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Abstract

Joint communication and radar/radio sensing (JCAS, aka, dual-function radar-communications) enables the
integration of communication and radio sensing into one system, sharing a single transmitted signal. The
perceptive mobile network is a natural evolution of JCAS from simple point-to-point links to a mobile/cellular
network with integrated radio sensing capability. In this article, we present a system architecture that unifies
three types of sensing, investigate the required modifications to existing mobile networks, and exemplify the
signals applicable to sensing. We then provide a review for stimulating research problems and potential
solutions, including mutual information, joint design and optimization for waveform and antenna grouping,
clutter suppression, sensing parameter estimation and pattern recognition, and networked sensing under the

cellular topology.
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Introduction

Wireless communications and radio sensing (C&S) share many commonalities in terms of hardware, signal
processing, and network architecture. This motivates integrating these two systems using joint
communications and radio sensing (JCAS, aka radar-communications) techniques [1, 2, 3, 4]. The preliminary
JCAS concept can be traced back to the 1970s. Although there is no much development in the following years,
it has re-gained interest in the early 2010s, due to the drive for more efficient radio spectral usage and growing
emerging demands for radio sensing [2]. Instead of having two separate C&S systems, JCAS can integrate them
into one by sharing a majority of hardware and signal processing algorithms. Radar sensing here refers to
information retrieval from the received radio signals for both transmitters and dumb objects in the
surrounding environment. Such information includes both conventional sensing parameters such as location
and speed, and feature signals of objects and events. In such integrated systems, the same transmitted signal
is used for both communications and sensing. Integrating C&S into one system can achieve immediate benefits

of reduced cost, size, and improved spectral efficiency.

Applying JCAS to large-scale mobile/cellular networks can potentially evolve the communication-only network
to a perceptive mobile network (PMN) with integrated communication and radio sensing capabilities [5, 6, 7].
The PMN is expected to serve as a ubiquitous radio-sensing network, while providing uncompromised

communication services. The potential sensing applications of PMN is illustrated in Fig. 1.
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Figure 1 lllustration of the evolution of PMN and its sensing applications.



Some key features of a PMN network can be summarized as follows:

e Asingle transmitted signal is optimized and used for both communications and sensing;

e Both uplink and downlink signals can be used for C&S;

e A majority of the hardware and signal processing modules in the transceiver are shared by C&S; and
e Sensing can be implemented in a single node, either in a base station (BS) or a user equipment (UE),

as well as across networked nodes.

There exist major differences between PMNs and existing systems and technologies that combine radar and
mobile communications. In Table 1, we compare JCAS with other two types of systems: the coexisting mobile
communication and radar systems [6], where the two separated systems share the same resource blocks such
as frequency channels in a cooperative way; and the integrated system with separately transmitted signals

where C&S are integrated on one platform but their signals use separate or even orthogonal resources.

Table 1 Comparison between communication and radar sensing co-existing and integration schemes.

m Advantages Disadvantages

Co-existing Systems
sharing the same
resource

Integrated System
but Using Separately
Transmitted Signals
(time, frequency,

code, or polarization
division duplex)

Integrated JCAS
System Using a
Single Transmitted
NEGE]]

o Independent individual system design and

e Potentially large mutual interference and

optimization complicated interference mitigation
o Relatively independent operation techniques required
e High spectral efficiency e Highest overall cost
e Mutual interference can be removed at || e Lower spectrum efficiency due to
the cost of spectrum efficiency partitioning of resources and the
e Flexible individual waveform design and requirement of guarding interval or

optimization, and resource allocation

e Potential for joint design and optimization,
and mutual information sharing

equivalent

e Lower order of system integration, more
complex transmitter hardware.

e Highest spectral efficiency (almost
doubled)

e Simultaneous operation without mutual
interference

o Fully shared transmitter and largely shared
receiver, in terms of hardware and signal
processing. Smallest size, weight, and cost

e Joint design and optimization, and
mutually  beneficial processing by

information sharing

® Require full-duplex operation or equivalent
setup

e Limited sensing range of individual nodes
due to limited transmission power (in mobile
networks), but can be mitigated by network-
wide sensing

