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The evolutionary theory of behavior dynamics is a complexity theory that instantiates the Darwinian
principles of selection, reproduction, and mutation in a genetic algorithm. The algorithm is used to ani-
mate artificial organisms that behave continuously in time and can be placed in any experimental envi-
ronment. The present paper is an update on the status of the theory. It includes a summary of the
evidence supporting the theory, a list of the theory’s untested predictions, and a discussion of how the
algorithmic operations of the theory may correspond to material reality. Based on the evidence
reviewed here, the evolutionary theory appears to be a strong candidate for a comprehensive theory of
adaptive behavior.
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At least two approaches to mathematical the-
orizing can be identified in modern behavior
analysis. One consists of building mathematical
models from detailed empirical observations
for the purpose of reproducing those observa-
tions algorithmically (McDowell, 2017).
Because specific observations are essentially
built into these models, their broader applica-
bility is usually limited. An example of this type
of theory is Staddon’s (2016) response-strength-
ening, winner-take-all, model of responding on
concurrent ratio schedules (McDowell, 2017).
This model produces a near-exclusive prefer-
ence for the alternative with the smaller ratio,
which is what is typically observed on these
schedules. An inevitable consequence of this
approach to mathematical theorizing is that
many models are developed to accommodate
the many specific phenomena of interest. John
Staddon (2001, 2016) is a prominent propo-
nent of this many-models approach, and refers
to the models as simple sketches that capture
various aspects of learning. According to Stad-
don (2016), “[b]iology is not like physics.
There is no grand ‘standard model’ that under-
lies all…historical principles (p. 202).”
A second approach to mathematical theoriz-

ing entails building theories on the basis of

first, or prior, principles (McDowell, 2017).
From the outset, this approach is intended to
produce theories that are applicable to a
range of phenomena. Reflex reserve theory
(e.g., Catania, 2005; Killeen, 1988) is an exam-
ple of a prior principle theory. The reflex
reserve operates according to rules that are
specified a priori, without reference to empiri-
cal observations. Once a prior-principle theory
is developed, it is typically tested in various
experimental environments to determine how
broadly it may be applied. Finding that a the-
ory accounts for a specific phenomenon or set
of observations constitutes evidence support-
ing the theory. In contrast to the many-models
approach, this second approach to mathemati-
cal theorizing implies that there may in fact be
a single model or theory that can account for
most, or perhaps all, adaptive behavior. Evi-
dently, a crucial feature of the single-theory
approach is the effort to show that a candidate
theory accounts for a wide range of phenom-
ena. Prior-principle theories may be compared
to each other by comparing the ranges of phe-
nomena to which they apply. Theories that
apply to wider ranges of phenomena are bet-
ter theories.

The topic of the present paper is the evolu-
tionary theory of behavior dynamics (ETBD),
which is a prior-principle theory. The prior
principle it instantiates is the idea that behav-
ior evolves in ontogenetic time under the
selection pressure of consequences from the
environment. Five years ago, McDowell
(2013b) discussed some of the evidence
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supporting this theory in a lengthy paper that
was written for a general audience. Since then,
new supporting evidence has been reported,
and there have been advances in the material
interpretation of the theory. In addition, pre-
dictions of the theory were not discussed in
the earlier paper. Consequently, the present
paper is an update and extension of the ear-
lier paper, and also serves as a guide to the
current literature on the evolutionary theory.
It is written specifically for a behavior-analytic
audience, and consists of accessible summaries
of evidence and predictions rather than
detailed descriptions, which were provided in
the original articles. The objective of the pre-
sent paper is to answer the following four
questions in an accessible way. What is the evo-
lutionary theory? What is the evidence sup-
porting it? What are its predictions? How is it
related to material reality?

The Evolutionary Theory of Behavior
Dynamics

The evolutionary theory is a complexity the-
ory (McDowell, 2013c; McDowell & Popa,
2009), which means that it is stated in the
form of simple, low-level rules, the joint opera-
tion of which generates high-level, emergent
outcomes that can be compared to data. In
the ETBD, a population of potential behaviors
evolves under the selection pressure of conse-
quences from the environment. The behaviors
in the population are referred to as potential
because they may or may not be emitted.
Each behavior is identified by a decimal
(i.e., base-10) integer, which is referred to as
the behavior’s phenotype, and by the binary
representation of that integer, which is
referred to as the behavior’s genotype. The top
panel of Figure 1 shows a population of poten-
tial behaviors as a frequency distribution of
integer phenotypes drawn at random from the
range, 0 through 1023. The theory consists of
three low-level rules that implement the Dar-
winian processes of selection, reproduction,
and mutation.

Selection
At each tick of time, a behavior chosen at

random from the population is emitted. Fol-
lowing this emission, a new generation of
potential behaviors is built by choosing pairs

of parent behaviors from the current popula-
tion and recombining their genotypes to cre-
ate child behaviors. The method of choosing
parents depends on whether the emitted
behavior produced a benefit (e.g., a rein-
forcer) or not. If the just-emitted behavior did
not produce a benefit, then parent behaviors
are chosen at random from the population.
However, if the just-emitted behavior did pro-
duce a benefit, then parents are chosen on
the basis of their fitness. The fitness-based
choice of parents constitutes the theory’s
selection rule.

