About
307
Publications
72,485
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,972
Citations
Publications
Publications (307)
5G and beyond networks will support the digitalization of smart manufacturing thanks to their capacity to simultaneously serve different types of traffic with distinct QoS requirements. This can be achieved using Network Slicing that creates different logical network partitions (or slices) over a common infrastructure, and each can be tailored to s...
5G and beyond networks can facilitate the digital transformation of manufacturing and support more flexible and reconfigurable factories with ubiquitous mobile connectivity. This requires integrating 5G networks with industrial networks that increasingly rely on TSN (Time Sensitive Networking) to support deterministic communications with bounded la...
Teleoperated driving (ToD) can support autonomous driving under complex or unexpected traffic scenarios that an autonomous vehicle may not understand or be able to handle. In ToD, autonomous vehicles transmit video feeds and perception data to the remote control center. The operator uses this data to understand the driving environment and remotely...
p>5G NR V2X has been designed to support advanced connected and automated driving V2X services. These services are characterized by variable traffic patterns that can generate packet collisions in decentralized systems where vehicles autonomously select their radio resources like 5G NR V2X mode 2. 5G NR V2X introduces a re-evaluation mechanism at t...
p>5G NR V2X has been designed to support advanced connected and automated driving V2X services. These services are characterized by variable traffic patterns that can generate packet collisions in decentralized systems where vehicles autonomously select their radio resources like 5G NR V2X mode 2. 5G NR V2X introduces a re-evaluation mechanism at t...
Connected automated vehicles (CAVs) can use vehicle-to-everything (V2X) communications to exchange their driving intentions and coordinate their maneuvers. Message generation rules are necessary to decide when and how maneuver coordination messages (MCMs) should be generated. The design of these generation rules must consider the critical nature of...
This study analyzes the feasibility of supporting critical V2X services using 5G network-based Vehicle-to-Network-to-Vehicle (V2N2V) communications. The study evaluates the end-to-end latency of 5G V2N2V communications under different network deployments in single and multi-operator scenarios. The study shows that critical V2X services can be suppo...
5G NR V2X has been designed to support advanced connected and automated driving V2X services. These services are characterized by variable traffic patterns that can generate packet collisions in decentralized systems where vehicles autonomously select their radio resources like 5G NR V2X mode 2. 5G NR V2X introduces a re-evaluation mechanism at the...
Cellular networks usually support non-safety-critical V2X services using Vehicle-to-Network (V2N) connections. However, the flexibility and capabilities of 5G have triggered interest in analyzing whether 5G could also support advanced V2X services using Vehicle-to-Network-to-Vehicle (V2N2V) connections instead of direct Vehicle-to-Vehicle (V2V) con...
Industry 4.0 and 5.0 applications will contribute towards safer, zero-defect and customized production environments. Such applications (e.g. digital twins, collaborative robotics and extended reality) require communication networks capable to satisfy stringent latency, bandwidth, and reliability requirements. Such requirements can be sustained with...
5G has been designed to support applications such as connected and automated driving. To this aim, 5G includes a highly flexible New Radio (NR) interface that can be configured to utilize different subcarrier spacings (SCS), slot durations, scheduling, and retransmissions mechanisms. This flexibility can be exploited to support advanced V2X service...
5th Generation (5G) and Beyond networks are being designed to support Ultra-Reliable and Low Latency Communications (URLLC). To this end, 5G defines a new radio (NR) interface with a new mechanism at the Physical (PHY) and Medium Access Control (MAC) layers that allow reducing the latency communication. One key mechanism to reduce the latency is th...
5G networks provide higher flexibility and improved performance compared to previous cellular technologies. This has raised expectations on the possibility to support advanced Vehicle to Everything (V2X) services using the cellular network via Vehicle-to-Network (V2N) and Vehicle-to-Network-to-Vehicle (V2N2V) connections. The possibility to support...
