Jaco J M ZwanenburgUniversity Medical Center Utrecht | UMC Utrecht · Department of Radiology
Jaco J M Zwanenburg
PhD
About
210
Publications
51,115
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,382
Citations
Introduction
Additional affiliations
June 2001 - November 2005
January 2007 - present
January 2003 - December 2007
Education
August 1995 - May 2001
Publications
Publications (210)
Intracerebral blood volume changes along the cardiac cycle cause volumetric strain in brain tissue, measurable with displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Individual volumetric strain maps show compressing and expanding voxels, raising the question whether systolic compressions reflect a physiological pheno...
Cerebrospinal fluid (CSF) dynamics are essential in waste clearance of the brain. Disruptions in CSF flow are linked to various neurological conditions, highlighting the need for accurate measurement of its dynamics. Current methods typically capture limited aspects of CSF movement or focus on a single anatomical region, presenting challenges for c...
Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool...
Background and purpose:
Prediction of aneurysm instability is crucial to guide treatment decisions and to select appropriate patients with unruptured intracranial aneurysms (IAs) for preventive treatment. High resolution four-dimensional magnetic resonance (4D MRI) flow imaging and 3D quantification of aneurysm morphology could offer insights and...
Enlarged perivascular spaces (EPVS) are common in cerebral small vessel disease (CSVD) and have been identified as a marker of dysfunctional brain clearance. However, it remains unknown if the enlargement occurs predominantly around arteries or veins. We combined in vivo ultra-high-resolution MRI and histopathology to investigate the spatial relati...
BACKGROUND
Hemodynamic stress is linked to the development of intracranial aneurysms (IAs) and may be influenced by anatomic variation of intracranial arteries. We assessed diameters and bifurcation angles of intracranial arteries forming the circle of Willis in a cohort of individuals screened for the presence of IAs.
METHODS
Individuals with and...
Background and purpose:
Carotid siphon calcification might contribute to the high prevalence of cerebrovascular disease in pseudoxanthoma elasticum through increased arterial flow pulsatility. This study aimed to compare intracranial artery flow pulsatility, brain volumes, and small-vessel disease markers between patients with pseudoxanthoma elast...
Background and objectives:
Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia, but little is known about disease mechanisms at the level of the small vessels. 7T-MRI allows assessing small vessel function in vivo in different vessel populations. We hypothesized that multiple aspects of small vessel function are altered in...
The brain relies on an effective clearance mechanism to remove metabolic waste products for the maintenance of homeostasis. Recent studies have focused on elucidating the forces that drive the motion of cerebrospinal fluid (CSF), responsible for removal of these waste products. We demonstrate that vascular responses evoked using controlled manipula...
Introduction: Cerebral perforating arteries provide blood supply to the deep regions of the brain. Recently, it became possible to measure blood flow velocity and pulsatility in these small arteries. It is unknown if vascular risk factors are related to these measures. Methods: We measured perforating artery flow with 2D phase contrast 7 Tesla MRI...
Intrinsic actuation magnetic resonance elastography (MRE) is a phase‐contrast MRI technique that allows for in vivo quantification of mechanical properties of the brain by exploiting brain motion that arise naturally due to the cardiac pulse. The mechanical properties of the brain reflect its tissue microstructure, making it a potentially valuable...
Magnetic Resonance Imaging (MRI) visible perivascular spaces (PVS) have been associated with age, decline in cognitive abilities, interrupted sleep, and markers of small vessel disease. Therefore, several computational methods have been developed for their assessment from brain MRI. But the limits of validity of these methods under various spatial...
Background:
Different Circle of Willis (CoW) variants have variable prevalences of aneurysm development, but the hemodynamic variation along the CoW and its relation to presence and size of unruptured intracranial aneurysms (UIAs) are not well known.
Purpose:
Gain insight into hemodynamic imaging markers of the CoW for UIA development by compari...
