About
18
Publications
3,327
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
177
Citations
Introduction
Current institution
Additional affiliations
Publications
Publications (18)
We develop and harness a phase field simulation method to study liquid filling on grooved surfaces. We consider both short-range and long-range liquid–solid interactions, with the latter including purely attractive and repulsive interactions as well as those with short-range attraction and long-range repulsion. This allows us to capture complete, p...
We develop and harness a phase field simulation method to study liquid filling on grooved surfaces. We consider both short-range and long-range liquid-solid interactions, with the latter including purely attractive and repulsive interactions, as well as those with short-range attraction and long-range repulsion. This allows us to capture complete,...
Capillary rise within rough structures is a wetting phenomenon that is fundamental to survival in biological organisms, deterioration of our built environment, and performance of numerous innovations, from 3D microfluidics to carbon capture. Here, to accurately predict rough capillary rise, we must couple two wetting phenomena: capillary rise and h...
We present a model of a system of elastic fibres which exhibits complex, coupled, nonlinear deformations via a connecting elastic spring network. This model can capture physically observed deformations such as global buckling, pinching and internal collapse. We explore the transitions between these deformation modes numerically, using an energy min...
Locating transition states is crucial for investigating transition mechanisms in wide-ranging phenomena, from atomistic to macroscale systems. Existing methods, however, can struggle in problems with a large number of degrees of freedom, on-the-fly adaptive remeshing and coarse-graining, and energy landscapes that are locally flat or discontinuous....
The interplay between crystalline ordering, curvature, and size dispersity make the packing of bidisperse mixtures of particles on a sphere a varied and complex phenomenon. These structures have functional significance in a broad range of systems, such as cellular organisation in spherical epithelia, catalytic activity in binary colloidosomes, and...
We numerically study two-component capillary bridges formed when a liquid droplet is placed in between two liquid-infused surfaces (LIS). In contrast to commonly studied one-component capillary bridges on noninfused solid surfaces, two-component liquid bridges can exhibit a range of different morphologies where the liquid droplet is directly in con...
We numerically study two-component capillary bridges formed when a liquid droplet is placed in between two liquid infused surfaces (LIS). In contrast to commonly studied one-component capillary bridges on non-infused solid surfaces, two-component liquid bridges can exhibit a range of different morphologies where the liquid droplet is directly in co...
Many plants experience freezing temperatures that can be damaging and even lethal. Current climate projections suggest that freezing events are likely to increase in early autumn and late spring, at times when plants are unprepared to deal with them. Previous literature has highlighted specific mechanical properties of the plant cell wall that may...
Liquid infused surfaces with partially wetting lubricants have recently been exploited for numerous intriguing applications, such as for droplet manipulation, droplet collection and spontaneous motion. When partially wetting lubricants are used, the pinning force is a key factor that can strongly affect droplet mobility. Here, we derive an analytic...
Liquid infused surfaces with partially wetting lubricants have recently been exploited for numerous intriguing applications, such as for droplet manipulation, droplet collection and spontaneous motion. When partially wetting lubricants are used, the pinning force is a key factor that can strongly affect droplet mobility. Here, we derive an analytic...
Joint physically and chemically pattered surfaces can provide efficient and passive manipulation of fluid flow. The ability of many of these surfaces to allow only unidirectional flow mean they are often referred to as fluid diodes. Synthetic analogues of these are enabling technologies from sustainable water collection via fog harvesting, to impro...
Joint physically and chemically pattered surfaces can provide efficient and passive manipulation of fluid flow. The ability of many of these surfaces to allow only unidirectional flow mean they are often referred to as fluid diodes. Synthetic analogues of these are enabling technologies from sustainable water collection via fog harvesting, to impro...
Even for relatively simple thin shell morphologies, many different buckled configurations can be stable simultaneously. Which state is observed in practice is highly sensitive to both environmental perturbations and shell imperfections. The complexity and unpredictability of postbuckling responses has therefore raised great challenges to emerging t...
The complexity and unpredictability of postbuckling responses in even simple thin shells have raised great challenges to emerging technologies exploiting buckling transitions. Here we comprehensively survey the buckling landscapes to show the full complexity of the stable buckling states and the transition mechanisms between each of them. This is a...
Superomniphobic textures are at the frontier of surface design for vast arrays of applications. Despite recent substantial advances in fabrication methods for reentrant and doubly reentrant microstructures, design optimization remains a major challenge. We overcome this in two stages. First, we develop readily generalizable computational methods to...
Superomniphobic textures are at the frontier of surface design for vast arrays of applications. Despite recent significant advances in fabrication methods for reentrant and doubly reentrant microstructures, design optimisation remains a major challenge. We overcome this in two stages. Firstly, we develop readily-generalisable computational methods...
The fundamental impacts of surface geometry on the stability of wetting states, and the transitions between them are elucidated for posts and reentrant structures in both two and three dimensions. We identify three principal outcomes of particular importance for future surface design of liquid-repellent surfaces. Firstly, we demonstrate and quantif...