
J. Martín- Polytechnic University of Valencia
J. Martín
- Polytechnic University of Valencia
About
66
Publications
21,211
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,869
Citations
Introduction
J. Martín currently works at the Department of Thermal Engines and Machines (CMT - Motores Térmicos), Universitat Politècnica de València. J. does research in Automotive Engineering. Their most recent publication is 'Methodology for Optical Engine Characterization by Means of the Combination of Experimental and Modeling Techniques'.
Skills and Expertise
Current institution
Publications
Publications (66)
div class="section abstract"> Accelerating rate calorimetry (ARC) has emerged as a powerful tool for evaluating the thermal behavior of Li-ion cells and identifying potential safety hazards. In this work, a new physical thermal model has been developed based on the first law of thermodynamics for analyzing heat and mass generated by Lithium-ion bat...
In the context of the CO2 challenge, oxy-fuel combustion in internal combustion engines (OFC-ICE) arises as a promising technology for carbon capture and almost zero-NOx solutions. Although the literature shows some experimental and theoretical works on OFC-ICE, there is a lack of systematic studies dealing with dilution strategies or where non-syn...
Oxy-combustion is a promising concept to achieve an extremely clean combustion, independently of the fuel type, because, on the one hand, it is a NOx-free combustion and, on the other hand, the CO2 produced during combustion can be easily captured once the water vapor is removed from the exhaust gases stream, consequently allowing also carbon neutr...
The effect of ambient humidity on the performance and pollutant emissions of internal combustion engines is not considered in the literature despite type-approval criteria are moving closer to real driving conditions. This work analyses experimentally the effects of charge air humidity at high warm altitudes, where the use of exhaust gas recirculat...
Several investigations related to increasing engine thermal efficiency focusing on the engine hydraulic circuits (oil and coolant) were performed over the last years. According to literature, more than 20% of the fuel energy is rejected to the coolant in steady state conditions. Thus, better use of that energy, especially during warm up of the engi...
Oxy-fuel combustion concept is one of the most promising technologies not only to avoid NOx emissions, but also to reduce CO, unburned hydrocarbons and soot emissions in combustion-based powerplants. Moreover, the concept facilitates Carbon Capture and Storage (CCS), thus promoting CO2 integration in a circular economy strategy (i.e. e-fuels produc...
In this work, the Global Energy Balance (GEB) of a 1.6 L compression ignition engine is analyzed during WLTC using a combination of experimental measurements and simulations, by means of a Virtual Engine. The energy split considers all the relevant energy terms at two starting temperatures (20°C and 7°C) and two altitudes (0 and 1000 m). It is show...
As well as new advances in the after-treatment systems are required to achieve the new pollutant emission requirements, new designs of the exhaust line can be considered in order to increase the engine efficiency and the after-treatment effectiveness. In the present work, a one-dimensional gas dynamic model has been used to carry out a simulation s...
Growing interest has arisen to adopt Variable Valve Timing (VVT) technology for automotive engines due to the need to fulfill the pollutant emission regulations. Several VVT strategies, such as the exhaust re-opening and the late exhaust closing, can be used to achieve an increment in the after-treatment upstream temperature by increasing the resid...
The combustion diagnostics and subsequent analysis are standardized tools based on the estimation of the heat release law (HRL). From this estimation, the different combustion parameters can be obtained: combustion phasing and duration, heat release rate, and so on. This analysis might be usually enough to study traditional spark ignition (SI) engi...
div class="section abstract"> In the present work, a study about the impact on engine performance, fuel consumption and turbine inlet and outlet temperatures with the addition of thermal insulation to the exhaust ports, manifold and pipes before the turbocharger of a 1.6L Diesel engine is presented. First, a 0D/1D model of the engine was developed...
In order to face the new challenges, spark ignition engines are evolving by following some strategies and technologies. Among them, alternative combustion processes based on the dilution of the homogeneous mixture, either with fresh air or with Exhaust Gas Recirculation (EGR), are being explored. In a higher or lower extent, these changes modify in...
Due to the need to achieve a fast warm-up of the after-treatment system in order to fulfill the pollutant emission regulations, a growing interest has arisen to adopt variable valve timing technology for automotive engines. Several variable valve timing strategies can be used to achieve an increment in the after-treatment upstream temperature by in...