® Potential performance loss with conflicting
requirements for comm. and sensing




This article aims to provide a review of PMNs, leveraging recent findings as well as our own research
experiences. We first present a system architecture for the PMNs, together with the required modifications
on network and hardware of current mobile networks, and the available mobile signals for sensing. We then
highlight the potential and some applications for PMNs. Finally, we review open research challenges and
opportunities for integrating radio sensing into mobile networks, by considering specific network architecture
and components, practically sophisticated communication signal format, and complicated signal propagation

environment.

System Architecture

In this section, we describe the system architecture of PMN, summarizing and extending the results in our
work of [5]. PMN can be evolved from a general mobile network. More advanced network infrastructure, such
as denser cells, larger signal bandwidth, and larger antenna arrays, can lead to better sensing performance.
We describe the PMNs by referring to emerging 5G networks, and most of the results in this article also apply

to other mobile networks such as LTE.
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Figure 2 System architecture demonstrating a PMN network based on either a standalone BS or a
CRAN architecture. In the CRAN, RRU2 represents a receiving only node, and RRU3 represents a
transmitting only node working as a special UE in uplink communication.



We present the architecture by referring to distributed antenna systems, in particular, cloud-radio-access
network (CRAN) as shown in Fig. 2, as well as a general standalone BS. The CRAN allows a more flexible and
diverse configuration of radar sensing, reflecting the mono-static, bi-static, and multi-static settings in
conventional radar systems. In this architecture, cooperative remote radio units (RRUs) are densely distributed
and synchronized in clock. Signal processing for C&S based on collected signals from these RRUs is done
centrally in CRAN central, which includes the baseband unit pool for C&S processing. All RRUs' clocks are
synchronized, via, e.g., GPS. A typical communication scenario is as follows: several RRUs work cooperatively
to provide connections to UE, using multiuser MIMO techniques over the same subcarriers. While it is not
necessary, we assume that cooperative RRUs are within the signal coverage area of each other for increasing
flexibility in sensing. This assumption is reasonable when dense RRUs are deployed and used to support
surrounding UEs via coordinated multipoint techniques. Technically, it is also feasible at the cost of increased
transmission power even if only for supporting sensing, as the downlink signals do not cause interference to

RRUs.

We focus on BS-side sensing in this article, although UE-side sensing is also possible. The BS has the advantages

of flexible cooperation, a large antenna array, powerful computation capability, and known and fixed locations.

Three Types of Sensing

In PMNs, the same transmitted signal from RRUs or mobile stations is used for both C&S. We define uplink
and downlink sensing, consistent with uplink and downlink communications, as shown in Fig. 2. In uplink
sensing, the sensing signal is from UEs. Uplink sensing estimates relative, instead of absolute, time delay
parameters because the estimate includes both propagation delay and the unknown timing offset between
UE transmitters and RRU receivers. In downlink sensing, the sensing signals are from BSs. For CRAN, downlink
sensing is further classified as Downlink Active Sensing and Downlink Passive Sensing, for the cases when an
RRU collects the echoes from its own and other RRUs’ transmitted signals, respectively; for a standalone BS,
only downlink active sensing exists. Note that in CRAN, the signals from RRUs are processed centrally, and
hence sensing can be done jointly over RRUs whose signals reach each other, even when their transmitted
signals are different [5]. A brief comparison of these three types of sensing is provided in Table 2, and more

details can be seen from [5].

The three types of sensing can be unified and implemented together. An RRU may implement downlink active
and passive sensing during downlink signal transmission, and then operate on communication and uplink

sensing modes during the uplink stage.



Table 2 Comparison among Three Types of Sensing.

