
J. C. Castillo-RogezNational Aeronautics and Space Administration · Jet Propulsion Laboratory
J. C. Castillo-Rogez
About
474
Publications
57,377
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,104
Citations
Introduction
Skills and Expertise
Publications
Publications (474)
The magnetometer investigation of the Galileo mission used the phenomenon of magnetic induction to produce the most compelling evidence that subsurface oceans exist within our solar system. Although there is high certainty that the induced field measured at Europa is attributed to a global‐scale subsurface ocean, there is still uncertainty around t...
The Galileo mission measured the gravity field around Europa. The results indicated that the moon’s interior is mostly made of rock (~90 wt%). However, the level of differentiation of the deep interior is still poorly understood. We constrain the interior of Europa using Galileo gravity data and a combination of geophysical and geochemical models t...
Over the course of NASA’s Dawn Discovery mission, the onboard framing camera mapped Ceres across a wide wavelength spectrum at varying polar science orbits and altitudes. With increasing resolution, the uniqueness of the 92 km wide, young Occator crater became evident. Its central cryovolcanic dome, Cerealia Tholus, and especially the associated br...
The role played by transient impact-induced endogenous brines in the formation of geomorphic features has been proposed on airless worlds such as Europa, Vesta, and Ceres, as well as on worlds with thin atmospheres such as Mars. After liquefaction, the hypothesized brines flow in a debris-flow-like process, incising curvilinear gullies and construc...
Ceres hosts notable aliphatic-organic concentrations, ranging from approximately 5 to >30 weight % in specific surface areas. The origins and persistence of these organics are under debate due to the intense aliphatic organic signature and radiation levels in Ceres’ orbit, which would typically lead to their destruction, hindering detection. To inv...
The Uranian moon Ariel exhibits a diversity of geologically young landforms, with a surface composition rich in CO2 ice. The origin of CO2 and other species, however, remains uncertain. We report observations of Ariel's leading and trailing hemispheres, collected with NIRSpec (2.87 - 5.10 μm) on the James Webb Space Telescope. These data shed new l...
Saturn’s mid-sized icy moons have complex relationships with Saturn’s interior, the rings, and with each other, which can be expressed in their shapes, interiors, and geology. Observations of their physical states can, thus, provide important constraints on the ages and formation mechanism(s) of the moons, which in turn informs our understanding of...
Jupiter’s icy moon, Europa, harbors a subsurface liquid water ocean; the prospect of this ocean being habitable motivates further exploration of the moon with the upcoming NASA Europa Clipper mission. Key among the mission goals is a comprehensive assessment of the moon’s composition, which is essential for assessing Europa’s habitability. Through...
The goal of NASA’s Europa Clipper mission is to assess the habitability of Jupiter’s moon Europa. After entering Jupiter orbit in 2030, the flight system will collect science data while flying past Europa 49 times at typical closest approach distances of 25–100 km. The mission’s objectives are to investigate Europa’s interior (ice shell and ocean),...
We analyzed spectral cubes of Callisto's leading and trailing hemispheres, collected with the NIRSpec Integrated Field Unit (G395H) on the James Webb Space Telescope. These spatially resolved data show strong 4.25 μm absorption bands resulting from solid-state 12CO2 , with the strongest spectral features at low latitudes near the center of its trai...
We present a feasibility study for passive sounding of Uranian icy moons using Uranian Kilometric Radio (UKR) emissions in the 100–900 kHz band. We provide a summary description of the observation geometry, the UKR characteristics, and estimate the sensitivity for an instrument analogous to the Cassini Radio Plasma Wave Science (RPWS) but with a mo...
In order to improve our understanding of the interior structure of Saturn's small moon Enceladus, we reanalyze radiometric tracking and onboard imaging data acquired by the Cassini spacecraft during close encounters with the moon. We compute the global shape, gravity field, and rotational parameters of Enceladus in a reference frame consistent with...
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an example, integrated system to yield a complete picture of its habitability, the...
Messina Chasmata is a relatively young tectonic structure on Titania based on cross-cutting relationships, although an absolute age has not been estimated. We investigated lithospheric flexure bounding Messina and found that the terrain along both rims reflects Titania’s thermal properties. We estimate Titania’s heat fluxes to have been 5–12 mW m ⁻...
Clathrate hydrates may represent a sizable fraction of material within the icy shells of Kuiper Belt objects and icy moons. They influence the chemical and thermal evolution of subsurface oceans by locking volatiles into the ice shell and by providing more thermal insulation than pure water ice. We model the formation of these crystalline compounds...