The fitness of a behavior is defined as the
absolute value of the arithmetic difference
between the behavior’s integer phenotype and
the integer phenotype of the behavior that just
produced a benefit. For example, if the inte-
ger phenotype of the behavior that produced
a benefit is 500, then the fitness of a behavior
in the population with a phenotype of 614 is
|500-614| = 114, the fitness of a behavior in the
population with a phenotype of 490 is
|500-490| = 10, and so on. Evidently, the smal-
ler the arithmetic difference, the more similar
the behavior is to the just-emitted behavior,
and hence the greater is its fitness. All behav-
iors in the population are assigned fitness
values when the just-emitted behavior pro-
duces a benefit. A fitness density function
(FDF) is then used to choose parents for mat-
ing. The FDF is a probability density function
that is defined solely by its mean (McDowell,
2004). It expresses probability density as a
function of fitness, such that larger probability
densities are associated with fitter behaviors
(McDowell, 2004). This means that random
sampling from the FDF favors obtaining rela-
tively fit parent behaviors for mating. A fitness
value is drawn at random from the FDF and
the population of potential behaviors is
searched for a behavior with that fitness. If
one is found, then it becomes a parent. If one
is not found, then another fitness value is
drawn, and so on, until all parents have been
chosen.

The result of the selection rule is that fitter
behaviors are more likely to become parents
than are less-fit behaviors. Because fitter par-
ent behaviors tend to create fitter child behav-
iors, selection causes the new population of
potential behaviors to cluster near the pheno-
type that just produced a benefit. This makes
that phenotype, and phenotypes similar to it,
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more likely to be emitted in the next tick of
time. The degree of clustering depends on the
mean of the FDF. Small FDF means, which

permit only very fit behaviors to be chosen as
parents, cause a greater degree of clustering
than do large FDF means, which permit a

Fig. 1. (Top). A frequency distribution of 100 potential behaviors chosen at random from the integer phenotype
range, 0 through 1023. The horizontal bars beneath the x-axis identify phenotype ranges that might represent two
response classes, for example, left and right lever presses. (Center). Father and mother genotypes recombine to produce
a child genotype by contributing some of their bits to the child’s bit string. (Bottom). A behavior is subjected to mutation
by flipping a random bit in its bit string from 1 to 0 or 0 to 1. Reprinted from “Toward a Mechanics of Adaptive Behav-
ior: Evolutionary Dynamics and Matching Theory Statics,” by J. J McDowell and A. Popa, 2010, Journal of the Experimental
Analysis of Behavior, 94, p. 259. Copyright 2010 by Wiley.
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greater number of less fit behaviors to be cho-
sen as parents. The FDF mean has been inter-
preted as a cost/benefit parameter that can be
understood as representing the magnitude of
the reinforcer and/or the cost of the target
responding (McDowell, 2004; McDowell,
Caron, Kulubekova, & Berg, 2008).

Reproduction
Regardless of how parent behaviors are cho-

sen, they reproduce by contributing bits from
their genotypes to build a child genotype, as
illustrated in the center panel of Figure 1. In
this example, each bit in the child’s bit string
comes from the same location in either the
father’s bit string or the mother’s bit string. The
decimal-integer phenotypes that correspond to
the binary strings are also shown in the panel.
As a refresher, note that the father’s integer
phenotype may be obtained from its genotype
by calculating the sum, 0(29) + 0(28) + 1
(27) + 1(26) + 1(25) + 0(24) + 1(23) + 0(22) + 1
(21) + 1(20), where the factor multiplying each
power of 2 is the 0 or 1 in the father’s bit string.
The sum of this expression is 235.

Mutation
Once a new population of potential behav-

iors is built, it is subjected to a small amount
of mutation. This is accomplished by drawing
a percentage of behaviors from the population
and subjecting them to mutation. This per-
centage is referred to as the mutation rate.
Mutation is applied to a behavior’s bit string
by flipping a randomly chosen bit in the string
from 0 to 1 or 1 to 0, as illustrated in the bot-
tom panel of Figure 1.

Discussion of the Theory
The material presented above describes

the theory in its entirety. It is simple enough
to be explained using illustrations drawn on
the back of an envelope, or on a napkin at
the local coffee shop (cf. Cox & Forshaw’s,
2012, discussion of quantum theory). The
algorithmic operation of the theory generates
Darwinian variation and selection of behav-
ior. Variation is caused by the recombination
of randomly chosen parents, and by muta-
tion. Selection is caused by the recombina-
tion of parents chosen on the basis of their
fitness.

The flowchart in Figure 2 illustrates the
overall operation of the theory. A random
behavior is emitted from the initial population
(top); if it produces a benefit, then the left
path is followed, otherwise the right path is fol-
lowed. The shaded rectangles represent the
three rules of the ETBD. After a new popula-
tion is built (bottom), a random behavior is
emitted from that population, and the cycle
repeats. This produces a continuous stream of
behavior that may be recorded and studied
just as if it were the behavior of a live
organism.

Evidently, the ETBD is conceptually simple.
Remarkably, it is also parametrically simple.
Only two parameters materially affect the out-
come of the operation of the theory’s rules.
These are the mean of the fitness density func-
tion, and the mutation rate (McDowell, 2013b,
pp. 738ff ). The former regulates the strength
of selection, and the latter regulates the
degree of variation.

As is the case for all complexity theories,
emergent outcomes cannot be deduced by
inspecting or mathematically manipulating the
theory’s rules. Instead, the rules must be made
to operate repeatedly, usually by means of a
computer program, to generate emergent out-
comes that can be compared to data. In the
case of the evolutionary theory, the rules are
used to animate an artificial organism
(AO) that can be placed in any desired experi-
mental environment.