Signals Used for Advantages Disadvantages

Sensing

Downlink Reflects from a o All data symbols in e Sense Generally requires full-
Active RRU/BS’s own the received signals surrounding duplex operation.
transmitted can be used and are environment Devices can be specially
Sensing downlink centrally known. of the deployed to resolve this
communication e RRUs are RRU/BS. problem.
signal synchronized.

e Privacy is less an
Downlink Received downlink  issue because sensed e Sense

. communication results not directly environment

Passive . .
signals from other linked to any UEs. between

Sensing RRUs RRUs.

Uplink Uplink e Sense UEs and environment between e Timing and distance

e communication UEs and RRU. measurement is relative.
signals from UE e Require minimum modification to e Transmitted
transmitters communication infrastructure. information signals are

not directly known.

e Rapid channel
variation due to moving
UEs.

Required Network and Hardware Modifications

At a transceiver level, many modules, including the whole transmitter and part of the receiver, can be shared
by C&S, as shown in Fig. 3. The module of sensing parameter estimation and pattern analysis is added for
sensing, and the C&S Cooperation module shares information between C&S, which can be used for improving
the performance of C&S. Despite the sharing of a majority of system components, some modifications are
necessary to evolve current mobile networks to PMNs, and they are quite different for uplink and downlink

sensing.

Uplink sensing can be implemented with almost no change in hardware or system architectures of current
mobile systems, but other improvements in, e.g., signal and scheduling, will be beneficial. Here, one main
problem is that the phase clock between UEs and BSs is not synchronized, hence timing and ranging ambiguity
needs to be solved. It is also possible to deploy RRUs or dedicated UEs as uplink transmitting devices only for

uplink sensing, like RRU3 in Fig. 2.
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Figure 3 Block diagram of a typical transmitter and receiver in PMN. Blocks in purples, in blue
and in black, are for those shared by C&S, specific to communications, and specific to sensing,
respectively.

Downlink sensing requires changes to hardware; the extent of changes depends on the network duplexing
mode. Basically, downlink sensing requires a transceiver to work on the full-duplex mode, where receiver and
transmitter can operate at the same time using the same frequency channel. Without modifying the current
hardware, transmitted signal leakage can easily overwhelm the reflected echoes for downlink sensing. Before
full duplex technologies become mature, some feasible near-term solutions for downlink sensing are as

follows:

e Using two sets of spatially well-separated antennas for transmitting and receiving; and

e Deploying RRUs that only work on the receiving mode, like RRU2 in Fig. 2.

For these near-term solutions, a time division duplexing (TDD) system generally requires less hardware
modification than frequency division duplexing (FDD) for downlink sensing. This is because, for FDD, a receiver
needs to be enabled to process downlink signals that are in a different frequency band, while for TDD, only

the controlling switch needs to be adjusted.

Signals Available for Sensing

For downlink sensing, all the data symbols in the transmitted signals are known to the RRUs, and hence in
principle, any type of signals can be used for sensing. However, different signals could have different statistical
properties and lead to different sensing performance. For uplink sensing, data symbols are not directly known,

and received signals for each user can be scattered in frequency, time and spatial domains depending on



resource allocation. Referring to 5G New Radio (NR, 3GPP TS 38.211 Release 15) [8], here we briefly discuss
three typical types of signals, not exclusively, that can be used for sensing. These signals can be directly used
for sensing, and they can also be further optimized by jointly considering the C&S requirements, as will be
detailed later. The properties of the signals, together with their impact on sensing, are summarized in Table 3

and elaborated below.

