J. Limpens

J. Limpens
Wageningen University & Research | WUR · Nature Conservation and Plant Ecology Group

Dr.

About

123
Publications
33,331
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,952
Citations

Publications

Publications (123)
Article
Alpine ecosystems harbor remarkably diverse and distinct plant communities that are characteristically limited to harsh, and cold climatic conditions. As a result of thermal limitation to species occurrence, mountainous ecosystems are considered to be particularly sensitive to climate change. Our understanding of the impact of climate change is mai...
Article
Full-text available
Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top–down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non‐resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements l...
Article
Using organic amendments to improve arable soils in the long term is a careful balancing act of applying amendments with the right carbon to nitrogen (C:N) ratio at adequate quantity to avoid nitrogen (N) leaching while promoting or retaining crop growth in the short term. So far, most studies examining the relationship between C:N ratio and N mine...
Article
Full-text available
Permafrost thaw can accelerate climate warming by releasing carbon from previously frozen soil in the form of greenhouse gases. Rainfall extremes have been proposed to increase permafrost thaw, but the magnitude and duration of this effect are poorly understood. Here we present empirical evidence showing that one extremely wet summer (+100 mm; 120%...
Data
Supplementary Figures to Serk et al. Sci Rep 11, 24517 (2021)
Data
Supplementary Tables to Serk et al. Sci Rep 11, 24517 (2021)
Article
Full-text available
Tundra vegetation productivity and composition are responding rapidly to climatic changes in the Arctic. These changes can, in turn, mitigate or amplify permafrost thaw. In this Review, we synthesize remotely sensed and field-observed vegetation change across the tundra biome, and outline how these shifts could influence permafrost thaw. Permafrost...
Article
Full-text available
Natural peatlands contribute significantly to global carbon sequestration and storage of biomass, most of which derives from Sphagnum peat mosses. Atmospheric CO 2 levels have increased dramatically during the twentieth century, from 280 to > 400 ppm, which has affected plant carbon dynamics. Net carbon assimilation is strongly reduced by photoresp...
Article
Full-text available
Northern peatlands have accumulated vast amounts of carbon (C) as peat. Warming temperatures may affect peatland C stores by increasing microbial decomposition of ancient peat through enhanced input of labile root exudates by expansion of vascular plants, thereby accelerating atmospheric warming. We set out to explore how much freshly assimilated C...
Article
Full-text available
Dead wood is a source of life as it provides habitat and substrate for a wide range of fungal species. A growing number of studies show an important role of wood quality for fungal diversity, but in most cases for a limited number of wood traits or tree species. In this study, we evaluate how abiotic and biotic factors affect the fungal diversity a...
Article
Full-text available
Salt marshes can protect coastlines against flooding by attenuating wave energy and enhancing shoreline stabilization. However, salt-marsh functioning is threatened by human influences and sea level rise. Although it is known that protection services are mediated by vegetation, little is known about the role of vegetation structure in salt-marsh ac...
Preprint
Full-text available
Natural peatlands contribute significantly to global carbon sequestration and storage of biomass, most of which derives from Sphagnum peat mosses. Atmospheric CO 2 levels have increased dramatically during the 20th century, from 280 to > 400 ppm, which has affected plant carbon dynamics. Net carbon assimilation is strongly reduced by photorespirati...
Article
Full-text available
Sandy coastlines are dynamic environments with potential for biodiverse habitats, such as green beaches. Green beach vegetation can develop on nutrient-poor beaches landward from embryo dunes. It is characterised by low-dynamic coastal wetland habitat such as salt marshes and dune slacks. It has been hypothesised that the establishment of green bea...
Preprint
Full-text available
Permafrost thaw can accelerate climate warming by releasing carbon from previously frozen soil in the form of greenhouse gases. Summer precipitation extremes have been proposed to increase permafrost thaw, but the magnitude and duration of this effect are poorly understood. Here we present empirical evidence showing that one extremely wet summer (+...
Article
Full-text available
Vegetation change, permafrost degradation and their interactions affect greenhouse gas fluxes, hydrology and surface energy balance in Arctic ecosystems. The Arctic shows an overall “greening” trend (i.e. increased plant biomass and productivity) attributed to expansion of shrub vegetation. However, Arctic shrub dynamics show strong spatial variabi...
Article
Full-text available
Arctic and subarctic ecosystems are changing rapidly in species composition and functioning as they warm twice as fast as the global average. It has been suggested that tree-less boreal landscapes may shift abruptly to tree-dominated states as climate warms. Yet, we insufficiently understand the conditions and mechanisms underlying tree establishme...
