c); SON (d).
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observed variability with the EM (σ � 0.7) and the CCSM4
(σ � 0.7) simulating variability close to the observed. In fall,
the CCSM4 (σ �1.6) and MPI-ESM-MR (σ �1.7) simulate
high variability with the CESM1-BGC (σ �1.4) and the EM
(σ �1.1) simulating variability close to the observed vari-
ability. Relatively, the EM and the CCSM4 simulate the
observed variability over the Guinea Coast fairly well.

(3) 0e Soudano-Sahel. -e temporal correlation for all the
models and for all the seasons (Figure 11) is less than 0.4. In
the winter season, all models simulate variability less than 1
with the EM (σ � 0.6) simulating variability close to the
observed precipitation. -e MPI-ESM-MR (σ � 2.4),
NorESM1-M (σ � 2.0), CESM1-BGC (σ �1.8), and EM
(σ �1.7) simulate relatively high variability in spring.
However, the CCSM4 (σ �1.4) simulates variability close to
the observed. In summer, the CCSM4 (σ �1.1) and the MPI-
ESM-MR (σ �1.2) simulate variability close to the observed.
-e CESM1-BGC (σ �1.3) and NorESM1-M (σ �1.3) sim-
ulate variability close to the observed with negative corre-
lations, whereas a variability of 1.7 is recorded for the EM.
-e MPI-ESM-MR (σ �1.7) and NorESM1-M (σ �1.5) have
high variability in fall with negative correlations for the
CESM1-BGC (σ �1.0) and the EM (σ �1.0). However, the
CCSM4 (σ �1.0) has variability close to the observed. Again,
the CCSM4 does relatively well in simulating the observed
variability over the Soudano-Sahel.

(4) 0e Sahel. -e correlation for all the models in the four
seasons over the Sahel (Figure 12) is less than 0.4. In winter,
the EM (σ �1.0) simulates variability close to the observed,
while the rest of the models simulate variability less than the
observed. -e CCSM4 (σ �1.3) also simulates variability
close to the observed but with a negative correlation. In
spring, the NorESM1-M (σ � 2.9), CCSM4 (σ �1.7), CESM1-
BGC (σ �1.9), andMPI-ESM-MR (σ �1.5) including the EM
(σ � 2.1) simulate high variability. In summer, the CESM1-
BGC (σ �1.0) and EM (σ �1.3) simulate variability
approximate to the observed. -e CCSM4 (σ � 0.9), the
MPI-ESM-MR (σ �1.4), and the NorESM1-M (σ � 0.7) have
negative correlations. In fall, the MPI-ESM-MR (σ � 2.4),
CCSM4 (σ �1.5), CESM1-BGC (σ �1.7), and EM (σ �1.7)
simulate relatively high variability with the NorESM1-M
simulating variability close to the observed variability. -e
variability for each season in the Sahel is simulated well by
different models.

Precipitation varies highly spatially, from one region to
another over the basin. -e models’ inability to simulate the
observed pattern (low correlation) could be a result of the
varying nature of spatial precipitation. -e models (GCMs)
are unable to capture this pattern probably because of the
coarse resolutions and hence their inability to capture the
subgrid features, such as orography, and its accompanied
precipitation and convective clouds, that influence the varying
nature of precipitation over the region (e.g., [57, 62, 63]).
Generally, models evaluated in this study underestimate the
observed variability in winter. Precipitation does not vary
much spatially in winter over the basin due to the fact that the
entire basin is under the influence of the dry northeasterly

trade winds, and the models seem to strengthen this general
dryness across the basin by reproducing a smaller variability
compared to the observed. Although the models are unable to
simulate the observed pattern, the observed variability is
simulated relatively well by the CCSM4 and the EM over the
basin and the three belts. In the case of the EM, this study is
consistent with previous studies (e.g., [19, 20]) that suggest
better performances for EMs.

3.3.4. Interannual Variability of Precipitation. In the as-
sessment of the interannual variability (Figure 13), the
ability of the models to capture the observed deviation from
the climatological mean of the period of study (1950–2004) is
analyzed, for the basin and also for the three belts. -e
deviation shows the magnitude of how much high or low
a particular year’s total precipitation is from the periodmean
of the annual total precipitation.

Over the entire basin and the three belts, the CCSM4
does relatively well in reproducing the observed variability.
-e CCSM4 is able to simulate the positive or negative
deviations better than the other models. All the other models
generally had difficulty in simulating the observed year-to-
year variability. Often, they simulate opposite deviations as
compared to the observed data. -is confirms the low
correlations between the observed and the simulated pre-
cipitation on the seasonal scale.