In recent years, the interests on transient operation and real driving emissions have increased because of the global concern about environmental pollution that has led to new emissions regulation and new standard testing cycles. In this framework, it is mandatory to focus the engines research on the transient operation, where a Virtual Engine has...
The fuel flow along common-rail injectors is usually treated as isothermal, although the expansions across the injector orifices lead to variations in the fuel temperature that in turn modify the fuel properties influencing injector dynamics. This investigation introduces the hypothesis of adiabatic flow to account for local temperature variations...
Attending that road transport accounts between 15% - 18% of worldwide CO2 emissions, the automotive sector have a deep commitment to mitigate global warming. As a consequence, stricter regulations have been adopted by the European Union and worldwide to reduce that big impact. Approximately, 10% of the energy generated by fuel combustion in the eng...
En el presente trabajo se sintetizan los resultados de la aplicación de modelos matemáticos para aspectos físico-químicos avanzados aplicados al proceso de enseñanza-aprendizaje de la asignatura de Combustión para alumnos de lngeniería. Estos modelos han sido desarrollados previamente en el ámbito investigador, y posteriormente adaptados como herra...
Optical engines allow for the direct visualization of the phenomena taking place in the combustion chamber and the application of optical techniques for combustion analysis, which makes them invaluable tools for the study of advanced combustion modes aimed at reducing pollutant emissions and increasing efficiency. An accurate thermodynamic analysis...
New combustion concepts and engine designs are being currently investigated in order to comply with upcoming pollutant regulations and reduce fuel consumption. In this context, two-stroke architectures appear as a promising solution for the implementation of some combustion concepts. However, scavenging processes in a two-stroke engine are much mor...
This work studies the optimum heat release law of a direct injection diesel engine under constrained conditions. For this purpose, a zero-dimensional predictive model of a diesel engine is coupled to an optimization tool used to shape the heat release law in order to optimize some outputs (maximize gross indicated efficiency and minimize NOx emissi...
La implantación de los Nuevos Másteres para la convergencia al EEES ha llevado aparejada la aparición de nuevas asignaturas avanzadas de marcado carácter técnico y profesional en los nuevos másteres habilitantes. El objetivo principal del presente proyecto ha sido el desarrollo y experimentación de software libre, bajo entorno Matlab, para la elabo...
Increasing internal combustion engine efficiency continues being one of the main goals of engine research. To achieve this objective, different engine strategies are being developed continuously. However, the assessment of these techniques is not straightforward due to their influence on various intermediate phenomena inherent to the combustion pro...
The increasingly stringent internal combustion engines emissions regulations, has led to the extended use of after-treatment systems, giving progressively more importance to the engine efficiency optimization. In this framework, the combined modelling and experimental methodologies to perform and analyse the energy balance are key to evaluate the p...
Nitrogen oxides (NOx) and soot emissions are the most important pollutants from direct-injection diesel engines. In particular, soot formation and oxidation determine the net engine-out soot emissions. These phenomena are complex and competing processes during diesel combustion. Despite many researches implicate the mechanisms of soot formation wit...
Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this...
During the last years, the growing awareness about the impacts of climate change lead to an increase in the importance of the efficiency over other criteria in the design of internal combustion engines. In this framework, the heat transfer to the combustion chamber walls can be considered as one of the main sources of indicated efficiency diminutio...
In the last years, a growing interest about increasing engine efficiency has led to the development of new engine technologies. Since air motion in the chamber is a key issue in internal combustion engines to improve the air-fuel mixing process and achieve faster burning rates, modern Diesel engines are designed to generate gas vorticity (swirl) th...
Reactivity Controlled Compression Ignition (RCCI) is one of the most promising premixed combustion modes, aimed at reducing simultaneously engine emissions and fuel consumption. In this work, the global energy balance (GEB) of a single-cylinder engine operating with dual-fuel and RCCI modes is analysed. The methodology used allows determining the e...
Soot emissions from diesel engines are an important concern in meeting emissions regulations. Soot emissions are the result of two competing processes: soot formation and soot oxidation. Mechanisms of soot formation are discussed extensively in the literature. Equivalence ratio at lift-off length along with residence time and gas temperature play a...