Purpose: Amplified MRI (aMRI) holds potential for assessing brain tissue motion and strain, using images acquired from readily-available sequences. However, image registration is necessary to extract displacements from the motion-amplified images, which may limit its accuracy. We aimed to separately assess the errors from imperfections in the aMRI...
Background
Heartbeat and respiration induce cyclic brain tissue deformations, which receive increasing attention as potential driving force for brain clearance. These deformations can now be assessed using a novel 3D strain tensor imaging (STI) method at 7 T MRI.
Methods
An 18-year-old man had suffered a traumatic brain injury and was treated with...
Aims
Coarctation of the aorta (CoA) is characterized by a central arteriopathy resulting in increased arterial stiffness. The condition is associated with an increased risk of stroke. We aimed to assess the aortic and cerebral hemodynamics and the presence of vascular brain injury in patients with previous surgical CoA repair.
Methods and Results...
Monitoring intracranial pressure (ICP) and craniospinal compliance (CC) is frequently required in the treatment of patients suffering from craniospinal diseases. However, current approaches are invasive and cannot provide continuous monitoring of CC. Dynamic exchange of blood and cerebrospinal fluid (CSF) between cranial and spinal compartments due...
Background:
Asymmetry in diameter between pre-communicating (A1) segments of the anterior cerebral arteries is related to anterior communicating artery aneurysm formation. Diameter asymmetry definitions vary and have not been related to blood flow measurements using the same imaging modality. We aimed to evaluate the relationship between A1-diamet...
Objective:
Cerebral small vessel diseases (cSVDs) are a major cause of stroke and dementia. We used cutting-edge 7T-MRI techniques in patients with CADASIL, to establish which aspects of cerebral small vessel function are affected by this monogenic form of cSVD.
Methods:
We recruited 23 CADASIL patients (age 51.1±10.1 years, 52% women) and 13 ag...
Background
Lenticulostriate arteries (LSAs) are small perforating arteries (0.1–1 mm diameter), perpendicularly departing from middle cerebral artery (MCA) and supplying blood flow to important cerebral subcortical and basal ganglia areas. LSAs are involved in silent strokes and cerebral small vessel disease, potentially leading to cognitive declin...
Objective
Recent work showed the feasibility of measuring velocity pulsatility in the perforating arteries at the level of the BG using 3T MRI. However, test–retest measurements have not been performed, yet. This study assessed the test–retest reliability of 3T MRI blood flow velocity measurements in perforating arteries in the BG.
Materials and m...
In patients with spontaneous intracerebral hemorrhage caused by different vasculopathies, cerebral microinfarcts have the same aspect on MRI and the same applies to cerebral microbleeds. It is unclear what pathological changes underlie these cerebral microinfarcts and cerebral microbleeds. In the current study, we explored the histopathological sub...
Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS.
A machine learning approach identified PVS in an automatically positi...
Patients with carotid occlusive disease express altered hemodynamics in the post-occlusive vasculature and lesions commonly attributed to cerebral small vessel disease (SVD). We addressed the question if cerebral perforating artery flow measures, using a novel 7T MRI technique, are altered and related to SVD lesion burden in patients with carotid o...
Background and aims
Pseudoxanthoma elasticum (PXE) is a genetic disorder characterized by systemic calcification of elastin fibers. Additionally, PXE is associated with an increased risk of stroke. It has been hypothesized that this may be caused by accelerated (intracranial) atherogenesis, as a consequence of specific genetic mutations underlying...
Purpose
The ADC of brain tissue slightly varies over the cardiac cycle. This variation could reflect physiology, including mixing of the interstitial fluid, relevant for brain waste clearance. However, it is known from cardiac diffusion imaging that tissue deformation by itself affects the magnitude of the MRI signal, leading to artificial ADC vari...