Signal Types of Signals Impact on Sensing
:;;2‘:::::4 . Reference SSB (SS and Data .
Criteria Signals (DMRS PBCH) Payload in
and SRS) PDSCH and
PUSCH
Occurance of | Irregular and Short (4 UE-specific, Regular and frequent signals in time
Signal in Time | variable length. | OFDM irregular and | domain can lead to better Doppler
domain symbols), Less | long. estimation and higher SNR in
frequent general.
(every ~20 ms)
Occurance of | Allocation- Sparse; use a Allocation- Signals occupying more resource
Signal in Freq | dependent. Can | small number | dependent. blocks (RB) can lead to better delay
Domain be on aregular | of ~20 RBs. estimation. Signals with irregular
comb structure. subcarrier indexes are preferred to
avoid estimation ambiguity.
Knowledge of | Known Known Unknown Unknown signals may introduce
Signal Values symbol detection errors and degrade
sensing performance.
Correlation Typically Orthogonal Non- Orthogonality leads to improved
and orthogonal over | over smaller orthogonal. sensing performance, via both
Orthogonality | time, frequency | spatial layers. | Statistically increased SNR and improved degree-
and spatial independent. | of-freedom, e.g., leading to
domains for increased virtual array aperture.
different UEs.
Flexibility in | Flexible. On | Typically fixed. | Flexible. Flexible signal design enables signal
Signal demand when optimization via, e.g., precoder and
Structure and | possible. scheduling, by jointly considering the
precoding requirements of C & S.

Standard Signals for Channel Estimation: The first option will be the deterministic signals, provided
specifically for channel estimation, including demodulation reference signals (DMRS) for both uplink and
downlink, sounding reference signals (SRS) for uplink, and channel state information — reference signals (CSI-
RS) for downlink. Most of them are comb-type pilot signals, shifted across OFDM symbols, and are orthogonal

between different ports to support multiuser-MIMO. Among them, DMRS is user-specific and always
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transmitted with data payload, and therefore is random and irregular over time. SRS and CSI-RS can be either

periodic or aperiodic. These signals are flexible and may be optimized during resource scheduling for joint C&S.

Deterministic Non- Channel Estimation Signals: The BS may also exploit deterministic non- channel estimation
signals for sensing such as the synchronization signal and broadcast blocks (SSB). Such signals typically have
regular patterns and are periodic and fixed at an interval of several to tens of milliseconds. But they only

occupy a limited number of subcarriers, which leads to limited identification of multipath delay values.

Data Payload Signals: In addition to the above two types of signals, which are both known to RRUs directly,
we can also exploit the data payload signals for sensing. In the downlink, these data payload signals are
centrally known. In the uplink, it is possible to use a decision-directed approach, that is, re-modulate the
demodulated and decoded data signals. These approaches increase the number and occurring frequency of
available sensing signals at a given period, and hence improve the sensing performance at increased

complexity.

Key Research Problems

As a new platform and network, PMN is still in its very early stage of research and development. There are
many challenges to be overcome to make it practical, which also implies excellent research opportunities.
Here we review a few critical research problems, explore existing and potential solutions, and highlight future
research directions as summarized in Table 4. Since the major challenge in PMN is how to achieve radio sensing
without compromising the performance of existing communications, we mainly focus on the issues of realizing

radio sensing, leveraging the existing cellular communication infrastructure.



Table 4 Highlights of open key research problems in PMN.

MI and Performance Bounds

HH, Y, [X) B PMN-specific MI formulation
eS8 MM MY o Sensing performance bounds for mainstream communication signals

Joint Optimization

ﬂljgmrg.t A(P). * Waveform optimization adapt to pratical siganl formats and varying C&S

subject io Constraints requirements
e Antenna placement and virtual array design

Clutter Suppression

A, (i) = afly(i - 1)

» Adaptive recursive averaging algorithms

+(l _‘I}Hﬂm- * Transplant of background subtraction technologies in image processing

f Sensing Parameter Estimation

l ° Sensing algorithms capable of handling non-continuous samples
e Off-grid compressive sensing with discontinuous samples

Networked Sensing

¢ Fundamental theories and performance bounds for cellular sensing
networks

e Distributed sensing with node grouping and cooperation

Performance Bounds: Mutual Information and CRLB

Mutual information (MI) is a tool that has been widely used for characterizing the performance of both
communication and radar systems [10]. For communications, the Ml is well known and is defined between the
received and transmitted signals, conditional on the known (estimated) channels. For radar, Ml is defined
between the received signals and the propagation channel, conditional on the known (estimated) transmitted
signals. Maximizing the radar MI ensures that the received signals contain the most channel information,
which could be particularly meaningful for sensing applications that do not require estimating sensing
parameters. It is interesting to investigate whether and how we can establish an information-theory

foundation for sensing using communication signals, like for communications.

