J. Sun

J. Sun

About

411
Publications
103,826
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
23,964
Citations

Publications

Publications (411)
Article
Full-text available
Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (Tri...
Preprint
Electrocardiogram (ECG), a non-invasive and affordable tool for cardiac monitoring, is highly sensitive in detecting acute heart attacks. However, due to the lengthy nature of ECG recordings, numerous machine learning methods have been developed for automated heart disease detection to reduce human workload. Despite these efforts, performance remai...
Preprint
Full-text available
Each year, hundreds of clinical trials are conducted to evaluate new medical interventions, but sharing patient records from these trials with other institutions can be challenging due to privacy concerns and federal regulations. To help mitigate privacy concerns, researchers have proposed methods for generating synthetic patient data. However, exi...
Preprint
Full-text available
Data science plays a critical role in clinical research, but it requires professionals with expertise in coding and medical data analysis. Large language models (LLMs) have shown great potential in supporting medical tasks and performing well in general coding tests. However, these tests do not assess LLMs' ability to handle data science tasks in m...
Preprint
Full-text available
The integration of Large Language Models (LLMs) into medical applications has sparked widespread interest across the healthcare industry, from drug discovery and development to clinical decision support, assisting telemedicine, medical devices, and healthcare insurance applications. This perspective paper aims to discuss the inner workings of build...
Preprint
Full-text available
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare by generating human-like responses across diverse contexts and adapting to novel tasks following human instructions. Their potential application spans a broad range of medical tasks, such as clinical documentation, matc...
Preprint
Full-text available
Large language models (LLMs) have demonstrated significant potential in clinical decision support. Yet LLMs still suffer from hallucinations and lack fine-grained contextual medical knowledge, limiting their high-stake healthcare applications such as clinical diagnosis. Traditional retrieval-augmented generation (RAG) methods attempt to address the...
Preprint
Full-text available
Analyzing data from past clinical trials is part of the ongoing effort to optimize the design, implementation, and execution of new clinical trials and more efficiently bring life-saving interventions to market. While there have been recent advances in the generation of static context synthetic clinical trial data, due to both limited patient avail...
Article
The ability to assess sleep at home, capture sleep stages, and detect the occurrence of apnea (without on-body sensors) simply by analyzing the radio waves bouncing off people’s bodies while they sleep is quite powerful. Such a capability would allow for longitudinal data collection in patients’ homes, informing our understanding of sleep and its i...
Preprint
Full-text available
Medical dialogue systems (MDS) enhance patient-physician communication, improve healthcare accessibility, and reduce costs. However, acquiring suitable data to train these systems poses significant challenges. Privacy concerns prevent the use of real conversations, necessitating synthetic alternatives. Synthetic dialogue generation from publicly av...
Conference Paper
Tabular data prediction has been employed in medical applications such as patient health risk prediction. However, existing methods usually revolve around the algorithm design while overlooking the significance of data engineering. Medical tabular datasets frequently exhibit significant heterogeneity across different sources, with limited sample si...
Conference Paper
The development of electronic health records (EHR) systems has enabled the collection of a vast amount of digitized patient data. However, utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics. With the advancements in machine learning techniques, deep learning has demonstrated its superiority in v...
Preprint
Clinical trials are pivotal for developing new medical treatments, yet they typically pose some risks such as patient mortality, adverse events, and enrollment failure that waste immense efforts spanning over a decade. Applying artificial intelligence (AI) to forecast or simulate key events in clinical trials holds great potential for providing ins...
Preprint
Full-text available
Clinical trials are fundamental in developing new drugs, medical devices, and treatments. However, they are often time-consuming and have low success rates. Although there have been initial attempts to create large language models (LLMs) for clinical trial design and patient-trial matching, these models remain task-specific and not adaptable to div...
Preprint
Full-text available
Automatic medical discovery by AI is a dream of many. One step toward that goal is to create an AI model to understand clinical studies and synthesize clinical evidence from the literature. Clinical evidence synthesis currently relies on systematic reviews of clinical trials and retrospective analyses from medical literature. However, the rapid exp...
Preprint
The global cost of drug discovery and development exceeds $200 billion annually. The main results of drug discovery and development are the outcomes of clinical trials, which directly influence the regulatory approval of new drug candidates and ultimately affect patient outcomes. Despite their significance, large-scale, high-quality clinical trial...