Background and purpose:
Cerebral small vessel disease contributes to stroke and cognitive impairment and interacts with Alzheimer disease pathology. Because of the small dimensions of the affected vessels, in vivo characterization of blood flow properties is challenging but important to unravel the underlying mechanisms of the disease.
Materials...
Background:
Increased cerebral blood-flow pulsatility is associated with cerebral small vessel disease (cSVD). Reduced pulsatility attenuation over the internal carotid artery (ICA) could be a contributing factor to the development of cSVD and could be associated with intracranial ICA calcification (iICAC).
Purpose:
To compare pulsatility, pulsa...
Background
Intra-articular blood causes irreversible joint damage, whilst clinical differentiation between haemorrhagic joint effusion and other effusions can be challenging. An accurate non-invasive method for the detection of joint bleeds is lacking. The aims of this phantom study were to investigate whether magnetic resonance imaging (MRI) T1 an...
Background
Damping of heartbeat-induced pressure pulsations occurs in large arteries such as the aorta and extends to the small arteries and microcirculation. Since recently, 7 T MRI enables investigation of damping in the small cerebral arteries.
Purpose
To investigate flow pulsatility damping between the first segment of the middle cerebral arte...
We compared velocity pulsatility, distensibility, and pulsatility attenuation along the intracranial ICA and MCA between 50 patients with pseudoxanthoma elasticum and 40 controls. Patients with pseudoxanthoma elasticum had higher pulsatility and lower distensibility at all measured locations, except for a similar distensibility at C4. The pulsatili...
The purpose of this study was to evaluate the use of a double delay alternating with nutation for tailored excitation (D-DANTE)-prepared sequence for banding-free isotropic high-resolution intracranial vessel wall imaging (IC-VWI) and to compare its performance with regular DANTE in terms of signal-to-noise ratio (SNR) as well as cerebrospinal flui...
4D phase contrast magnetic resonance imaging (PC-MRI) allows for the visualization and quantification of the cerebral blood flow. A drawback of software that is used to quantify the cerebral blood flow is that it oftentimes assumes a static arterial luminal area over the cardiac cycle. Quantifying the lumen area pulsatility index (aPI), i.e. the ch...
Cerebral perforating artery flow velocity and pulsatility can be measured using 7 tesla (T) MRI. Enabling these flow metrics on more widely available 3T systems would make them more employable. It is currently unknown whether these measurements can be performed at 3T MRI due to the lower signal-to-noise ratio (SNR). Therefore, the aim of this study...
Background
Cerebral small vessel diseases (SVDs) are a major cause of stroke and dementia. Yet, specific treatment strategies are lacking in part because of a limited understanding of the underlying disease processes. There is therefore an urgent need to study SVDs at their core, the small vessels themselves.
Objective
This paper presents the rati...
The performance of current machine learning methods to detect heterogeneous pathology is limited by the quantity and quality of pathology in medical images. A possible solution is anomaly detection; an approach that can detect all abnormalities by learning how ‘normal’ tissue looks like. In this work, we propose an anomaly detection method using a...
The cardiac cycle induces blood volume pulsations in the cerebral microvasculature that cause subtle deformation of the surrounding tissue. These tissue deformations are highly relevant as a potential source of information on the brain's microvasculature as well as of tissue condition. Besides, cyclic brain tissue deformations may be a driving forc...
The intracranial arteries play a major role in cerebrovascular disease, but arterial remodeling due to hypertension has not been well described in humans. We aimed to quantify this remodeling for: the basilar artery, the vertebral, internal carotid, middle/anterior (inferior)/posterior cerebral, posterior communicating, and superior cerebellar arte...
Vessel wall thickening of the intracranial arteries has been associated with cerebrovascular disease and atherosclerotic plaque development. Visualization of the vessel wall has been enabled by recent advancements in vessel wall MRI. However, quantifying early wall thickening from these MR images is difficult and prone to severe overestimation, bec...