Ml for JCAS systems has been studied and reported in a limited number of publications. For example, in [10],

considering a JCAS MIMO setup, the expressions for radar Ml and communication channel capacity are derived.
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These results can be used as a good basis for studying the Ml for PMNs, with the consideration of their specific

problems, such as the two described below.

Firstly, uplink and downlink sensing require different treatments. In downlink sensing, the symbols are known
to the receiver, and the channels for C&S are correlated but are different. For uplink sensing, the symbols are
unknown to the receiver, and the channels are the same. Hence, the optimization formulations and results
can be quite different for uplink and downlink sensing. For example, the Ml formulation for uplink sensing
needs to take into consideration of signal estimation errors, which makes communication and sensing more

entangled.

Secondly, formulations of Ml need to be adapted to the actual signal format in cellular networks, which is
quite complicated, involving, e.g., training sequence and different resource usage by each user and hence each
link. These observations indicate that the optimal solution for one function is generally not optimal for the
other, and some tradeoff needs to be made, particularly when the requirements for C&S are very different,
for example, when the directions of C&S deviate significantly. Considering that UEs are typically uniformly

distributed in mobile networks, sensing-motivated user scheduling may be applied to alleviate this problem.

Although sensing MI measures the sensing information contained in the received signals, it does not evaluate
how accurate the sensing parameter estimation can be. The parameter estimation performance in radar is
typically characterized by the Cramer-Rao lower bounds (CRLBs). Because of the significant differences
between communication and radar signals, most CRLB results for radar are not applicable to PMN signals.
CRLBs for channel estimation and signals’ angles-of-arrival in communications are also well known. However,
there almost no CRLB results on delay and Doppler estimates reported for broadband communication signals,
although there is one for passive sensing using narrowband signals [11]. The nonlinear nature of the estimation
makes the derivation and usage of closed-form CRLB expressions challenging. Overcoming the challenge would

provide us with important insights on PMN sensing performance bounds and waveform design.

Joint Design and Optimization

When integrating the two functions, which share the same transmitted signal and many common signal
processing modules, into one system, there exist various joint design and optimization problems yet to be
investigated. In PMNs, communication is the primary function, and sensing is the secondary. Hence
communication should have a high priority during system design and optimization. We will mainly discuss

waveform design and antenna grouping here.

Waveform optimization: Earlier work has investigated the impact of the waveform and basic signal
parameters on the performance of a general JCAS system. For example, in [1], the linkage between the
resolution capabilities for radar sensing and the signal parameters for both single carrier and multicarrier

communication systems was demonstrated both analytically and numerically. These results serve useful
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references for waveform optimization in PMNs. However, the latter is more challenging because its
communication signals are very complicated and time-varying, depending on, e.g., numerology and channel
aggregation (in 5G), user and resource allocation, and adopted precoding matrices. Waveform optimization
here is generally realized via designing precoding matrices for signals to be transmitted. To support sensing at
directions that are very different to those for communications, some signal energy may be wasted, and
additional multipath signals may be generated. This can cause reduced signal power for communications, but
will not cause interference even for multiuser-MIMO signals because MIMO-precoding can be carefully

designed to remove potential multiuser interference.