Several bodies in the outer solar system are believed to host liquid water oceans underneath their icy surfaces. Knowledge of the hydrosphere properties is essential for understanding and assessing their habitability. We introduce a methodology based on Bayesian inference that enables a robust characterization of the hydrosphere through the combina...
The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated...
Striking exposures of Na‐carbonate‐bearing bright materials are found in Ahuna Mons and the central landforms of Occator and other impact craters on Ceres; however, most bright materials on its surface occur as excavated material on the rims and walls of impact craters. The source of the widespread excavated Na‐carbonate is uncertain. We map the di...
The primary objective of the Europa Clipper mission is to assess the habitability of Europa, an overarching goal that rests on improving our understanding of Europa’s interior structure, composition, and geologic activity. Here we describe the Gravity and Radio Science (G/RS) investigation. The primary measurement, the gravitational tidal Love numb...
We present a feasibility study for passive sounding of Uranian icy moons using Uranian Kilometric Radio (UKR) emissions in the 100 - 900 kHz band. We provide a summary description of the observation geometry, the UKR characteristics, and estimate the sensitivity for an instrument analogous to the Cassini Radio Plasma Wave Science (RPWS) but with a...
Near-infrared spectra of Umbriel and the other classical Uranian moons exhibit 2.2 μm absorption bands that could result from ammonia (NH3) bearing species, possibly exposed in the geologically recent past. However, Umbriel has an ancient surface with minimal evidence for recent endogenic activity, raising the possibility that more refractory speci...
The five large moons of Uranus are important targets for future spacecraft missions. To motivate and inform the exploration of these moons, we model their internal evolution, present‐day physical structures, and geochemical and geophysical signatures that may be measured by spacecraft. We predict that if the moons preserved liquid until present, it...
Ceres is the largest object in the asteroid belt and the only dwarf planet in the inner solar system. In 2015, carbon, and organic compounds, were found by the Dawn mission in high abundance in the surface of Ceres. Here, we use thermodynamic modeling with the goal of constraining the speciation, stability, and abundance of organic compounds formed...
Interstellar objects (ISOs) are fascinating and under-explored celestial objects, providing physical laboratories to understand the formation of our solar system and probe the composition and properties of material formed in exoplanetary systems. This paper will discuss the accessibility of and mission design to ISOs with varying characteristics, i...
Micrometeorites represent a major potential source of volatiles for the early Earth, although often overlooked due to their small sizes and the effects of atmospheric entry. In this study we explore an unusual ~2000 μm, fine-grained unmelted micrometeorite TAM19B-7 derived from a water-rich C-type asteroid. Previous analysis revealed a unique O-iso...
Bodily tides provide key information on the interior structure, evolution, and origin of the planetary bodies. Our Solar system harbors a very diverse population of planetary bodies, including those composed of rock, ice, gas, or a mixture of all. While a rich arsenal of geophysical methods has been developed over several years to infer knowledge a...
Solid body tides provide key information on the interior structure, evolution, and origin of the planetary bodies. Our Solar system harbours a very diverse population of planetary bodies, including those composed of rock, ice, gas, or a mixture of all. While a rich arsenal of geophysical methods has been developed over several years to infer knowle...
The NASA Dawn mission, launched in 2007, aimed to visit two of the most massive protoplanets of the main asteroid belt: Vesta and Ceres. The aim was to further our understanding of the earliest days of the Solar System, and compare the two bodies to better understand their formation and evolution. This book summarises state-of-the-art results from...
Onboard autonomy technologies such as planning and scheduling, identification of scientific targets, and content-based data summarization, will lead to exciting new space science missions. However, the challenge of operating missions with such onboard autonomous capabilities has not been studied to a level of detail sufficient for consideration in...
Dawn revealed that Ceres is a compelling target whose exploration pertains to many science themes. Ceres is a large ice- and organic-rich body, potentially representative of the population of objects that brought water and organics to the inner solar system, as well as a brine-rich body whose study can contribute to ocean world science. The Dawn ob...
Many moons in the solar system are thought to potentially harbor hidden oceans based on the features observed at their surfaces. However, the magnetic induction signatures measured in the vicinity of these moons provide the most compelling evidence for the presence of a subsurface ocean, specifically for the Jovian moons Europa and Callisto. Interp...
Dwarf planet Ceres is a compelling target for future exploration because it hosts at least regional brine reservoirs and potentially ongoing geological activity. As the most water-rich body in the inner solar system, it is a representative of a population of planetesimals that were likely a significant source of volatiles and organics to the inner...
Bodily tides provide key information on the interior structure, evolution, and origin of the planetary bodies. Our Solar system harbors a very diverse population of planetary bodies, including those composed of rock, ice, gas, or a mixture of all. While a rich arsenal of geophysical methods has been developed over years to infer knowledge about the...