Article
Full-text available
Large 2020 stakeholder consultation about climate change & support measures among Dutch forest owners Out of a survey among more than 1,000 Dutch forest owners (response rate 24%), it can be concluded that 80 percent of the owners are increasingly affected by natural disturbances like drought, storms and insect attacks. Many forest owners and – ma...
Article
Full-text available
Peatlands, storing significant amounts of carbon, are extremely vulnerable to climate change. The effects of climate change are projected to lead to a vegetation shift from Sphagnum mosses to sedges and shrubs. Impacts on the present moss-dominated peat remain largely unknown. In this study, we used a multiproxy approach to investigate the influenc...
Article
Full-text available
Questions Changes in climate and herbivory pressure affect northern alpine ecosystems through woody plant encroachment, altering their composition, structure and functioning. The encroachment often occurs at unequal rates across heterogeneous landscapes, hinting at the importance of habitat‐specific drivers that either hamper or facilitate woody pl...
Article
Full-text available
The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genus Sphagnum—the main peat-former and ecosystem engineer in northern peatlands—remains unclear. We measured length growth and net primary production (NPP) of two abundant Sphagnum species across 99 Holarctic peatlands. We tested...
Article
Full-text available
Thermokarst features, such as thaw ponds, are hotspots for methane emissions in warming lowland tundra. Presently we lack quantitative knowledge on the formation rates of thaw ponds and subsequent vegetation succession, necessary to determine their net contribution to greenhouse gas emissions. This study set out to identify development trajectories...
Preprint
Full-text available
Abstract. Peatlands, storing significant amounts of carbon are extremely vulnerable to climate change. The effects of climate change are projected to lead to a vegetation shift from Sphagnum mosses to sedges and shrubs. Impacts on the present moss-dominated peat remain largely unknown. In this study, we used a multi proxy approach to investigate th...
Article
Full-text available
Aims For informed predictions on the sensitivity of Arctic tundra landscape to permafrost thaw, we aimed to investigate the distribution pattern of near-surface ground ice and its influencing factors in Northeast Siberia. Methods Near-surface permafrost cores (60 cm) were sampled along small-scale topographic gradients in two drained lakebeds. We...
Article
Full-text available
Aims Northern peatlands store large amounts of soil organic carbon (C) that can be very sensitive to ongoing global warming. Recently it has been shown that temperature-enhanced growth of vascular plants in these typically moss-dominated ecosystems may promote microbial peat decomposition by increased C input via root exudates. To what extent diffe...
Article
Full-text available
The depth of the groundwater table below the surface and its spatiotemporal variability are major controls on all major biogeophysical processes in northern peatlands, including ecohydrology, carbon balance, and greenhouse gas exchange. In these ecosystems, water table fluctuations are buffered by compression and expansion of peat. Controls on peat...
Article
In the light of challenges raised by a changing climate and increasing population pressure in coastal regions, it has become clear that theoretical models and scattered experiments do not provide the data we urgently need to understand coastal conditions and processes. We propose a Dutch coastline observatory named ICON.NL, based at the Delfland Co...
Article
Full-text available
In 2011 a multifunctional peninsula-shaped nourishment project (the Sandmotor) was implemented on the West coast of the Netherlands. Its objectives included an increase in sediment supply towards the dunes to maintain their function as a flood defense on the longterm as well as the development of (temporary) new dune area for nature and recreationa...
Article
Full-text available
Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-t...
Article
Full-text available
The above mentioned article was originally scheduled for publication in the special issue on Ecology of Tundra Arthropods with guest editors Toke T. Høye . Lauren E. Culler. Erroneously, the article was published in Polar Biology, Volume 40, Issue 11, November, 2017. The publisher sincerely apologizes to the guest editors and the authors for the in...
Article
Full-text available
Gross primary production (GPP) is a key driver of the peatland carbon cycle. Although many studies have explored the apparent GPP under natural light conditions, knowledge of the maximum GPP at light-saturation (GPPmax) and its spatio-temporal variation is limited. This information, however, is crucial since GPPmax essentially constrains the upper...
Article
Vegetated coastal dunes have the capacity to keep up with sea-level rise by accumulating and stabilizing wind-blown sand. In Europe, this is attributed to marram grass (Ammophila arenaria), a coastal grass species that combines two unique advantages for dune-building: (1) a very high tolerance to burial by wind-blown sand, and (2) more vigorous gro...