A general waveform optimization problem can be formulated as optimizing the transmitted signals by
maximizing an objective function under some constraints. The objective function and the constraints can use
various metrics and their combinations, such as the capacity and signal-to-interference-and-noise ratio (SINR),
for communications, and the MI, CRLB, and the radar ambiguity function, for sensing. Both of them can be
constructed either for communications or sensing individually, or as a weighted joint function. There could
be two practical methods for waveform optimization in PMN. One method is to optimize the precoding
matrices to change the statistical property of the transmitted signals. Recent work in [6,7] provides an example
for this method with constraints on SINR for multiuser MIMO downlink communications. In [12], the weighting
vector for subcarriers in OFDM systems is optimized by considering a multi-objective function involving
communication capacity and CRLBs for the estimates of sensing parameters. However, the precoding matrix
needs to be redesigned once the communications setup changes, therefore incurring higher complexity.
Another method is to add the sensing waveform to the underlying communications waveform, while
considering a coherent combination of the two waveforms for destination nodes. This could be particularly
useful for millimetre wave systems where directional beamforming is used. One example is available from [3],
where a multibeam approach is proposed to flexibly generate C&S subbeams using analogue antenna arrays.

Such a method provides suboptimal but simple generation of the waveform fulfilling both C&S purposes.

MIMO and Antenna Grouping: C&S have seemingly conflicting requirements for antenna placement, grouping,
and signal formats in MIMO systems. In a MIMO communication system, the transmitted signals are often
generated from random information bits, and their correlation matrix largely depends on the precoding matrix
[5], while MIMO-radar sensing signals are typically orthogonal [13]. When using an array, radar sensing focuses
on optimizing antenna placement and virtual subarrays to increase antenna aperture and then resolution [14],
but communication emphasizes beamforming gain for spatial diversity and a low signal correlation between
antennas for spatial multiplexing. Such different requirements demand a tradeoff for joint design. We can
also explore the following commonalities between MIMO communication and radar: Similar to the diversity
and multiplexing tradeoff in communications, there are processing gain and resolution tradeoffs in sensing,

related to the independent spatial streams [13]. In communications, we can apply resource allocation and
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precoding matrices to achieve higher capacity. In MIMO radar, we can form either overlapped or non-
overlapped subarrays among all the antennas, and design transmitted waveform to achieve lower error
bounds for sensing parameter estimation [14]. Considering the benefits of antenna grouping in both C&sS,
using hybrid antenna arrays will be a low-cost balanced option. This is particularly true for millimeter wave
(mmWave) systems where propagation loss is high, and beamforming gain is essential for achieving sufficiently

high signal-to-noise ratio.

Clutter Suppression

We will mainly treat multipath signals as useless clutter if they remain mostly unchanged and have near-zero
Doppler frequencies over a period of time of interest. Mobile signals propagate in a complex environment,
and a lot of clutter is present in the received signal. The clutter can significantly increase the number of sensing
parameters to be estimated and make sensing algorithms fail if it is not reduced from the input to the

algorithms.

Clutter suppression in the PMN can be potentially tackled by referring to work on clutter suppression for
traditional radar such as the one in [9]. These techniques are typically applied to the Delay-Doppler domain
after sensing parameter estimation. Nevertheless, they need to exploit different features of desired and
unwanted echoes, such as a low correlation between them. These different features may not always be
available in mobile networks, because desired multipath and echoes can come from the same classes of

reflectors.

Alternative approaches exploit the correlation in time, frequency, and space domains, and use recursive
averaging or differential operation to construct or remove clutter signals [5]. These approaches could be more
viable for PMNs. They have similarities to background subtraction in image processing. However, there are
some major differences in background subtraction between radio sensing and image processing. Firstly, in
image processing, the image difference corresponds to pixel variation. But in radio sensing, both Doppler shifts
and the variation of sensing parameters cause differences in two channel matrices. Secondly, background and
foreground contents overlap with each other in an image, but in radio sensing, clutter and desired multipath
signals are additive. Nevertheless, the large number of background subtraction methods developed for image
processing can be revised and applied to radio sensing in PMNs. In [5], we proposed a simple recursive
operation that can construct the clutter. Beyond clutter suppression, we can actually use this recursion to
flexibly divide signals with widely separated Doppler frequencies into different sets by using different
forgetting factors. In Fig. 4, we show the averaged power ratio between two groups of multipath signals that
correspond to varying ranges of moving speeds, after applying the recursive method. The figure indicates that

significant power suppression can be achieved between multipath signals with different ranges of Doppler
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Figure 4 Signal suppression effect with different forgetting factors and sampling intervals.
Setup 1: speed ranges [0, 5] and [25, 30] m/s. Setup 2: Speed ranges [10, 15] and [25, 30] m/s.
Signal bandwidth is 100MHz, and the total recursion operation period is 100ms. The y-axis
denotes the output power ratio between the two groups of signals with different speed
ranges in each setup after applying the recursive operation.