Millimeter wave (mmWave) technologies will support the high bandwidth and data rate requirements of V2X services demanded by connected and automated vehicles (CAVs). MmWave V2X technologies will leverage directional antennas that challenge the management of the communications in dynamic scenarios including the identification of available links, bea...
The design, testing and optimization of Vehicle to Everything (V2X), connected and automated driving and Intelligent Transportation Systems (ITS) and technologies requires mobility traces and traffic simulation scenarios that can faithfully characterize the vehicular mobility at the macroscopic and microscopic levels under large-scale and complex s...
The critical nature of vehicular communications requires their extensive testing and evaluation. Analytical models can represent an attractive and cost-effective approach for such evaluation if they can adequately model all underlying effects that impact the performance of vehicular communications. Several analytical models have been proposed to da...
Traffic prediction helps mitigate the impact of traffic congestion. The accuracy of traffic predictions depends on the availability of the data used for the prediction as well as the prediction model. Data from fixed traffic detectors is only available at certain locations. On the other hand, connected vehicles can provide Floating Car Data (FCD) a...
5G offers high flexibility at the radio, transport and core networks to support various services of critical verticals such as connected and automated driving. At the Radio Access Network (RAN), 5G defines a New Radio (NR). 5G NR utilizes different subcarrier spacing, slot durations, modulations and channel coding schemes. This flexibility offers t...
The critical nature of vehicular communications requires their extensive testing and evaluation. Analytical models can represent an attractive and cost-effective approach for such evaluation if they can adequately model all underlying effects that impact the performance of vehicular communications. Several analytical models have been proposed to da...
Automated driving is now possible in diverse road and traffic conditions. However, there are still situations that automated vehicles cannot handle safely and efficiently. In this case, a Transition of Control (ToC) is necessary so that the driver takes control of the driving. Executing a ToC requires the driver to get full situation awareness of t...
5G networks have been designed to support advanced and demanding services in critical verticals or industries such as connected and automated driving. Supporting advanced Vehicle to Everything (V2X) services may require installing Multi-access/Mobile Edge Computing (MEC) platforms that reduce the latency and the traffic load on the transport and co...
Automated driving is now possible in diverse road and traffic conditions. However, there are still situations that automated vehicles cannot handle safely and efficiently. In this case, a Transition of Control (ToC) is necessary so that the driver takes control of the driving. Executing a ToC requires the driver to get full situation awareness of t...
This deliverable is a direct successor of Deliverable 7.1, which has introduced all vehicles, test tracks, used hardware, and proposed system architectures of the different used components. D7.1 has also introduced several system requirements for each component and for each use case described in D2.1, which must be implemented. D7.2 shows the syste...
The Third Generation Partnership Project (3GPP) has recently published its Release 16 that includes the first Vehicle to-Everything (V2X) standard based on the 5G New Radio (NR) air interface. 5G NR V2X introduces advanced functionalities on top of the 5G NR air interface to support connected and automated driving use cases with stringent requireme...
The Third Generation Partnership Project (3GPP) has recently published its Release 16 that includes the first Vehicle-to-Everything (V2X) standard based on the 5G New Radio (NR) air interface. 5G NR V2X introduces advanced functionalities on top of the 5G NR air interface to support connected and automated driving use cases with stringent requireme...
The TransAID project defines, develops and evaluates traffic management measures based on V2X equipped road infrastructure, primarily via simulations,to eliminate or mitigate the negative effects of Transition of Control (ToC) along Transition Areas in future mixed traffic scenarios where automated, cooperative, and conventional vehicles will coexi...
Beyond 5G networks are expected to support massive traffic through decentralized solutions and advanced networking mechanisms. This paper aims at contributing towards this vision by expanding the role of mobile devices to transform them into part of the network fabric. This is achieved through the integration of device-centric wireless networks, in...
Cellular networks currently support non-safety-critical Vehicle to Everything (V2X) services with relaxed latency and reliability requirements. 5G introduces novel technologies at the radio, transport and core networks that are expected to significantly reduce the latency and increase the flexibility and reliability of cellular networks. This has r...