Preprint
Full-text available
Artificial intelligence has significantly impacted medical applications, particularly with the advent of Medical Large Vision Language Models (Med-LVLMs), sparking optimism for the future of automated and personalized healthcare. However, the trustworthiness of Med-LVLMs remains unverified, posing significant risks for future model deployment. In t...
Preprint
Full-text available
Document-level relation extraction aims to categorize the association between any two entities within a document. We find that previous methods for document-level relation extraction are ineffective in exploiting the full potential of large amounts of training data with varied noise levels. For example, in the ReDocRED benchmark dataset, state-of-t...
Preprint
Full-text available
The advent of large language models (LLMs) has dramatically advanced the state-of-the-art in numerous natural language generation tasks. For LLMs to be applied reliably, it is essential to have an accurate measure of their confidence. Currently, the most commonly used confidence score function is the likelihood of the generated sequence, which, how...
Article
e13627 Background: The analysis of genomic variants is crucial in precision oncology research, offering insights into cancer risks and progression, especially in diverse types such as lung adenocarcinoma (LUAD). However, such research often grapples with balancing patient privacy with the need for comprehensive, high-quality genomic datasets. Our p...
Preprint
Tabular data from different tables exhibit significant diversity due to varied definitions and types of features, as well as complex inter-feature and feature-target relationships. Cross-dataset pretraining, which learns reusable patterns from upstream data to support downstream tasks, have shown notable success in various fields. Yet, when applied...
Preprint
Full-text available
Knowledge Graph Embedding (KGE) techniques are crucial in learning compact representations of entities and relations within a knowledge graph, facilitating efficient reasoning and knowledge discovery. While existing methods typically focus either on training KGE models solely based on graph structure or fine-tuning pre-trained language models with...
Preprint
BACKGROUND Rare diseases affect millions worldwide but often face limited research focus due to their low prevalence. This results in prolonged diagnoses and a lack of approved therapies. Recent advancements in Large Language Models (LLMs) have shown promise in automating the extraction of medical information, offering potential to improve rare dis...
Conference Paper
Full-text available
Clinical predictive models often rely on patients' electronic health records (EHR), but integrating medical knowledge to enhance predictions and decision-making is challenging. This is because personalized predictions require personalized knowledge graphs (KGs), which are difficult to generate from patient EHR data. To address this, we propose \tex...
Article
Generative models can produce synthetic patient records for analytical tasks when real data is unavailable or limited. However, current methods struggle with adhering to domain-specific knowledge and removing invalid data. We present ConSequence, an effective approach to integrating domain knowledge into sequential generative neural network outputs...
Article
The underrepresentation of gender, racial, and ethnic minorities in clinical trials is a problem undermining the efficacy of treatments on minorities and preventing precise estimates of the effects within these subgroups. We propose FRAMM, a deep reinforcement learning framework for fair trial site selection to help address this problem. We focus o...
Article
Full-text available
In the U.S. inpatient payment system, the Diagnosis-Related Group (DRG) is pivotal, but its assignment process is inefficient. The study introduces , an advanced large language model (LLM) fine-tuned on clinical notes to enhance DRGs assignment. Utilizing LLaMA as the foundational model and optimizing it through Low-Rank Adaptation (LoRA) on 236,19...
Article
Objectives: Respiratory syncytial virus (RSV) is a significant cause of pediatric hospitalizations. This article aims to utilize multisource data and leverage the tensor methods to uncover distinct RSV geographic clusters and develop an accurate RSV prediction model for future seasons. Materials and methods: This study utilizes 5-year RSV data f...
Preprint
Full-text available
In the U.S. inpatient payment system, the Diagnosis-Related Group (DRG) is pivotal, but its assignment process is inefficient. The study introduces DRG-LLaMA, an advanced large language model (LLM) fine-tuned on clinical notes to enhance DRGs assignment. Utilizing LLaMA as the foundational model and optimizing it through Low-Rank Adaptation (LoRA)...
Article
Full-text available
Synthetic electronic health records (EHRs) that are both realistic and privacy-preserving offer alternatives to real EHRs for machine learning (ML) and statistical analysis. However, generating high-fidelity EHR data in its original, high-dimensional form poses challenges for existing methods. We propose Hierarchical Autoregressive Language mOdel (...