shifts that correspond to different moving speeds. The sampling interval also has an important impact on the

ratio, as it decides whether signals at different time are added constructively or destructively.

Although we have demonstrated the feasibility of clutter suppression in PMNs, there are still a lot of problems
to be solved to make these methods practical. For example, signals need to be adequately segmented, as the
actual variation of signals due to Doppler frequency or changed parameters are continuous. Apart from
correlation processing in time, the background suppression principle may also be applied in the frequency and

spatial domains.

Sensing and Pattern Recognition
Radar sensing is evolving from traditional radar with significantly expanded scope, involving sophisticated
source signals, complicated propagation environment, advanced detection algorithms, and diverse

applications such as object, activity, and event recognition.

In PMNs, the tasks of sensing can include both explicit estimation of sensing parameters for locating objects
and estimating their moving speeds, and high-level application-oriented pattern recognition such as object

and behaviour recognition and classification. Application-oriented pattern recognition can be combined or
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independently implemented with sensing parameter estimation, and more detailed examples can be referred

to WiFi sensing [4]. Here we focus on sensing parameter estimation.

The extraction of sensing parameters from complicated mobile signals in complex propagation environments
is very challenging. On the one hand, mobile signals are very complicated because of multiuser access, diverse
and fragmented resource allocation, and spatial multiplexing. On the other hand, a modern mobile network
connects diverse devices that occupy staggered resources interleaved and discontinued over time, frequency,
and space. Existing techniques for passive sensing and radar may not work efficiently in this scenario, as typical
radar systems are optimized for sensing a limited number of objects in open spaces using narrow beamforming
[1,9]. Existing channel estimation and localization algorithms are not directly applicable either. In particular,
channel estimation in communications only requires estimation of composite channels at quantized discrete
grids, and localization focuses predominantly on the line-of-sight path. For sensing, detailed channel

composition needs to be obtained.

In general, PMNs require sensing algorithms capable of estimating continuous parameter values, operating on
non-consecutive measurements, and having low-to-medium complexity suitable for real-time implementation.
Existing algorithms have respective shortcomings for sensing parameter estimation in PMNs, as compared in
Table 5. Considering that the observed received signals could be discontinuous in time, frequency and space,

compressive sensing (CS) is an excellent tool for sensing parameter estimation here. In [5], we demonstrated

Table 5 Comparison of Available Algorithms for Sensing Parameter Estimation.

Methods

Periodogram such
as 2D DFT

Subspace methods
such as ESPRIT

Properties

Suitability and Main Limitation

Simple, but low resolution.

High resolution. High complexity.
High dimension Tensor-based
ESPRIT algorithms also available.

Generally require a full set of measurements
in time or frequency domain, which may not
be satisfied in uplink sensing.

Require at least a large segment of
consecutive samples, which may not be
satisfied in uplink sensing.

Compressive Flexible. Do not require = Work well even for estimating a small amount
S e (o Ded 8 consecutive samples.  Algorithms | of off-grid parameter values. Performance can
model) can be selected to adapt to degrade significantly when there are many
complexity and  performance unknown parameters, particularly in block CS
requirements. algorithms.
Compressive Flexible and do not require Limitation in real-time operation due to very
S (ki) S consecutive samples. Capable of high complexity, e.g., atomic norm requires
S EE Sl ile estimating continuous values. semidefinite programming. Still require
norm sufficient separation between parameter
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the feasibility by presenting two schemes, direct sensing that uses block CS and can directly work on the
received signals, and indirect sensing that uses signal stripping to separate signals from different users and
remove their data symbols. Both schemes are shown to work for multiuser-MIMO OFDMA signals, which are

typical in modern mobile networks.