The emergence of connected automated vehicles and advanced V2X applications and services can challenge the scalability of vehicular networks in the future. This challenge requires solutions to reduce and control the communication channel load beyond the traditional congestion control protocols proposed to date. In this paper, we propose and evaluat...
Beyond 5G networks are expected to support massive traffic through decentralized solutions and advanced networking mechanisms. This paper aims at contributing towards this vision through the integration of device-centric wireless networks, including Device-to-Device (D2D) communications, and the Next Generation of Opportunistic networking (NGO). Th...
Connected and Automated Vehicles (CAVs) utilize a variety of onboard sensors to sense their surrounding environment. CAVs can improve their perception capabilities if vehicles exchange information about what they sense using V2X communications. This is known as cooperative or collective perception (or sensing). A frequent transmission of collective...
Most V2X applications/services are supported by the continuous exchange of broadcast messages. One of the main challenges is to increase the reliability of broadcast transmissions that lack of mechanisms to assure the correct delivery of the messages. To address this issue, one option is the use of acknowledgments. However, this option has scalabil...
LTE-V2X (also known as C-V2X or Cellular V2X) introduces direct or sidelink V2V (Vehicle to Vehicle) communications using the PC5 interface. LTE-V2X defines two modes (Mode 3 and Mode 4) for the management of radio resources. This study focuses on Mode 3 where the cellular network manages and allocates the radio resources for direct or sidelink V2V...
Time Sensitive Networking (TSN) is becoming the standard Ethernet-based technology for converged networks of Industry 4.0 due to its capacity to support deterministic latency requirements. However, it cannot provide the required flexibility to support mobile industrial applications and the reconfiguration capability required for the factories of th...
V2X (Vehicle to everything) communications can be currently supported by standards based on IEEE 802.11p (e.g. DSRC or ITS-G5) or LTE-V2X (also known as Cellular V2X or C-V2X) technologies. There has been an intense debate in the community on which technology achieves best performance. However, existing studies do not take into account the variabil...
Most V2X (Vehicle-to-Everything) applications rely on broadcasting awareness messages known as CAM (Cooperative Awareness Messages) in ETSI or BSM (Basic Safety Message) in SAE standards. A large number of studies have been devoted to guarantee their reliable transmission. However, to date, the studies are generally based on simplified data traffic...
The objective of the TransAID (Transition Areas for Infrastructure-Assisted Driving) project is to deal with situations that cooperative and automated vehicles (CAV) might face when they are approaching to traffic conditions or zones that their automated systems are not able to handle by themselves. In those cases, the driver will be required to ta...
Factories are evolving into fully digitalized and networked structures for more adaptive and agile production ecosystems in the context of the Industry 4.0. Wireless communications will be a technical pillar of this evolution as it improves the reconfigurability of factories and the integration of mobile robots and objects. The integration of indus...
Deep learning-based techniques are the state of the art in road traffic prediction or forecasting. Several deep neural networks have been proposed to predict the traffic but they have not been evaluated under common datasets. Current studies analyze their capacity to predict road traffic in general but do not focus on their capacity to predict the...
Automated vehicles make use of multiple sensors to detect their surroundings. Sensors have significantly improved over the years but still face challenges due to the presence of obstacles or adverse weather conditions, among others. Cooperative or collective perception has been proposed to help mitigate these challenges through the exchange of sens...
Network slicing is a novel 5G paradigm that exploits the virtualization and softwarization of networks to create different logical network instances over a common network infrastructure. Each instance is tailored for specific Quality of Service (QoS) profiles so that network slicing can simultaneously support several services with diverse requireme...
5G and Beyond 5G networks are calling for advanced networking schemes that can efficiently contribute to deal with the foreseen increase of the mobile data traffic, which inherently brings along an increase of the energy consumed by mobile nodes to support it. The non-real-time nature of an important share of that traffic makes it possible to use o...
5G networks can support the development of the Industry 4.0. To this aim, 5G must be able to guarantee the deterministic latency requirements that characterize many industrial applications. This objective can be achieved using network slicing, a novel 5G paradigm that exploits the softwarization of networks to create different logical instances of...