Preprint
Full-text available
There are now over 500 medical AI devices that are approved by the U.S. FDA. However, little is known about where and how often these devices are actually used after regulatory approval. In this paper, we systematically quantify the adoption and usage of medical AI in the U.S. by tracking Current Procedural Terminology (CPT) codes explicitly create...
Preprint
Full-text available
LLMs usually exhibit limitations in their ability to incorporate new knowledge, the generation of hallucinations, and the transparency of their decision-making process. In this paper, we explore how to prompt LLMs with knowledge graphs (KG), working as a remedy to engage LLMs with up-to-date knowledge and elicit the reasoning pathways from LLMs. Sp...
Article
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect and interpret large datasets, and gain insights that might not have been possible using traditional scientific methods alone. Here we examine breakthroughs...
Preprint
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment. In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials based on longitudinal patient electronic health records (EHR) data and eligibi...
Preprint
Full-text available
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Sc...
Preprint
Full-text available
Drug development is a complex process that aims to test the efficacy and safety of candidate drugs in the human body for regulatory approval via clinical trials. Recently, machine learning has emerged as a vital tool for drug development, offering new opportunities to improve the efficiency and success rates of the process. To facilitate the resear...
Article
Full-text available
Background Epileptiform activity is associated with worse patient outcomes, including increased risk of disability and death. However, the effect of epileptiform activity on neurological outcome is confounded by the feedback between treatment with antiseizure medications and epileptiform activity burden. We aimed to quantify the heterogeneous effec...
Preprint
Large language models (LLMs) specializing in natural language generation (NLG) have recently started exhibiting promising capabilities across a variety of domains. However, gauging the trustworthiness of responses generated by LLMs remains an open challenge, with limited research on uncertainty quantification for NLG. Furthermore, existing literatu...
Preprint
Despite many efforts to address the disparities, the underrepresentation of gender, racial, and ethnic minorities in clinical trials remains a problem and undermines the efficacy of treatments on minorities. This paper focuses on the trial site selection task and proposes FRAMM, a deep reinforcement learning framework for fair trial site selection....
Article
Full-text available
In this work, we aim to accurately predict the number of hospitalizations during the COVID-19 pandemic by developing a spatiotemporal prediction model. We propose HOIST, an Ising dynamics-based deep learning model for spatiotemporal COVID-19 hospitalization prediction. By drawing the analogy between locations and lattice sites in statistical mechan...
Preprint
Full-text available
The mission of open knowledge graph (KG) completion is to draw new findings from known facts. Existing works that augment KG completion require either (1) factual triples to enlarge the graph reasoning space or (2) manually designed prompts to extract knowledge from a pre-trained language model (PLM), exhibiting limited performance and requiring ex...
Preprint
Full-text available
Clinical predictive models often rely on patients electronic health records (EHR), but integrating medical knowledge to enhance predictions and decision-making is challenging. This is because personalized predictions require personalized knowledge graphs (KGs), which are difficult to generate from patient EHR data. To address this, we propose Graph...
Preprint
Full-text available
Foundation models are pre-trained on massive data to perform well across many downstream tasks. They have demonstrated significant success in natural language processing and computer vision. Nonetheless, the use of such models in tabular prediction tasks has been limited, with the main hurdles consisting of (1) the lack of large-scale and diverse t...
Preprint
Full-text available
Biological signals, such as electroencephalograms (EEG), play a crucial role in numerous clinical applications, exhibiting diverse data formats and quality profiles. Current deep learning models for biosignals are typically specialized for specific datasets and clinical settings, limiting their broader applicability. Motivated by the success of lar...
Preprint
Full-text available
Clinical trials are essential to drug development but time-consuming, costly, and prone to failure. Accurate trial outcome prediction based on historical trial data promises better trial investment decisions and more trial success. Existing trial outcome prediction models were not designed to model the relations among similar trials, capture the pr...
Preprint
Synthetic electronic health records (EHRs) that are both realistic and preserve privacy can serve as an alternative to real EHRs for machine learning (ML) modeling and statistical analysis. However, generating high-fidelity and granular electronic health record (EHR) data in its original, highly-dimensional form poses challenges for existing method...