Evidence Supporting the Evolutionary Theory

Emergent equilibria and dynamic phenom-
ena generated by the evolutionary theory that
are consistent with the behavior of live organ-
isms are summarized in this section. These
results were obtained using implementations
of the theory as they were originally stated for
single (McDowell, 2004) and concurrent
schedules (McDowell et al., 2008), and as they
were described in the previous section. No
special parameter values or tunings were used,
and no material modifications were made to
the theory to obtain any of these results.

Emergent Equilibria
Quantitative and molar phenomena.
Single interval schedules. AOs animated by the

ETBD exhibit behavior on single random
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interval (RI) schedules of reinforcement that
conforms at equilibrium to the generalized
hyperbola (McDowell, 1986),

B¼ br a

r a + c
, ð1Þ

where B represents response rate, r represents
reinforcement rate, and a, b, and c are param-
eters of the equation (McDowell, 2004;
McDowell & Calvin, 2015; McDowell & Caron,
2007). It is well known that the behavior of
live organisms working on single variable-
interval (VI) schedules conforms at equilib-
rium to this equation (de Villiers, 1977; evi-
dence when a 6¼ 1 is reviewed by McDowell,
2013a, pp. 1010ff, and includes Dallery,
McDowell, & Lancaster, 2000; data from
McDowell & Dallery, 1999, reanalyzed by
McDowell, 2005; and Soto, McDowell, & Dal-
lery, 2005).
Concurrent interval schedules. AOs animated

by the theory exhibit behavior on concurrent

RI RI schedules that conforms at equilibrium
to the power-function matching equation
(Baum, 1979; Wearden & Burgess, 1982),

B1

B2
¼ b

r1
r2

� �a

, ð2Þ

where the numerical subscripts refer to the
two response alternatives, and a and b are
parameters of the equation (McDowell et al.,
2008). The conformance of human and ani-
mal behavior to this equation is also well
known (Baum, 1979; McDowell, 2013a; Wear-
den & Burgess, 1982). At moderate mutation
rates, the exponent, a, for the AOs varies
around 0.8 (McDowell et al., 2008; McDowell
and Popa, 2010; Popa and McDowell, 2016).
Again, it is well-known that the exponent for
live organisms varies around this value (Baum,
1979; McDowell, 2013a; Wearden & Bur-
gess, 1982).

AOs animated by the theory exhibit absolute
response rates in each component of a

Fig. 2. Flowchart illustrating the operation of the evolutionary theory. If an emitted behavior produces a benefit, then
the left pathway is followed, otherwise the right pathway is followed. The shaded rectangles represent the three rules of
the evolutionary theory. Reprinted from “A Quantitative Evolutionary Theory of Adaptive Behavior Dynamics,” by J. J
McDowell, 2013, Psychological Review, 120, p. 735. Copyright 2013 by the American Psychological Association.
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concurrent RI RI schedule that at equilibrium
conform to

B1 ¼ b1r a1
r a1 + c1

c2
r a2 + c1

, ð3Þ

and

B2 ¼ b2r a2
c2
c1
r a1 + r a2 + c2

, ð4Þ

where the numerical subscripts refer to the
two alternatives of the schedule, and a, the bs,
and the cs are parameters of the equations
(McDowell, 2013b; McDowell & Calvin, 2015;
McDowell & Popa, 2010). Note that Equa-
tions 3 and 4 are functions of two variables, r1
and r2, which means that they describe sur-
faces in three-dimensional coordinate systems.
The quotient of Equations 3 and 4 is Equa-
tion 2, where b in that equation equals (b1c2)/
(b2c1). Equations 3 and 4 are versions of
McDowell’s (2013a) Equations 70 and 80; he
reviewed in detail the empirical evidence bear-
ing on those equations (pp. 1013ff, including
data from Dallery, McDowell, & Soto, 2004,
reanalyzed by McDowell, 2005; Dallery, Soto, &
McDowell, 2005; McDowell & Caron, 2010a,
2010b) and concluded that they accurately
described the behavior of live organisms work-
ing on concurrent interval schedules.
AOs animated by the theory exhibit behav-

ior on concurrent RI RI schedules, where both
rate and magnitude of reinforcement are var-
ied, that conforms at equilibrium to the bivari-
ate, or concatenated, matching equation
(Baum & Rachlin, 1969; Davison & McCarthy,
1988; Killeen, 1972; Rachlin, 1971),

B1

B2
¼ b

r1
r2

� �ar m1

m2

� �am

, ð5Þ

where m represents magnitude, and b, ar, and
am are parameters of the equation (McDowell,
Popa, & Calvin, 2012). Cording, McLean, and
Grace (2011) reviewed in detail the evidence
bearing on this equation and concluded that
it accurately describes behavior in experiments
with live organisms. At moderate mutation
rates, the exponent on the reinforcement rate
ratio, ar, for the AOs varies around 0.8 and the
exponent on the magnitude ratio, am, varies
around 0.6 (McDowell, Popa, & Calvin, 2012).

These values are also observed in experiments
with live organisms (Baum, 1979; Cording
et al., 2011; Wearden & Burgess, 1982).

Discussion of interval schedules. Fits of Equa-
tions 1-5 to data generated by the AOs consis-
tently leave little residual variance, and no
residual error when all parameters in the
equations are allowed to vary freely
(McDowell, 2013b). It may be worth emphasiz-
ing that the quantitative relations asserted by
Equations 1 were not, nor could they have
been, built into the low-level rules of the the-
ory. They also cannot be deduced analytically
from those rules. Instead, the quantitative rela-
tions are emergent outcomes caused by the
algorithmic operation of the theory’s rules. In
other words, they are steady states generated
by the theory’s evolutionary dynamics.

