Jack Panter

Jack Panter
  • Doctor of Philosophy
  • Lecturer in Fluid Dynamics at University of East Anglia

About

18
Publications
3,327
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
177
Citations
Current institution
University of East Anglia
Current position
  • Lecturer in Fluid Dynamics
Additional affiliations
October 2021 - present
Durham University
Position
  • PDRA
Description
  • Theory, algorithm design, and simulations of multiphase fluid systems with particular emphasis on Liquid Infused Surfaces (LIS). Collaboration with P&G and ExxonMobil.
September 2021 - September 2022
University of Cambridge
Position
  • PDRA
Description
  • Development and applications of energy landscape methods in colloidal systems and machine learning.
September 2019 - July 2020
Durham University
Position
  • Research Assistant
Description
  • Developed novel wetting applications with P&G, using the Lattice Boltzmann Method for fluid dynamics.
Education
October 2015 - September 2019
Durham University
Field of study
  • Exploring Stability Landscapes for Optimal Material Design: Application to Wetting of Structured Surfaces
September 2011 - June 2015
Durham University
Field of study
  • Joint Honors in Physics and Chemistry within the Natural Sciences Degree Programme

Publications

Publications (18)
Article
We develop and harness a phase field simulation method to study liquid filling on grooved surfaces. We consider both short-range and long-range liquid–solid interactions, with the latter including purely attractive and repulsive interactions as well as those with short-range attraction and long-range repulsion. This allows us to capture complete, p...
Preprint
Full-text available
We develop and harness a phase field simulation method to study liquid filling on grooved surfaces. We consider both short-range and long-range liquid-solid interactions, with the latter including purely attractive and repulsive interactions, as well as those with short-range attraction and long-range repulsion. This allows us to capture complete,...
Article
Full-text available
Capillary rise within rough structures is a wetting phenomenon that is fundamental to survival in biological organisms, deterioration of our built environment, and performance of numerous innovations, from 3D microfluidics to carbon capture. Here, to accurately predict rough capillary rise, we must couple two wetting phenomena: capillary rise and h...
Article
Full-text available
We present a model of a system of elastic fibres which exhibits complex, coupled, nonlinear deformations via a connecting elastic spring network. This model can capture physically observed deformations such as global buckling, pinching and internal collapse. We explore the transitions between these deformation modes numerically, using an energy min...
Preprint
Full-text available
Locating transition states is crucial for investigating transition mechanisms in wide-ranging phenomena, from atomistic to macroscale systems. Existing methods, however, can struggle in problems with a large number of degrees of freedom, on-the-fly adaptive remeshing and coarse-graining, and energy landscapes that are locally flat or discontinuous....
Article
The interplay between crystalline ordering, curvature, and size dispersity make the packing of bidisperse mixtures of particles on a sphere a varied and complex phenomenon. These structures have functional significance in a broad range of systems, such as cellular organisation in spherical epithelia, catalytic activity in binary colloidosomes, and...
Article
We numerically study two-component capillary bridges formed when a liquid droplet is placed in between two liquid-infused surfaces (LIS). In contrast to commonly studied one-component capillary bridges on noninfused solid surfaces, two-component liquid bridges can exhibit a range of different morphologies where the liquid droplet is directly in con...
Preprint
Full-text available
We numerically study two-component capillary bridges formed when a liquid droplet is placed in between two liquid infused surfaces (LIS). In contrast to commonly studied one-component capillary bridges on non-infused solid surfaces, two-component liquid bridges can exhibit a range of different morphologies where the liquid droplet is directly in co...
Chapter
Many plants experience freezing temperatures that can be damaging and even lethal. Current climate projections suggest that freezing events are likely to increase in early autumn and late spring, at times when plants are unprepared to deal with them. Previous literature has highlighted specific mechanical properties of the plant cell wall that may...
Article
Full-text available
Liquid infused surfaces with partially wetting lubricants have recently been exploited for numerous intriguing applications, such as for droplet manipulation, droplet collection and spontaneous motion. When partially wetting lubricants are used, the pinning force is a key factor that can strongly affect droplet mobility. Here, we derive an analytic...
Preprint
Full-text available
Liquid infused surfaces with partially wetting lubricants have recently been exploited for numerous intriguing applications, such as for droplet manipulation, droplet collection and spontaneous motion. When partially wetting lubricants are used, the pinning force is a key factor that can strongly affect droplet mobility. Here, we derive an analytic...
Article
Full-text available
Joint physically and chemically pattered surfaces can provide efficient and passive manipulation of fluid flow. The ability of many of these surfaces to allow only unidirectional flow mean they are often referred to as fluid diodes. Synthetic analogues of these are enabling technologies from sustainable water collection via fog harvesting, to impro...
Preprint
Full-text available
Joint physically and chemically pattered surfaces can provide efficient and passive manipulation of fluid flow. The ability of many of these surfaces to allow only unidirectional flow mean they are often referred to as fluid diodes. Synthetic analogues of these are enabling technologies from sustainable water collection via fog harvesting, to impro...
Article
Full-text available
Even for relatively simple thin shell morphologies, many different buckled configurations can be stable simultaneously. Which state is observed in practice is highly sensitive to both environmental perturbations and shell imperfections. The complexity and unpredictability of postbuckling responses has therefore raised great challenges to emerging t...
Preprint
Full-text available
The complexity and unpredictability of postbuckling responses in even simple thin shells have raised great challenges to emerging technologies exploiting buckling transitions. Here we comprehensively survey the buckling landscapes to show the full complexity of the stable buckling states and the transition mechanisms between each of them. This is a...
Article
Full-text available
Superomniphobic textures are at the frontier of surface design for vast arrays of applications. Despite recent substantial advances in fabrication methods for reentrant and doubly reentrant microstructures, design optimization remains a major challenge. We overcome this in two stages. First, we develop readily generalizable computational methods to...
Preprint
Full-text available
Superomniphobic textures are at the frontier of surface design for vast arrays of applications. Despite recent significant advances in fabrication methods for reentrant and doubly reentrant microstructures, design optimisation remains a major challenge. We overcome this in two stages. Firstly, we develop readily-generalisable computational methods...
Article
Full-text available
The fundamental impacts of surface geometry on the stability of wetting states, and the transitions between them are elucidated for posts and reentrant structures in both two and three dimensions. We identify three principal outcomes of particular importance for future surface design of liquid-repellent surfaces. Firstly, we demonstrate and quantif...

Network

Cited By