The solar nebula carried a strong magnetic field that had a stable intensity and direction for periods of a thousand years or more1. The solar nebular field may have produced post-accretional magnetization in at least two groups of meteorites, CM and CV chondrites [1–3], which originated from planetesimals that may have underwent aqueous alteration...
Delivery of significant volumes of howardite–eucrite–diogenite (HED) meteorites from Vesta to Earth is linked to the largest impact events on that protoplanet, especially the giant Rheasilvia basin. Dawn mapping of Rheasilvia reveals a well-preserved impact structure with extensive deformation patterns and moderate superposed cratering. Spiral and...
Onboard autonomy technologies such as planning and scheduling, identification of scientific targets, and content-based data summarization, will lead to exciting new space science missions. However, the challenge of operating missions with such onboard autonomous capabilities has not been studied to a level of detail sufficient for consideration in...
The tilt between Neptune’s magnetic and rotational axes, along with Triton’s orbital obliquity, causes a strong time variability of the moon’s local electromagnetic environment. To constrain Triton’s interaction with the ambient magnetospheric plasma, we apply a hybrid (kinetic ions, fluid electrons) model including the moon’s ionosphere and induce...
The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar System) is to return samples from the dwarf planet Ceres. Ceres is the most accessible candidate of ocean worlds and the largest reservoir of water in the inner Solar System. It shows active volcanism and hydrothermal activities in recent history. Recent evidence for the exi...
Context. Until recently, the 3D shape, and therefore density (when combining the volume estimate with available mass estimates), and surface topography of the vast majority of the largest ( D ≥ 100 km) main-belt asteroids have remained poorly constrained. The improved capabilities of the SPHERE/ZIMPOL instrument have opened new doors into ground-ba...
Context. The recent estimates of the 3D shape of the M/Xe-type triple asteroid system (216) Kleopatra indicated a density of ~5 g cm⁻³, which is by far the highest for a small Solar System body. Such a high density implies a high metal content as well as a low porosity which is not easy to reconcile with its peculiar “dumbbell” shape. Aims. Given t...
Aims. To interpret adaptive-optics observations of (216) Kleopatra, we need to describe an evolution of multiple moons orbiting an extremely irregular body and include their mutual interactions. Such orbits are generally non-Keplerian and orbital elements are not constants. Methods. Consequently, we used a modified N-body integrator, which was sign...
Context. The recent estimates of the 3D shape of the M/Xe-type triple asteroid system (216) Kleopatra indicated a density of 5 g.cm$^{-3}$. Such a high density implies a high metal content and a low porosity which is not easy to reconcile with its peculiar dumbbell shape. Aims. Given the unprecedented angular resolution of the VLT/SPHERE/ZIMPOL cam...
Triton is an important signpost in understanding the diverse populations of both ocean worlds and Kuiper Belt objects (KBOs). As a likely ocean world, it is unique by virtue of its kidnapped history from the Kuiper Belt: its large orbital inclination makes it the only ocean world thought to be primarily heated by obliquity tides. It is volatile-ric...
Context. Dynamical models of Solar System evolution have suggested that the so-called P- and D-type volatile-rich asteroids formed in the outer Solar System beyond Neptune’s orbit and may be genetically related to the Jupiter Trojans, comets, and small Kuiper belt objects (KBOs). Indeed, the spectral properties of P- and D-type asteroids resemble t...
Extended planetary missions demonstrate tremendous science value. The return in science productivity more than justifies the small expense of extending functioning missionsrelative to developing and launching a new mission. We recommend that the Decadal Survey explicitly high-light the value of extended missions to the planetary community andto the...
Executive Summary: This white paper advocates for the inclusion of small, captured Outer Solar system objects, found in the Ice Giant region in the next Decadal Survey. These objects include the Trojans and Irregular satellite populations of Uranus and Neptune. The captured small bodies provide vital clues as to the formation of our Solar system. T...
To interpret adaptive-optics observations of (216) Kleopatra, we need to describe an evolution of multiple moons, orbiting an extremely irregular body and including their mutual interactions. Such orbits are generally non-Keplerian and orbital elements are not constants. Consequently, we use a modified $N$-body integrator, which was significantly e...
The 27 satellites of Uranus are enigmatic, with dark surfaces coated by material that could be rich in organics. Voyager 2 imaged the southern hemispheres of Uranus' five largest 'classical' moons Miranda, Ariel, Umbriel, Titania, and Oberon, as well as the largest ring moon Puck, but their northern hemispheres were largely unobservable at the time...