4. Conclusion

-is study assesses the performance of 18 GCMs in simu-
lating present-day climatology (1950–2004) precipitation
over the Volta Basin including the three belts: the Guinea
Coast, the Soudano-Sahel, and the Sahel. -e analyses were
done on annual, seasonal, and monthly timescales.

First, the models’ ability to simulate the spatial distri-
bution of precipitation over the Volta Basin was investigated
by analyzing the biases in climatological mean of the annual
total precipitation. Six models (MIROC5, CSIRO-Mk3.6.0,
MIROC-ESM, CNRM-CM5, CanESM2, and EC-EARTH)
overestimate the observed precipitation over most parts of
the basin, while six other models (MRI-CGCM3, INMCM4,
HadGEM2-CC, IPSL-CM5A-MR, HadGEM2-AO, and
CMCC-CM) underestimate the observed climatological
mean of the annual total precipitation. Models such as the
CESM1-BGC, CCSM4, NorESM1-M, MPI-ESM-MR, and
EM of all the eighteen models perform relatively well in the
simulation of the annual precipitation over the Volta Basin
with small biases over most parts of the basin. -e four
models, together with the EM, were then used to assess the
regional differences in interannual, seasonal, and monthly
precipitation temporal patterns.

For the seasonal analysis, the three statistics: the cor-
relation (r), the standard deviation (σ), and the root-mean-
square error (RMSE), are used to evaluate the temporal
pattern, variability, and error in the models. -e models
(CESM1-BGC, CCSM4, NorESM1-M, and MPI-ESM-MR)
were assessed for the winter (DJF), spring (MAM), summer
(JJA), and fall (SON) seasons for the Volta Basin and the
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three belts. Overall, all the models scored relatively low on
the correlation coefficient (<0.5) but with varying standard
deviations (1.0–7.3).-e low correlations indicate that all the
models had difficulty in simulating the observed seasonal
precipitation pattern over the entire region and the three
belts. In spite of all the models’ inability to simulate the
precipitation pattern, the CCSM4 does relatively well in
simulating the observed variability over the Volta Basin, the
Guinea Coast, and the Soudano-Sahel.

In the trend analysis, the Mann–Kendall test and the
Pettitt test were used to analyze the seasonal total pre-
cipitation trend and the change point over the entire basin
and the three belts for the dry and rainy seasons. Over the
Volta Basin, the Soudano-Sahel, and the Sahel, the CCSM4
and the NorESM1-M are able to reproduce the observed
trend best for the dry and rainy seasons, respectively. Over
the Guinea Coast, the MPI-ESM-MR best reproduces the
observed trend in the major and minor dry seasons, while
the NorESM1-M and the CCSM4 reproduce the trend in the
major rainy season andminor rainy season, respectively.-e

performance of the EM in the seasonal precipitation trend is
relatively poor.

In the case of the annual cycles, the ability of the models
to simulate the bimodal precipitation pattern over the
Guinea Coast and the unimodal pattern over the Soudano-
Sahel, Sahel, and the whole basin is presented. -e cli-
matological mean of the monthly totals of the models was
calculated and compared to the observed. In the Guinea
Coast, all the four models (CESM1-BGC, CCSM4,
NorESM1-M, and MPI-ESM-MR) are unable to reproduce
the bimodal pattern in June for the major rainy season and
September for the minor rainy season, respectively. Over
the Soudano-Sahel, all the models are able to simulate the
maximum precipitation in August, but the MPI-ESM-MR
overestimates the observed maximum precipitation. -e
NorESM1-M (214.63mm), CESM1-BGC (216.74mm),
CCSM4 (224.34mm), and models’ ensemble mean
(220.39mm) are able to simulate the maximum pre-
cipitation close to the observed (216.56mm). In the Sahel,
all the models underestimate the maximum precipitation
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Figure 13: -e series of interannual variability over the Volta Basin (a), the Guinea Coast (b), the Soudano-Sahel (c), and the Sahel (d). -e
anomaly is calculated using the 1950–2004 period mean.
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(209.49mm). -e MPI-ESM-MR (211.48mm) is able to
simulate well the maximum observed precipitation.

Generally, models’ performances are dependent on
simulation of features that influence the distribution of
precipitation. Course grid size of GCMs remains the limi-
tation in simulating some observed climatic variables.
Clearly, one model could not be singled out to be the best
one for all the regions and also for all timescales. Not-
withstanding, the CCSM4 does relatively well in simulating
the observed precipitation over the basin and the three belts
for almost all the timescales used in this analysis.

Our results provide insight into CMIP5 GCMs that can
be used as input data in relation to precipitation for impact
studies or to drive an RCM over the Volta Basin. Future
projection of precipitation for the fourmodels over the Volta
Basin needs to be considered to help in adequate planning
against any future changes in precipitation over the basin.
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