One important problem for CS-based sensing is how to select the dimension of CS algorithms underlying the
sensing algorithms. Higher-dimension CS is more likely to resolve repeated parameters, but they have higher
computational complexity. If on-grid models are used, the number of available observations in the dimension

also limits the accuracy and resolution.

Networked Sensing under Cellular Topology

Integrating sensing into mobile communication networks provides excellent opportunities for radio sensing
under a cellular structure. However, research on sensing under a cellular topology is still very limited. The
cellular structure for communication is designed to greatly increase the frequency reuse factor and hence
improve spectrum efficiency and communication capacity. A mobile sensing network intuitively also increases

Ill

frequency reuse factor, and therefore the overall “sensing” capacity. There are few known performance
bounds for such cellular sensing networks yet, except for a limited number of slightly related works, such as
performance analysis for coexisting radar and mobile communication systems [2]. This may be investigated
using the well-known stochastic geometry models of wireless networks. Although research exists on
distributed radar and multi-static radar, sensing algorithms that consider and exploit the cellular structure,
such as co-cell interference, node cooperation, and sensing-handoff over base-stations, are yet to be
developed. The challenge lies in the way to address competition and cooperation between different base-

stations under the cellular topology, for both performance characterization and algorithm development of

networked sensing.

One example is the development of distributed and cooperative sensing techniques by scheduling and
grouping UEs and enabling cooperation between RRUs. On the one hand, existing research has shown that
distributed radar techniques can improve location resolution and moving target detection by providing large
spatial diversity and broad angular observation [13, 15]. Such diversity can be maximized by optimizing both
waveform design and placement of radar nodes [15]. In the PMN, we can group multiple UEs’ sensing results
to improve uplink sensing. On the other hand, distributed radar can enable high-resolution localization,
exploiting coherent phase difference of carrier signals from different distributed nodes [13]. This requires

phase synchronization among radar nodes, and can only be potentially achieved in downlink sensing.
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Conclusions

We have shown that by slightly modifying current cellular networks, they may become more perceptive. In
this context, radio sensing may be integrated without sacrificing communication capability. Referring to the
5G NR standard, we show that uplink and downlink sensing can be realized with different degrees of
modifications and enhancement to current hardware infrastructure, using existing communication signal
format. There are many research opportunities for developing ground-breaking technologies and theorems
for the integration of radio sensing into wide-area cellular communication networks. The PMN can potentially
provide a ubiquitous radio sensing platform, and enable various smart applications for cities and

transportation.

Although the system architecture presented here is specific to the mobile network, many of the results are
also applicable to other networks such as point-to-point links and WiFi networks. However, there exist some
major differences between the mobile network and other networks, which can have different impacts on

sensing. These should be taken into consideration, as shown for WiFi in Table 6.

Table 6 Differences of WiFi networks with respect to mobile networks, and their implications on
sensing, if JCAS is applied to WiFi, compared to PMN.

Aspects WiFi networks (with respect to Mobile Different Implications on Sensing in WiFi-

networks) JCAS (with respect to PMN)

Signal Format Simpler and flexible packet structure, Waveform optimization has more flexibility.

and while PMN has rigid timing and channel @ Available sensing signals are more random in
Transmission  structure. time.

Multiuser Relatively simpler, while PMN has Sensing parameter estimation can be simpler
Access complicated resource allocation and @ with more optional algorithms.

mixed multiuser access methods

Deployment Mostly  indoor, and Low-speed Richer multipath but more stable clutter. Less
Environment movement. challenging in sensing due to a simpler
environment.

Network Smaller network. Less powerful Low potential for networked sensing. Lower
infrastructure | infrastructure such as smaller antenna | sensing resolution.
and Scale array.
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