Concurrent ratio schedules. AOs animated by
the theory exhibit behavior on concurrent ran-
dom ratio random ratio (RR) schedules with
unequal ratios in the components that shows
exclusive preference for the smaller ratio. On
concurrent RR RR schedules with equal ratios
in the components, AOs animated by the the-
ory show exclusive preference for one or the
other alternative, provided the equal ratios are
not too large (McDowell & Klapes, 2018).
These outcomes are also observed in experi-
ments with live organisms (evidence reviewed
by McDowell & Klapes, 2018, including Green,
Rachlin, & Hanson, 1983; Herrnstein, 1958,
1970; Herrnstein & Loveland, 1975; Horner &
Staddon, 1987; MacDonall, 1988; Shah, Brad-
shaw, & Szabadi, 1989).

Discussion of quantitative and molar
phenomena Note that the dynamics of the
evolutionary theory produce all of the equilib-
rium outcomes that have been observed in
experiments with live organisms working on
concurrent interval schedules and concurrent
ratio schedules with unequal or equal ratios in
the components. Researchers have typically
offered different explanations for the different
equilibrium outcomes on these schedules,
often referring to them as matching, maximiz-
ing, and reward-following (Horner & Staddon,
1987; Staddon, 2016, pp. 247ff ). Different
explanations appear to be required because,
for example, matching cannot explain either
outcome on concurrent ratio schedules, and
maximizing cannot explain the outcome on
concurrent ratio schedules with equal ratios in
the components (McDowell & Klapes, 2018).
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As the evidence summarized here indicates,
however, different explanations of the three
outcomes are not required, for one will suf-
fice. All are produced by the dynamics of the
evolutionary theory (McDowell &
Klapes, 2018).
Additional equilibrium phenomena.
Single interval schedules. In fits of Equation 1

to the steady-state behavior of AOs working on
single RI schedules, the asymptote, b, of the
equation varies directly with reinforcer magni-
tude, as represented by the FDF mean
(McDowell, 2004; McDowell & Caron, 2007).
This relationship between the asymptote of
the equation and reinforcer magnitude is also
observed in experiments with live organisms
(Dallery & Soto, 2004; Dallery et al., 2004;
McDowell, 2013a).
Concurrent interval schedules. AOs working on

concurrent RI RI schedules show orderly
biased responding when reinforcer magni-
tude is varied in one component (McDowell
et al., 2008). They also show changeover rates
that are lowest when the reinforcement rates
in the two alternatives differ substantially, that
are highest when the reinforcement rates in
the two components are equal, and that vary
approximately as a quadratic when plotted
against reinforcement proportions obtained
in one of the components (McDowell et al.,
2008). In addition, changeover rates vary
inversely with reinforcer magnitude (Popa &
McDowell, 2016). The behavior of AOs on
these schedules is also less variable when rein-
forcer magnitude and/or reinforcement rate
is large, than when one or both of these
quantities is/are small (Popa & McDowell,
2016). All of these phenomena have been
observed in experiments with live organisms.
The literature on biased responding was
reviewed by McDowell et al. (2008), and
includes Baum (1974b, 1979), McDowell
(1989), and Wearden and Burgess (1982).
The literature on CO phenomena was
reviewed by McDowell et al. (2008) and by
Popa and McDowell (2016), and includes
Alsop and Elliffe (1988), Baum (1974a),
Brownstein and Pliskoff (1968), and Herrn-
stein (1961). The literature on behavioral var-
iability was reviewed by Popa and McDowell
(2016), and includes Doughty, Giorno, and
Miller (2013); Lee, Sturmey, and Fields
(2007); Neuringer, Kornell, and Olufs (2001);
and Stahlman and Blaisdell, (2011).

Concurrent ratio schedules. AOs working on
concurrent RR RR schedules with equal ratios
in the components show steady-state prefer-
ence that changes from exclusive to partial as
a continuous function of the equal ratio value
(McDowell & Klapes, 2018). This continuity is
also observed in experiments with live organ-
isms (evidence reviewed by McDowell &
Klapes, 2018, including Horner & Staddon,
1987; Staddon, 2016).

Emergent Dynamic Phenomena
Behavior in rapidly changing environments.

In concurrent RI RI schedules that arrange
rapidly changing reinforcement rate ratios in
single sessions (e.g., Davison & Baum, 2000),
AOs animated by the theory show orderly
cumulative changes in preference at small
time scales, and orderly increases in the expo-
nent of power function matching (Eq. 2) as
reinforcers are obtained. The exponent
increases from near zero (indicating no pref-
erence) at the start of a new within-session
schedule to its equilibrium value after just a
few reinforcers, and it reaches a higher value
for larger overall reinforcement rates
(Kulubekova & McDowell, 2013). Davison and
Baum (2000) observed all of these phenom-
ena in the behavior of their pigeons. The AOs
also show detailed, reinforcer-by-reinforcer
development of, and reversals in, preference
that are indistinguishable from those Davison
and Baum reported for their pigeons
(Kulubekova & McDowell, 2013). Finally, these
dynamic phenomena are more pronounced at
higher reinforcement rates for both the AOs
and the pigeons. The figures in Kulubekova
and McDowell’s (2013) article, which compare
the behavior of AOs to the behavior of Davi-
son and Baum’s pigeons, provide striking evi-
dence for the agreement between theory and
data with respect to these detailed, small time
scale, dynamic phenomena.