This paper deals with the thermodynamic analysis of an Absorption Refrigeration Cycle used to cool down the temperature of the intake air in an Internal Combustion Engine using as a heat source the exhaust gas of the engine. The solution of ammonia-water has been selected due to the stability for a wide range of operating temperatures and pressures...
Engine-out soot emissions are the result of a complex balance between in-cylinder soot formation and oxidation. Soot is formed in the diffusion flame, just after the lift-off length (LOL). Size and mass of soot particles increase through the dif fusion flame and finally they are partially oxidized at the flame front. Therefore, engine-out soot emis...
Regulated emissions and fuel consumption are the main constraints affecting internal combustion engine (ICE) design. Over the years, many techniques have been used with the aim of meeting these limitations. In particular, exhaust gas recirculation (EGR) has proved to be an invaluable solution to reduce NOx emissions in Diesel engines, becoming a wi...
The newly designed Partially Premixed Combustion (PPC) concept operating with high octane fuels like gasoline has confirmed the possibility to combine low NOx and soot emissions keeping high indicated efficiencies, while offering a control over combustion profile and phasing through the injection settings. The potential of this PPC concept regardin...
The efficiency and CO2 are one of the main concerns of automotive manufacturers. There are several strategies under investigation to solve this problem. In the present work, the research effort has been focused on improving knowledge of in-cylinder heat transfer and its impact on engine efficiency. In particular, soot radiation was studied since it...
In the last two decades engine research has been mainly focused on reducing pollutant emissions. This fact together with growing awareness about the impacts of climate change are leading to an increase in the importance of thermal efficiency over other criteria in the design of internal combustion engines (ICE). In this framework, the heat transfer...
In the last years, a growing interest about increasing the engine efficiency has led to the development of new engine technologies. The accurate determination of the heat transfer across the combustion chamber walls is highly relevant to perform a valid thermal balance while evaluating the potential of new engine concepts. Several works dealing wit...
The increasingly stringent internal combustion engines (ICE) emissions regulations, has led to the extended use of after-treatment systems, giving progressively more importance to the engine efficiency optimization. In this context, the experimental methodologies to perform and analyse the energy balance show as a key issue to evaluate the potentia...
In recent years, the spread use of after-treatment systems together with the growing awareness about the climate change is leading to an increase in the importance of the efficiency over other criteria during the design of internal combustion engines. In this sense, it has been demonstrated that performing an energy balance is a suitable methodolog...
This paper presents an experimental analysis on the effect of thermal insulation of engine internal walls on the performance and emissions of a heavy-duty diesel engine. Some parts of the engine, like pistons, cylinder head and exhaust manifold were thermally insulated from gas contact side in order to reduce heat losses through the walls. Each com...
Combustion diagnosis based on in-cylinder pressure signals as well as 0D thermodynamic modelling, are widely used to study and optimize the combustion in reciprocating engines. Both approaches share some uncertainties regarding the sub-models and the experimental installation that, for the sake of accuracy, must be reduced as much as possible in or...
The generalization of exhaust aftertreatment systems along with the growing awareness about climate change is leading to an increasing importance of the efficiency over other criteria during the design of reciprocating engines. Using experimental and theoretical tools to perform detailed global energy balance (GEB) of the engine is a key issue for...
This paper describes a predictive NOX and consumption model, which is oriented to control and optimisation of DI Diesel engines. The model applies the Response Surface Methodology following a two-step process: firstly, the relationship between engine inputs (intake charge conditions and injection settings) and some combustion parameters (peak press...
Partially Premixed Combustion (PPC) of fuels in the gasoline octane range has proven its potential to achieve simultaneous reduction in soot and NOX emissions, combined with high indicated efficiencies, while still retaining control over combustion phasing with the injection event. However, the octane range where the ignition properties of a given...
In the present work, an automotive Diesel engine has been experimentally tested under a New European Driving Cycle (NEDC) with the aim of getting experimental plots of time dependent partitioning of energy injected during the warm-up process. An additional objective of this work is to assess the energy recovery capacity installed in the engine, i.e...
