J. Hollis Rice

J. Hollis Rice
  • MS Plant Sciences
  • Research Associate at University of Tennessee at Knoxville

About

19
Publications
2,156
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
759
Citations
Current institution
University of Tennessee at Knoxville
Current position
  • Research Associate

Publications

Publications (19)
Article
Long noncoding RNAs (lncRNAs) are emerging as important regulators of various aspects of immune response and plant-pathogen interactions. However, the regulatory function of lncRNAs during plant-nematode interaction remains largely elusive. In this study, we investigated the differential regulation and function of lncRNAs during two different stage...
Article
Root-knot nematodes (Meloidogyne spp.) are widely spread root parasites that infect thousands of vascular plant species. These highly polyphagous nematodes engage in sophisticated interactions with host plants that results in the formation of knot-like structures known as galls whose ontogeny remains largely unknown. Here, we determined transcripto...
Article
Anaerobic soil disinfestation (ASD) is a biologically-mediated, pre-plant soil treatment process that relies on the anaerobic decomposition of soil incorporated organic amendments, which leads to formation of pesticidal compounds in soils, including volatile fatty acids, and generally creates an adverse environment for soilborne plant pathogen surv...
Article
Full-text available
A growing body of evidence indicates that epigenetic mechanisms, particularly DNA methylation, play key regulatory roles in plant-nematode interactions. Nevertheless, the transcriptional activity of key genes mediating DNA methylation and active demethylation in the nematode feeding sites remains largely unknown. Here, we profiled the promoter acti...
Article
DNA methylation is a widespread epigenetic mark that affects gene expression and transposon mobility during plant development and stress responses. However, the role of DNA methylation in regulating the expression of microRNA (miRNA) genes remains largely unexplored. Here, we analyzed DNA methylation changes of miRNA genes using a pair of soybean (...
Article
Full-text available
DNA methylation is a widespread epigenetic mark that contributes to transcriptome reprogramming during plant–pathogen interactions. However, the distinct role of DNA methylation in establishing resistant and susceptible responses remains largely unexplored. Here, we developed and used a pair of near‐isogenic lines (NILs) to characterize DNA methylo...
Article
Full-text available
Soybean cyst nematode (SCN) is the most devastating plant‐parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1‐b locus, while ‘Peking’ requires rhg1‐a and Rhg4 fo...
Article
microRNAs (miRNAs) recently have been established as key regulators of transcriptome reprogramming that defines cell function and identity. Nevertheless, the molecular functions of the greatest number of miRNA genes remain to be determined. Here, we report cooperative regulatory functions of miR858 and its MYB83 transcription factor target gene in...
Article
The chloroplast-resident RNA helicase ISE2 (INCREASED SIZE EXCLUSION LIMIT 2) can modulate the formation and distribution of plasmodesmata and intercellular trafficking. We have determined that ISE2 expression is induced by viral infection. Therefore the responses of Nicotiana benthamiana plants with varying levels of ISE2 expression to infection b...
Article
Full-text available
A growing body of evidence indicates that epigenetic modifications can provide efficient, dynamic, and reversible cellular responses to a wide range of environmental stimuli. However, the significance of epigenetic modifications in plant-pathogen interactions remains largely unexplored. In this study, we provide a comprehensive analysis of epigenom...
Article
MicroRNAs (miRNAs) are a major class of small non-coding RNAs with emerging functions in biotic and abiotic interactions. Here, we report on a new functional role of Arabidopsis miR827 and its NITROGEN LIMITATION ADAPTATION (NLA) target gene in mediating plant susceptibility to the beet cyst nematode Heterodera schachtii. Cyst nematodes are sedenta...
Article
Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant pro...
Article
Full-text available
Plant-parasitic cyst nematodes induce the formation of hypermetabolic feeding sites, termed syncytia, as their sole source of nutrients. The formation of the syncytium is orchestrated by the nematode in part by modulation of phytohormone responses, including cytokinin. In response to infection by the nematode Heterodera schachtii, cytokinin signali...
Article
Full-text available
Soybean cyst nematode (SCN, Heterodera glycines) induces the formation of a multinucleated feeding site, or syncytium, whose etiology includes massive gene expression changes. Nevertheless, the genetic networks underlying gene expression control in the syncytium are poorly understood. DNA methylation is a critical epigenetic mark that plays a key r...
Article
Plant-parasitic cyst nematodes synthesize and secrete effector proteins that are essential for parasitism. One such protein is the 10A07 effector from the sugar beet cyst nematode, Heterodera schachtii, which is exclusively expressed in the nematode dorsal gland cell during all nematode parasitic stages. Overexpression of H. schachtii 10A07 in Arab...
Article
Full-text available
Growth regulating factors (GRFs) are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction betwe...
Article
Plant-parasitic cyst nematodes induce the formation of multinucleated feeding site in the infected roots, termed syncytium. Recent studies pointed to key roles of the phytohormone auxin in the regulation of gene expression and establishment of the syncytium. Nevertheless, information about the spatiotemporal expression patterns of the transcription...
Article
Full-text available
Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum x Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augme...
Article
Full-text available
The introduction of pharmaceutical traits in tobacco for commercial production could benefit from the utilization of a transgene bioconfinement system. It has been observed that interspecific F1 Nicotiana hybrids (Nicotiana tabacum x Nicotiana glauca) are sterile and thus proposed that hybrids could be suitable bioconfined hosts for biomanufacturin...

Network

Cited By