Concurrent ratio schedule changes.
McDowell and Klapes (2018) showed that
when the ratio value of a concurrent RR RR
schedule with equal ratios in the components
is changed, the behavior of AOs animated by
the theory adjusts rapidly to the new schedule
value, even if the change in the ratio value is
large. Horner and Staddon (1987) observed
this rapid adjustment of preference in experi-
ments with pigeons.
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Additional dynamic phenomena. The acqui-
sition of instrumental responding by AOs ani-
mated by the theory is rapid; after just a few
reinforcers (sometimes only one) instrumental
responding increases quickly to a relatively
high rate (McDowell, 2013b). McDowell
(2013b) cited findings reported by Skinner
(1938) that document this feature of acquisi-
tion in the behavior of live organisms.
The extinction of an AO’s instrumental

responding is more gradual, and is usually
irregular. In addition, it sometimes shows ring-
ing, which refers to repeated bursts of
responding followed by periods of relatively
low response rate, as if the AO were periodi-
cally testing the operandum to determine
whether it might be working again (McDowell,
2013b). McDowell (2013b) cited findings
reported by Skinner (1938) that document
these properties and features of extinction in
the behavior of live organisms.
Cumulative records of AOs’ responding on

single RI schedules show roughly constant
instantaneous slopes with occasional irregulari-
ties, such as brief periods of pausing, response
acceleration, and response deceleration
(McDowell, 2013b). These are well-known fea-
tures of the behavior of live organisms working
on VI schedules (McDowell, 2013b; Skinner,
1938). In addition, interresponse time distri-
butions for AOs working on RI schedules are
comparable to those obtained from live organ-
isms when the cost of responding is low (evi-
dence reviewed by McDowell, 2013b, and by
Kulubekova & McDowell, 2008, including Ben-
nett, Hughes, & Pitts, 2007; Shull &
Grimes, 2003).
Fitting the theory to data. Li, Hautus, and

Elliffe (2018) described a novel method of fit-
ting computational theories to data from indi-
vidual organisms. Li, Elliffe, and Hautus (in
press) used a version of this method to fit the
ETBD to data from Davison and Baum’s
(2000) experiment (just described), in which
rapidly changing within-session reinforcer
ratios were arranged. They concluded that the
theory accounted relatively well for the distribu-
tion of responding between operanda in indi-
vidual birds. Important questions have been
raised about this method and the interpreta-
tion of its results (e.g., Li, Elliffe, and Hautus,
in press; McDowell & Klapes, 2018), but if these
questions can be answered satisfactorily, then
Li et al.’s method will be a useful addition to

the tools used to evaluate computational
theories.

Second-Stage Predictions of the Evolutionary
Theory

The outcomes and phenomena summarized
in the previous section are, in a sense, predic-
tions of the evolutionary theory. But they are
predictions of empirical results that in many
cases are already well known. A second-stage
prediction refers to a prediction for which
adequate data to test the prediction do not
exist or, in a few cases, where such data do
exist but have not been analyzed in a way that
permits an effective test of the prediction
(McDowell & Calvin, 2015; von Neumann &
Morgenstern, 1944/2007, pp. 7-8).

Single-Alternative Interval Schedules
When Equation 1 is fitted to data from AOs

animated by the theory, the parameters b and
c covary positively, and approximately linearly.
Both parameters increase as the cost/benefit
of responding becomes more favorable
(McDowell, 2004, p. 312). McDowell (2004,
pp. 312ff ) reported evidence consistent with
this prediction by reanalyzing data from Dal-
lery et al.’s (2000) experiment with rats that
pressed levers for a range of concentrations of
sucrose in water. However, no new experi-
ments have been conducted to test this
prediction.

Bivariate Matching
In experiments that vary both reinforce-

ment rate and reinforcer magnitude in con-
current schedules, AOs’ rate of changeovers as
a function of the reinforcement rate ratio and
reinforcer magnitude ratio is evidently
described by an elliptic paraboloid,

CO rate ¼Ax2 +By2, ð6Þ

where CO = changeover, x and y are the logs
of the reinforcement rate and reinforcer mag-
nitude ratios, and A and B are parameters of
the equation (McDowell et al., 2012). An ellip-
tic paraboloid is a quadric surface with elliptic
horizontal cross sections and parabolic vertical
cross sections. This equation was not built into
the rules of the theory, nor could it have been,
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and it is not a mathematical consequence of
any rule or combination of rules. In other
words, the equation cannot be obtained by
examining and mathematically manipulating
the rules of the theory. Instead, Equation 6 is
an emergent property of the theory’s dynam-
ics. It was obtained by inspecting the CO rates
from the AOs and selecting a likely candidate
surface to describe them.
McDowell et al. (2012) found that fits of

Equation 6 to data from their AOs showed
that COs become more frequent as the rein-
forcement rates in the two components
become more similar, and/or as the rein-
forcer magnitudes become more similar. In
addition, the CO rate increases more rapidly
when reinforcement rates become more simi-
lar than when reinforcer magnitudes became
more similar. In other words, just as response
allocation is less sensitive to the reinforcer
magnitude ratio than to the reinforcement
rate ratio, CO rate is less sensitive to differ-
ences in reinforcer magnitude than to differ-
ences in reinforcement rate. McDowell
et al. also found that the decreased sensitivity
of CO rates to differences in reinforcer magni-
tude relative to differences in reinforcement
rate is more pronounced when large ranges of
RI values and large ranges of reinforcer mag-
nitudes are arranged. These predictions
regarding the CO rate in bivariate matching
experiments have not been tested.