Article
Full-text available
Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on elements from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, the dead Sphagnum tissue accumulated in peat constitutes a potential long-term archive th...
Article
Full-text available
Litter decomposition, a key process by which recently fixed carbon is lost from ecosystems, is a function of environmental conditions and plant community characteristics. In ice-rich peatlands, permafrost thaw introduces high variability in both abiotic and biotic factors, both of which may affect litter decomposition rates in different ways. Can t...
Article
Full-text available
Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of...
Article
Full-text available
Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even ‘extend’ to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources th...
Article
Full-text available
Background and aimsPlant litter chemistry is a key driver of decomposition in peatlands. This study explored the relative contributions of phylogeny and environment to litter chemistry of peat mosses (Sphagnum), the key peat-forming plants on earth. Methods Fifteen Sphagnum species, representing three taxonomic sections ACUTIFOLIA, CUSPIDATA and SP...
Article
Full-text available
Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea-level rise. In this study, we explored to what extent salt stress experienced...
Article
Full-text available
1.Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through 1) accelerated nutrient mobilization in the surface soil layers, and 2) increased thawing depths during the growing season which increases accessibility of nutrients in the deeper soil layers...
Article
Full-text available
Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which increases accessibility of nutrients in the deeper soil layer...
Article
Full-text available
Dune development along highly dynamic land-sea boundaries is the results of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of dune development under a changing climate, but has proven difficult due to...
Article
Full-text available
For development of embryo dunes on the highly dynamic land-sea boundary, summer growth and the absence of winter erosion are essential. Other than that, however, we know little about the specific conditions that favour embryo dune development. This study explores the boundary conditions for early dune development to enable better predictions of nat...
Article
Full-text available
During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in tem...
Article
Full-text available
The saturated hydraulic conductivity (Ks) is a key characteristic of porous media, describing the rate of water flow through saturated porous media. It is an indispensable parameter in a broad range of simulation models that quantify saturated and/or unsaturated water flow. The constant-head permeameter test is a common laboratory method to determi...
Article
The water content of the topsoil is one of the key factors controlling biogeochemical processes, greenhouse gas emissions and biosphere – atmosphere interactions in many ecosystems, particularly in northern peatlands. In these wetland ecosystems, the water content of the photosynthetic active peatmoss layer is crucial for ecosystem functioning and...
Conference Paper
Full-text available
Northern peatlands store a large organic carbon (C) pool that is highly exposed to future environmental changes with consequent risk of releasing enormous amounts of C. Biotic changes in plant community structure and species abundance might have an even stronger impact on soil organic C dynamics in peatlands than the direct effects of abiotic chang...
Article
Full-text available
Hoogvenen herbergen een unieke biodiversiteit, variërend van insectenetende zonnedauw, kleurrijke veenmossen tot broedende kraanvogels. Genoeg reden dus om hoogvenen te beschermen en te herstellen. Dankzij de nauwe samenwerking tussen beheerders en onderzoekers en de daaruit resulterende kennisontwikkeling is herstel van levend hoogveen in Nederlan...
Article
De stad heeft natuur nodig, en natuur heeft de stad nodig. Groen in de stad is belangrijk voor het welzijn van bewoners en het dynamische karakter van de stad creëert nieuwe habitats voor (soms zeldzame) plant- en diersoorten. Braakliggende terreinen zijn misschien wel de plek bij uitstek waar de diversiteit en dynamiek van de stad ten goede komen...
Article
Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important...
Article
Boreal ecosystems are warming roughly twice as fast as the global average, resulting in woody expansion that could further speed up the climate warming. Boreal peatbogs are waterlogged systems that store more than 30% of the global soil carbon. Facilitative effects of shrubs and trees on the establishment of new individuals could increase tree cove...
Article
Full-text available
Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2, 3. In recent decades, Arctic tundra ecosystems have changed rapidly4, including expansion of woody vegetation5, 6, in...
Article
Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such rewetting required for it to be effective remains unknown...