Connected and automated vehicles will enable advanced traffic safety and efficiency applications thanks to the dynamic exchange of information between vehicles, and between vehicles and infrastructure nodes. Connected vehicles can utilize IEEE 802.11p for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. However, a widesp...
mmWave V2X (Vehicle-to-Everything) communications can support enhanced V2X applications for connected and automated vehicles. The design of mmWave V2X communications is though not exempt of challenges as a result of propagation and highly dynamic vehicular networks and topologies. To address some of these challenges, the authors propose decoupling...
Cooperative or collective perception (or sensing) enables connected and automated vehicles to exchange sensor information to improve their perception of the driving environment. Standards are currently being developed by ETSI to define collective perception message formats and generation rules. These generation rules establish when collective perce...
Connected and automated vehicles can exploit V2X communications to coordinate their maneuvers and improve the traffic safety and efficiency. To support such coordination, ETSI is currently defining the Maneuver Coordination Service (MCS). The current approach is based on a distributed solution where vehicles coordinate their maneuvers using V2V (Ve...
5G and beyond networks are being designed to support the future digital society, where numerous sensors, machinery, vehicles and humans will be connected in the so-called Internet of Things (IoT). The support of time-critical verticals such as Industry 4.0 will be especially challenging, due to the demanding communication requirements of manufactur...
5G and beyond networks will offer multiple communication modes including device-to-device and multi-hop cellular (or UE-to-network relay) communications. Several studies have shown that these modes can significantly improve the Quality of Service (QoS), the spectrum and energy efficiency, and the network capacity. Recent studies have demonstrated t...
Cellular Vehicle-to-Everything (C-V2X) networks can operate without cellular infrastructure support. Vehicles can autonomously select their radio resources using the sensing-based Semi-Persistent Scheduling (SPS) algorithm specified by the Third Generation Partnership Project (3GPP). The sensing nature of the SPS scheme makes C-V2X communications p...
Cellular Vehicle-to-Everything (C-V2X) networks can operate without cellular infrastructure support. Vehicles can autonomously select their radio resources using the sensing-based Semi-Persistent Scheduling (SPS) algorithm specified by the Third Generation Partnership Project (3GPP). The sensing nature of the SPS scheme makes C-V2X communications p...
Vehicular networks require vehicles to periodically transmit 1-hop broadcast packets in order to detect other vehicles in their local neighborhood. Many vehicular applications depend on the correct reception of these packets that are transmitted on a common control channel. Vehicles will actually be required to simultaneously execute multiple appli...
The Industry 4.0 paradigm alludes to a new industrial revolution where factories evolve towards digitalized and networked structures where intelligence is spread among the different elements of the production systems. Two key technological enablers to achieve the flexibility and efficiency sought for factories of the future are the communication ne...
Industry 4.0 will interconnect and digitalize traditional industries to enable smart and adaptable factories that efficiently utilize resources and integrate systems. A key enabler of this paradigm is the communications infrastructure that will support the ubiquitous connectivity of Cyber-Physical Production Systems. The integration of wireless net...
This deliverable is a direct successor of Deliverable 7.1 [1], which has introduced all vehicles, test tracks and used hardware, and also proposed system architectures of the different used components. D7.1 has also introduced several system requirements for each component and for each scenario, which has to be implemented. D7.2 now shows the resul...
The objective of the TransAID (Transition Areas for Infrastructure-Assisted Driving) project is to deal with situations that cooperative and automated vehicles (CAV) might face when they are approaching to traffic conditions or zones that their automated systems are not able to handle by themselves. In those cases, the driver will be required to ta...
The C-V2X or LTE-V standard has been designed to support V2X (Vehicle to Everything) communications. The standard is an evolution of LTE, and it has been published by the 3GPP in Release 14. This new standard introduces the C-V2X or LTE-V Mode 4 that is specifically designed for V2V communications using the PC5 sidelink interface without any cellul...