A Critical Experiment Comparing Matching
Theory and the ETBD
Consider an experiment that arranges a set

of five concurrent schedules, where reinforcer
magnitude varies in one component, but
remains unchanged in the other. In fits of
Equations 3 to the behavior of AOs animated
by the theory, where the bs are constrained to
remain constant across all five schedules, or
where they are constrained to be equal in the
two components of each schedule (which are
requirements of two versions of matching the-
ory, McDowell, 2013a), large percentages of
variance are accounted for, but statistically sig-
nificant trends with moderate effect sizes are
observed in the residuals (McDowell & Calvin,
2015). In other words, according to the ETBD,
the matching theory versions of these equa-
tions are false. In a reanalysis of data from Dal-
lery et al. (2005), who conducted this

experiment with human participants, McDow-
ell, Calvin, Hackett, and Klapes (2017) found
exactly this result, namely that fits of Equa-
tions 3 accounted for large percentages of vari-
ance, but left systematic trends with moderate
effect sizes in the residuals.

In the concurrent-schedule experiment just
described, the evolutionary theory also pre-
dicts how the parameters of Equations 3 vary
as a function of reinforcer magnitude
(McDowell & Calvin, 2015, Fig. 5). This pre-
diction has not been tested, and existing data
do not permit reliable estimates of the param-
eters to be obtained because the absolute
response rate domains of the equations were
not adequately sampled. McDowell and Calvin
(2015) described several properties of experi-
mental designs that must be in place in order
to test this prediction effectively.

Concurrent Ratio Schedules with Unequal
Ratios in the Components

According to the evolutionary theory, on
concurrent ratio schedules with unequal
ratios in the components, partial rather than
exclusive preference will be observed for ratio
pairs under two conditions (McDowell &
Klapes, 2018). One condition is when both
ratios are relatively large, while the difference
between the ratios also remains large. In
other words, even though there is a large dif-
ference between the ratios, preference will be
partial. The second condition is when both
ratios are relatively small, even though the
smaller ratio would otherwise produce exclu-
sive preference, for example, if it were paired
with a larger ratio. McDowell and Klapes
(2018) noted that there is scattered evidence
consistent with these predictions in the litera-
ture, but the predictions have not been tested
systematically.

Material Interpretations of the Evolutionary
Theory

The algorithmic operation of the ETBD
may appear to be disconnected from material
reality (e.g., Shahan, 2017). Behaviors are not
integers with corresponding binary bit strings
that recombine, undergo mutation, and so
on. Given that the theory can account for a
range of adaptive behavior in the real world, it
seems that the workings of the theory must be
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connected to material reality in some way.
This has been discussed in many of the papers
published on the theory, but it was most thor-
oughly treated by McDowell (2013d), and
most recently discussed by McDowell (2017,
pp. 136ff ) and McDowell and Klapes (2018).
McDowell’s (2017) treatment deals with func-
tional theories in general, of which the ETBD
is an instance.
Most of the discussion about material inter-

pretations of the theory centers around two
possibilities. The first is that actual neural
mechanisms may be found that correspond to
the elements of the theory. According to this
interpretation, the algorithmic operation of
the theory is materially equivalent to the oper-
ation of the brain. The second interpretation
is philosophically more complicated. It asserts
that there is no direct correspondence
between the algorithmic operation of the the-
ory and the physical operation of the brain.
Instead, this second interpretation asserts that
the two sets of operations, both of which are
themselves material, are different ways of pro-
ducing the same result. In this case the opera-
tion of the theory may be said to be
computationally, or functionally, equivalent to
the operation of the brain.

Material Equivalence
Evidently, the most direct way to interpret

the connection between the ETBD and the
material world is to suppose that there are
actual brain mechanisms that correspond to
the elements and operations of the theory.
According to Staddon and Bueno (1991), “…if
our…theory really works well as an explana-
tion for behavioral data, it must reflect some-
thing true about the neural processes that
underlie those data” (p. 6).
The idea that the brain might operate as a

selectionist, or evolutionary, system has been
discussed since at least the 1950s, and several
authors have presented extensive theories of
selectionist brain functioning (Edelman, 1978,
1987; Hayek, 1952a, 1952b; Pringle, 1951).
McDowell (2010) discussed Edelman’s (1987)
theory of neural Darwinism in detail, and con-
sidered how it might constitute a material
implementation of the ETBD in brain func-
tioning. Other authors have discussed how cer-
tain elements of the evolutionary theory might
be instantiated in the brain. For example,

Popa and McDowell (2016) suggested that
mutation might correspond to spontaneous
fluctuations in the brain’s default mode net-
work. Fernando, Karishma, and Szathmáry
(2008) described how elements of neural-
circuit replication and recombination might
occur in three-dimensional volumes of brain
tissue.

Needless to say, it is not possible at the pre-
sent time to conclude that the brain operates
according to evolutionary principles. But this
is an appealing idea, for organic evolution
may have engineered a copy of itself in the
nervous systems of living organisms to regulate
their behavior during their individual
lifetimes.

Functional Equivalence
According to a functional equivalence inter-

pretation of the theory, it is taken as a given
that there are no direct mappings between the
algorithmic operations of the ETBD and the
physical operations of the brain. However, to
the extent that the two sets of operations pro-
duce the same outcomes, we may say that they
are functionally equivalent. Put another way,
the two sets of operations are different ways of
doing the same thing.