Background
Blood flow velocity and pulsatility of small cerebral perforating arteries can be measured using 7T quantitative 2D phase contrast (PC) MRI. However, ghosting artifacts arising from subject movement and pulsating large arteries cause false positives when applying a previously published perforator detection method.
Purpose
To develop a r...
Background
Attenuation of velocity pulsatility along the internal carotid artery (ICA) is deemed necessary to protect the microvasculature of the brain. The role of the carotid siphon within the whole ICA trajectory in pulsatility attenuation is still poorly understood. This study aims to assess arterial variances in velocity pulsatility and disten...
Background
Computational fluid dynamics(CFD) of intracranial aneurysms requires flow boundary conditions(BCs) as inputs. Patient-specific BCs are usually unavailable and substituted by literature-derived generic BCs. Therefore, we investigated inter-patient BC variations and their influence on middle cerebral artery aneurysmal hemodynamics.
Method...
Microvascular blood volume pulsations due to the cardiac and respiratory cycles induce brain tissue deformation and, as such, are considered to drive the brain's waste clearance system. We have developed a high-field magnetic resonance imaging (MRI) technique to quantify both cardiac and respiration-induced tissue deformations, which could not be a...
Displacement Encoding with Stimulated Echoes (DENSE) has recently shown potential for measuring cardiac-induced cerebral volumetric strain in the human brain. As such, it may provide a powerful tool for investigating the cerebral small vessels. However, further development and validation are necessary. This study aims, first, to validate a retrospe...
Introduction:
The goal of European Ultrahigh-Field Imaging Network in Neurodegenerative Diseases (EUFIND) is to identify opportunities and challenges of 7 Tesla (7T) MRI for clinical and research applications in neurodegeneration. EUFIND comprises 22 European and one US site, including over 50 MRI and dementia experts as well as neuroscientists....
Brain tissue strain could be a valuable source of information on the brains tissue properties. Therefore, accurate DENSE measurements are crucial, since the computation of tissue strain requires spatial derivatives, which amplifies noise present in the displacement maps. In this work, we optimize the SNR in the displacement maps and substantiate th...
MRI-visible perivascular spaces (PVS) in the semioval centre are associated with cerebral amyloid angiopathy (CAA), but it is unknown if PVS co-localize with MRI markers of CAA. To examine this, we assessed the topographical association between cortical cerebral microbleeds (CMBs) – as an indirect marker of CAA – and dilatation of juxtacortical per...
Background and Purpose—
Cerebral small vessel disease (SVD) is a major cause of stroke and dementia, but underlying disease mechanisms are still largely unknown, partly because of the difficulty in assessing small vessel function in vivo. We developed a method to measure blood flow velocity pulsatility in perforating arteries in the basal ganglia a...
Brain tissue undergoes viscoelastic deformation and volumetric strain as it expands over the cardiac cycle due to blood volume changes within the underlying microvasculature. Volumetric strain measurements may therefore provide insights into small vessel function and tissue viscoelastic properties. Displacement encoding via stimulated echoes (DENSE...
Quantitative data on branching patterns of the human cerebral arterial tree are lacking in the 1.0–0.1 mm radius range. We aimed to collect quantitative data in this range, and to study if the cerebral artery tree complies with the principle of minimal work (Law of Murray).
To enable easy quantification of branching patterns a semi‐automatic method...
Quantitative data on the morphology of the cerebral arterial tree could aid in modelling and understanding cerebrovascular diseases, but is scarce in the range between 200 micrometres and 1 mm diameter arteries. Traditional manual measurements are difficult and time consuming. 7T-MRI and 9.4T-MRI of human cerebral arterial plastic casts could proof...
The cardiac cycle and respiration both influence CSF dynamics and therefore the displacement of brain tissue. In this work we unravel their contribution to brain tissue displacement using a single shot 2D cine displacement-encoded imaging method employing stimulated echoes (DENSE) for brain motion measurements. Displacement-encoded data sets in the...