Soot radiation has an important contribution to the overall heat losses in a combustion chamber of a DI diesel engine. The aim of this study was to develop a soot radiation model coupled to a soot formation/oxidation sub-model, which is also described in the paper. On the one hand, the soot radiation model is based on the available knowledge of the...
Ideal models provide the simplest way to reproduce internal combustion engine (ICE) cycles, but they usually do not represent with sufficient accuracy the actual behaviour of an ICE. A suitable alternative for research and development applications is provided by zero-dimensional (0D) thermodynamic models. Such models are very useful for predicting...
In-cylinder pressure analysis is a key tool for engine research and diagnosis and it has been object of study from the beginning of the internal combustion engines. One of its most useful application is combustion analysis on the basis of the First Law of Thermodynamics. However, heat release law calculations use the in-cylinder pressure derivative...
This paper presents a thermal network model for the simulation of the transient response of diesel engines. The model was adjusted by using experimental data from a completely instrumented engine run under steady-state and transient conditions. Comparisons between measured and predicted material temperatures over a wide range of engine running cond...
This work describes the development of a fast NOX predictive model oriented to engine control in diesel engines. The in-cylinder pressure is the only instantaneous input signal required, along with several mean variables that are available in the ECU during normal engine operation.The proposed model is based on the instantaneous evolution of the he...
A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the...
In-cylinder pressure analysis is a key tool for engine research and diagnosis; however, it normally requires to process the experimental signal for providing valuable information. Usual four-step data processing consists on level correction, angle referencing, cycle averaging, and filtering. Concerning the last two issues, ad-hoc methods and experi...
The need to reduce fuel consumption and exhaust emissions in internal combustion engines has been drastically increased during last years. One of the most important processes affecting these parameters is heat transfer from the in-cylinder gas to the surrounding walls, as this mechanism has a direct influence on the combustion process. Regarding th...
An experimental investigation has been performed on the modification of in-cylinder gas thermodynamic conditions by advancing the intake valve closing angle in a HD diesel engine. The consequences on the diffusion-controlled combustion process have been analysed in detail, including the evolution of exhaust emissions and engine efficiency. This res...
In this paper the implementation of a distribution fitting using Excel spreadsheets is described. The implemented spreadsheet uses the definition of names, different formulae and the Add-in solver. An important advantage is the way in which the optimum location parameter is found. The usefulness of the sheet is guaranteed by its simplicity; in fact...
The low consumption achievable with Diesel engines and the subsequent reduction of CO2 emissions, together with the new technologies allowing to meet present and future legislation for pollutant emission reduction, make them attractive from an environmental viewpoint. However, current and future Diesel concepts are intrinsically noisy, and thus in...
Although in combustion diagnosis models the uncertainty in the trapped mass is not critical, different authors have reported non negligible effects on the rate of heat release. Usually, an emptying-and-filling model is used to estimate the residual mass, whence the trapped mass is obtained. Generally, the instantaneous pressure at the intake and ex...
The coolant and inlet charge temperature influence the emissions and performances of a DI Diesel engine. A unique test rig was constructed in which their influence could be studied controlling all the important operational parameters of the engine. The air, fuel and EGR circuit of one cylinder of a four cylinder engine were separated to permit a pr...
The aim of this work is to develop a combustion and emissions (NOx and soot) predictive tool that allows rapid parametric explorations of operating conditions and geometric configurations in diesel engines. This paper will present the mixing and combustion models used. All the models are constructed around a spray-mixing model. This mixing model is...
Thermodynamic diagnosis models are valuable tools for the study of Diesel combustion. Inputs required by such models comprise measured mean and instantaneous variables, together with suitable values for adjustable parameters used in different submodels. In the case of measured variables, one may estimate the uncertainty associated with measurement...
The use of the polytropic coefficient calculation during the compression process in the thermodynamic cycle of a reciprocating internal combustion engine is an interesting tool to minimize errors in the synchronization of pressure and volume signals, and to determine heat flux transferred to the cylinder walls. The accuracy of this calculation depe...
In this paper the heat transfer of the hot gases to the cylinder walls of DI Diesel engines is analyzed using Computational Fluid Dynamics (CFD) and compared to the predictions obtained with a zero-dimensional thermodynamic model based on a variant of the Woschni equation. The final objective is to improve the simple model by modifying the original...