Richard Feynman (1985/2006) provided an
interesting example of functional equivalence
in his discussion of calculating the product of
3 and 15. One way to do this is by using the
multiplication tables and the rules of arith-
metic taught in elementary school. Specifi-
cally, line up the two numbers on a sheet of
paper (15 on top), multiply 3 times 5 to get
15, but carry the 1; multiply 3 times 1 to get
3 and add the carried 1, giving 4, which leads
to the answer, 45. But this product can also be
obtained just by counting. Specifically, get
3 jars, count 15 beans into each, pour the
beans from the three jars onto a table and
count them, which gives a total of 45. These
are two different sets of operations; one uses
the multiplication tables and the rules of arith-
metic; the other uses beans, jars, and count-
ing. But the two sets of operations can be said
to be functionally equivalent because they give
the same answer.

Functional equivalence is well known in sci-
ence. In particle physics, for example, Heisen-
berg’s matrix mechanics, Schrödinger’s wave
mechanics, and the Dirac-Feynman path
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integral formalism are functionally equivalent
theories of quantum phenomena (Cox &
Forshaw, 2012). Although the three theories
are implemented in very different ways, they
give the same answers, all of which agree in
detail with experimental measurements. Note
that the experimental measurements them-
selves are determined by the operations of
the physical world. Note also that the physi-
cal world is not likely to work in three differ-
ent ways, corresponding to the three
theories. In fact, the physical world is not
likely to work according to any one of the
theories (Cox & Forshaw, 2012; Lewis, 2016;
McDowell, 2013d). Hence, as McDowell
(2013d) pointed out, the operations of the
three theories, plus the operations of the
physical world (whatever they may be), are
all functionally equivalent.
According to a functional equivalence inter-

pretation of the evolutionary theory, its opera-
tions are as detached from the brain as are the
operations of quantum theories from the phys-
ical world. Most physicists have learned to
accept this detachment, given the extraordi-
nary success of the quantum theories,
although achieving this acceptance entailed a
long and sometimes contentious struggle
(Cox & Forshaw, 2012; McDowell, 2013d).
Consider Feynman’s (1985/2006) trenchant
comments about theories in general, and
about his path integral formalism in
particular:

[physicists have] learned to realize
that whether they like a theory or they
don’t like a theory is not the essential
question. Rather, it is whether or not
the theory gives predictions that agree
with experiment. It is not a question
of whether a theory is philosophically
delightful … or perfectly reasonable
from the point of view of common
sense. The [path integral formalism
is] absurd from the point of view of
common sense. And it agrees fully
with experiment. (p. 10).

According to a functional equivalence inter-
pretation of the ETBD, the operations of the
theory and the operations of the brain are
different ways of doing the same thing. Put
another way, neurophysiological functioning,

whatever its details might be, is the brain’s
way of generating evolutionary dynamics.

General Discussion

The evidence summarized in this article
constitutes substantial empirical support for
the evolutionary theory. Of particular note is
the theory’s ability to provide a single account
of steady-state behavior on concurrent interval
schedules and concurrent ratio schedules with
unequal and equal ratios in the components,
such that different explanations of behavior in
these three environments are not necessary.
Another noteworthy outcome is the theory’s
correct prediction of the numerical values of
the exponents typically observed in matching
and bivariate matching experiments with live
organisms (Eqs. 2). According to the theory,
these specific numerical values are the result
of evolutionary dynamics.

Other prior-principle theories of instrumen-
tal behavior have appeared in the literature
over the past 25 or so years. These include the
reflex reserve theory mentioned earlier
(Catania, 2005; Killeen, 1988), various neural
network theories (e.g., Donahoe, Burgos, &
Palmer, 1993), a theory of arousal coupled to
responses in memory (Killeen, 1994; Killeen &
Bizo, 1998), a theory of cognitive processing
(Shimp, Childers, & Hightower, 1990), and a
cognitive expectancy theory (Dragoi & Stad-
don, 1999). To date, none of these theories
has garnered empirical support as extensive as
that summarized here for the ETBD. In addi-
tion, counterevidence for and criticism of
reflex reserve theory (Berg & McDowell,
2011) and neural network theories (Calvin,
2012; Calvin & McDowell, 2015, 2016; Kehoe,
1989; Marr, 1997, 2000; McDowell 2013d) have
appeared in the literature.

Two additional developments in the ETBD
are worth mentioning. The first is an imple-
mentation of stimulus control. McDowell, Soto,
Dallery, and Kulubekova (2006) proposed an
addition to the evolutionary theory that per-
mits behavior to come under the control of dis-
criminative stimuli, including temporal stimuli
such as those associated with fixed-interval and
differential-reinforcement-of-low-rate sched-
ules. The implementation is based on Mazur’s
(1997) hyperbolic delay theory of conditioned
reinforcement and the Rescorla-Wagner theory
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of associative learning (Danks, 2003; Sutton &
Barto, 1998). It allows, among other things, dif-
ferent patterns of behavior to develop and to
be maintained under different stimulus condi-
tions. It also allows AOs to work to change from
less favorable reinforcement contexts to more
favorable ones. Importantly, McDowell et al.’s
implementation does not alter any of the exist-
ing rules of the evolutionary theory; instead, it
adds new rules that permit stimulus control to
develop. Berg (2011) studied a version of
McDowell et al.’s implementation and found
good discriminative responding in AOs ani-
mated by the theory. He also found that the
AOs worked to change reinforcement contexts
just as live organisms do. Unfortunately, Berg’s
implementation uses two different parameters
to represent reinforcer magnitude. This is the-
oretically problematic, and introduces practical
uncertainties when using his implementation
in computational experiments. Nevertheless,
Berg’s results suggest that some form of
McDowell et al.’s implementation of stimulus
control in the ETBD is likely to be successful.
The second additional development in the