Chapter
Given a deep learning model trained on data from a source hospital, how to deploy the model to a target hospital automatically? How to accommodate heterogeneous medical coding systems across different hospitals? Standard approaches rely on existing medical code mapping tools, which have several practical limitations.To tackle this problem, we propo...
Article
Full-text available
Synthetic electronic health records (EHRs) that are both realistic and preserve privacy can serve as an alternative to real EHRs for machine learning (ML) modeling and statistical analysis. However, generating high-fidelity and granular electronic health record (EHR) data in its original, highly-dimensional form poses challenges for existing method...
Article
Background and objectives: Seizures and other seizure-like patterns of brain activity can harm the brain and contribute to in-hospital death, particularly when prolonged. However, experts qualified to interpret electroencephalography (EEG) data are scarce. Prior attempts to automate this task have been limited by small or inadequately labeled samp...
Preprint
BACKGROUND Deep learning models have shown great success in automating tasks in sleep medicine by learning from carefully annotated Electroencephalogram (EEG) data. However, effectively utilizing a large amount of raw EEG remains a challenge. OBJECTIVE In this paper, we aim to learn robust vector representations from massive unlabeled EEG signals,...
Article
Full-text available
Background Deep learning models have shown great success in automating tasks in sleep medicine by learning from carefully annotated electroencephalogram (EEG) data. However, effectively using a large amount of raw EEG data remains a challenge. Objective In this study, we aim to learn robust vector representations from massive unlabeled EEG signals...
Preprint
Full-text available
The vast amount of health data has been continuously collected for each patient, providing opportunities to support diverse healthcare predictive tasks such as seizure detection and hospitalization prediction. Existing models are mostly trained on other patients data and evaluated on new patients. Many of them might suffer from poor generalizabilit...
Article
Background and Objectives The validity of brain monitoring using electroencephalography (EEG), particularly to guide care in patients with acute or critical illness, requires that experts can reliably identify seizures and other potentially harmful rhythmic and periodic brain activity, collectively referred to as “ictal-interictal-injury continuum"...
Preprint
Structure-based drug design (SBDD) aims to discover drug candidates by finding molecules (ligands) that bind tightly to a disease-related protein (targets), which is the primary approach to computer-aided drug discovery. Recently, applying deep generative models for three-dimensional (3D) molecular design conditioned on protein pockets to solve SBD...
Preprint
Full-text available
Existing vision-text contrastive learning like CLIP aims to match the paired image and caption embeddings while pushing others apart, which improves representation transferability and supports zero-shot prediction. However, medical image-text datasets are orders of magnitude below the general images and captions from the internet. Moreover, previou...
Preprint
Full-text available
Drug recommendation assists doctors in prescribing personalized medications to patients based on their health conditions. Existing drug recommendation solutions adopt the supervised multi-label classification setup and only work with existing drugs with sufficient prescription data from many patients. However, newly approved drugs do not have much...
Preprint
Full-text available
Accessing longitudinal multimodal Electronic Healthcare Records (EHRs) is challenging due to privacy concerns, which hinders the use of ML for healthcare applications. Synthetic EHRs generation bypasses the need to share sensitive real patient records. However, existing methods generate single-modal EHRs by unconditional generation or by longitudin...
Article
Artificial intelligence (AI) is poised to transform therapeutic science. Therapeutics Data Commons is an initiative to access and evaluate AI capability across therapeutic modalities and stages of discovery, establishing a foundation for understanding which AI methods are most suitable and why.
Preprint
Full-text available
A clinical trial is an essential step in drug development, which is often costly and time-consuming. In silico trials are clinical trials conducted digitally through simulation and modeling as an alternative to traditional clinical trials. AI-enabled in silico trials can increase the case group size by creating virtual cohorts as controls. In addit...
Article
Full-text available
The COVID-19 pandemic has caused devastating economic and social disruption. This has led to a nationwide call for models to predict hospitalization and severe illness in patients with COVID-19 to inform the distribution of limited healthcare resources. To address this challenge, we propose a machine learning model, MedML, to conduct the hospitaliz...
Conference Paper
Low-rank tensor factorization or completion is well-studied and applied in various online settings, such as online tensor factorization (where the temporal mode grows) and online tensor completion (where incomplete slices arrive gradually). However, in many real-world settings, tensors may have more complex evolving patterns: (i) one or more modes...