ETBD is an implementation of punishment
superimposed on concurrent schedules of
reinforcement (work done in collaboration
with Bryan Klapes). Without changing the
existing rules of the theory, this implementa-
tion allows behavior to be affected by punish-
ment frequency, punisher magnitude, and
reinforcement context. Reinforcement context
modulates the effect of punishment such that
a punisher with a given frequency and magni-
tude suppresses behavior less in the presence
of a high rate of reinforcement than in the
presence of a low rate of reinforcement. This
may be viewed as a kind of aversion to rein-
forcement loss. In other words, punishment
not only delivers an aversive punishing stimu-
lus, but also an aversive loss of reinforcement
due to response suppression. These two effects
compete to determine the degree of the
response suppression; the aversive punishing
stimulus acts to suppress responding while the
aversive loss of reinforcement acts to maintain
it. The relevant computational studies for this
project have been completed, and the results
are consistent with findings from experiments
with live organisms, including a preference
shift toward overmatching when equal sched-
ules of punishment are superimposed on the
two alternatives (Farley, 1980; Reed & Yoshino,

2005). This work has not yet been published,
but a preprint is available upon request.

Additional research on the ETBD is cur-
rently underway, including studies of stimulus
control in chained schedules, the tracking of
unsignaled changes in reinforcement rate
ratios on concurrent interval schedules
(as reported for rhesus monkeys by Corrado
et al., 2005, and Sugrue, Corrado, & Newsome,
2004), and delay discounting. The navigation
of grid worlds by AOs is also being investigated
(McDowell et al., 2006). Grid worlds are often
a focus of research in artificial life and artifi-
cial intelligence because they entail learning
about the location of resources on a two-
dimensional surface (Mitchell, 2009; Russell &
Norvig, 2003). The study of AOs navigating
grid worlds is a first step toward animating
mechanical agents with the ETBD.

In addition to basic science research, clini-
cal translational research using the ETBD is
underway as well. This includes studying the
behavior of AOs with attention-deficit/hyper-
activity disorder (ADHD), which is produced
by arranging high mutation rates. When the
rate of mutation is high, behavior is more
likely to shift out of a target (i.e., a reinforced)
class of phenotypes than when the rate of
mutation is moderate. An observer might
report this as inattention to the target, or as
impulsive switching to other behaviors, or as
some combination of the two. The symptom
dimension that is reported might depend on
how different the switched-to phenotypes are
from the target phenotypes. If they are very
different, then the shift out of the target class
may be seen as impulsive behavior; if they are
not very different, then the shift out of the tar-
get class may be seen as inattentive behavior.

Interestingly, some evidence suggests that
children with ADHD show lower sensitivity to
reinforcement in concurrent schedules than
controls, that is, the a parameter in Equation 2
is lower for these children (Kollins, Lane, &
Shapiro, 1997; Taylor, Lincoln, & Foster,
2010). This is precisely what is observed in
AOs when the rate of mutation in the evolu-
tionary theory is relatively high (McDowell
et al., 2008). Furthermore, arranging higher
rates of reinforcement for children with
ADHD has been reported to normalize their
symptoms (American Psychiatric Association,
2013; Barkley, 2002; Stattin, Enebrink, Özde-
mir, & Giannotta, 2015). Similarly, in a study

141STATUS OF THE EVOLUTIONARY THEORY



of AOs animated by the evolutionary theory,
Popa and McDowell (2016) found that, in the
presence of a high mutation rate, increasing
the rates of reinforcement for the target
behaviors increased the exponent of Equa-
tion 2 to a more normal level. In view of these
two correspondences between the evolutionary
theory and the clinical literature, it appears
reasonable to model ADHD by increasing the
rate of mutation in the evolutionary theory.
Given a plausible computational model, it may
be possible to study additional features of
ADHD, and to test interventions for the disor-
der, using AOs animated by the theory
(McDowell, 2013b).
In addition to modeling ADHD, methods of

modeling depression and bipolar disorder are
also being explored. An initial foray into this
modeling has focused on the mean of the fit-
ness density function. Recall that this parame-
ter determines selection strength. In
depression, or in the depressed phase of bipo-
lar disorder, selection strength may be weaker
than normal, reflecting anhedonia. In the
manic or hypomanic phase of bipolar disor-
der, selection strength may be stronger than
normal, resulting in excessive behavior. Recall
that selection strength in the ETBD affects the
asymptote, b, of Equation 1, which describes
behavior on single RI schedules. Specifically,
the b parameter varies directly with selection
strength. Bradshaw and Szabadi (1978), and
Szabadi, Bradshaw, and Ruddle (1981) studied
the behavior of two individuals with bipolar
disorder working on variable-interval sched-
ules of monetary reinforcement during several
manic, euthymic (normal), and depressive
phases of their illness. They fitted a form of
Equation 1 to data from these individuals and
found that b varied with the phase of their ill-
ness in the manner predicted by the prelimi-
nary ETBD model of bipolar disorder
presented here. Specifically, b was larger dur-
ing manic phases and smaller during
depressed phases when compared to its value
during euthymic phases of the illness. Again,
this correspondence between the theory and
clinical findings suggests that the ETBD might
prove useful as a model for studying, and per-
haps developing interventions for, depression
and bipolar disorder.
In conclusion, the extensive support for the

ETBD summarized in this article suggests that
the theory is a strong candidate for a

comprehensive prior-principle theory of adap-
tive behavior. The theory is conceptually and
parametrically simple, and it tells an appealing
story about behavior, namely, that it evolves in
ontogenetic time under the selection pressure
of consequences from the environment.
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