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1 Abstract

The Toxicology Reference Database (ToxRefDB), compiled by the Environmen-
tal Protection Agency (EPA) contains data on chemicals and their associated
toxicological endpoints. However, this data does not contain all chemicals of
interest, and further testing is resource intensive. Here we present machine
learning methods used to predict whether substances will have toxic effects on
rat test subjects in order to avoid further animal testing. Chemical features as-
sociated with each chemical are utilized to generate these predictions. Support
Vector Machine and Decision Tree machine learning algorithms are applied to
toxicology data sets provided by the Environmental Protection Agency. These
methods are tested and improved through cross-validation, parameter optimiza-
tion, and the committee of machines approach. Feature selection is employed
to optimize the models and provide information on which chemical features are
potentially relevant to toxicological effects. Feature selection methods imple-
mented include PCA, ROC curves, and F-Scores for pre-processing, and sen-
sitivity analysis for post-processing. Long term outcomes of this study are to
support further research in reducing the amount of animal testing, as well as in
developing mechanistic-based toxicological models.
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2 Introduction

The Toxicology Reference Database (ToxRefDB), compiled by the Environmen-
tal Protection Agency (EPA) contains data on chemicals and their associated
toxicological endpoints. Examples including organ weights, life observations,
and pathologies1. However, the data is not exhaustive. Animal testing to gen-
erate further data is resource intensive. We aim to use machine learning meth-
ods in order to create Quantitative Structure–Activity Relationship (QSAR)
classification models that predict if a chemical has an impact on categories of
toxicological endpoints, given structural properties of the chemical [25]. The
four endpoint categories we use are Developmental Reproductive, Nonprolifer-
ative Pathology, Proliferative Pathology, and Neoplastic Pathology. Standard-
ized techniques are used on each of these four models. Each model is optimized
through pre-processing and post-processing feature selection techniques, cross-
validation, and the committee of machines approach.

3 Background

Machine learning is a field of study that involves pattern recognition and compu-
tational learning theory in artificial intelligence. Machine learning classification
techniques are used to build models from “training sets” of input and output
observations in order to make output predictions when new observations are
introduced [14]. There are numerous machine learning methods that can be
utilized in order to create these models. Machine learning models are used for
facial recognition, sentiment analysis, and other real world situations [7,27]. In
this project, we present machine learning methods for the prediction of four
categories of toxicological endpoints.

3.1 Machine Learning Algorithms

Five different machine learning algorithms are initially analyzed: k-Nearest
Neighbors (kNN), Artificial Neural Networks (ANN), Linear Discriminant Anal-
ysis (LDA), Decision Trees, and Support Vector Machine (SVM).

3.1.1 k-Nearest Neighbors

The k-nearest neighbors method views each observation as a point in the coor-
dinate space of the features. Using a distance metric, the algorithm will classify
a new observation by finding its k closest neighbors, for some positive integer
k, and then using the mode of their classes to as the predicted class [29].

1The data used in this project can be found at https://catalog.data.gov/dataset/

toxicity-reference-database
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3.1.2 Artificial Neural Networks

Artificial Neural Networks are much like neural networks found in the brain.
ANN’s work well with non-linear, dynamic relationships that are difficult to
describe with conventional approaches. ANN’s also work well with large data
sets. ANN consists of an input layer of nodes, hidden layer(s) of nodes, and an
output layer of nodes [31]. Each connection of two nodes, known as an edge,
has a numerical weight associated with it.

Artificial Neural Networks produce continuous outputs. Thus, when predict-
ing discrete outcomes, built-in functions such as sign or round must be used to
convert the predictions. The greatest downfall of Artificial Neural Networks is
the computational cost. Of the five methods, ANN consistently has the longest
run time.

3.1.3 Linear Discriminant Analysis

Linear discriminant analysis is a binary classifier. When given traing data, LDA
finds an optimal line through the feature space on which to project each obser-
vation [4]. This line maximizes the separation between class means divided by
the in—class variance. LDA then calculates an optimal threshold to classify the
projected values by minimizing the expected misclassification cost [17]. LDA
uses the threshold to predict the class of new observations.

3.1.4 Decision Trees

A Decision Tree is a binary tree that, like the other methods presented, predicts
an outcome given a set of input values. Each internal node in the tree represents
a test that is applied to one of the input values, and the tree splits depending
on the outcome of each test. The tree ultimately partitions the data into cells
based on the outcome of these tests [1]. At the end of tree are the leaves, which
represent the predictions [26]. The final predictions are the averages of all of
the internal node values in the path that leads to that leaf, and each internal
node value is the average of all values in that cell [21].

There are two methods that can be used when implementing Decision Trees,
a classification tree or a regression tree. A classification tree predicts categorical,
or discrete, outcomes, and a regression tree predicts continuous outcomes [28].
Regression trees can also be manipulated to predict categorical outcomes by
rounding the predictions, much like ANN.

3.1.5 Support Vector Machines

Like LDA, Support Vector Machine (SVM) is a binary classifier, meaning that
SVM classifies an unknown input into one of two output classes [23]. SVM reads
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in two sets of data, an m× 1 training vector, and an m× n feature matrix that
describes m chemicals with n features. For data that lives in an n-dimensional
feature space, Rn, SVM makes a Rn−1 hyper-plane that would separate the
data into the two output categories.

In a feature set that has two distinct classes of data, there is more than
one hyper-plane that could be used to separate the data. However, the best fit
hyper-plane is one that separates the data points to best account for error. In
practice, if a hyper-plane sits too close to a class of data points, a new data point
of that class could be misclassified. This is a quadratic programming problem
that requires nonlinear constraints [13].

When it is not possible to find a hyper-plane, the data is said to be non-
separable. In cases of non-separable data, a Kernel function is used to transform
the input data space into a feature space such that an optimal hyper-plane can
be found. Options for kernel functions in MATLAB are linear, Gaussian, and
polynomial. A custom kernel function can also be used if these methods do
not fit the data. We chose to implement a Gaussian kernel function, which is a
Radial-Basis function of the form φ = e−γ‖xi−xj‖, where γ is a parameter that
aids in preventing overfitting and xi, xj are any two observations in our data set.

4 Data

The ToxRefDB data contains the results of studies on the observed impacts of
chemicals on various species. Our research focuses on results from chronic adult
rat studies. Specifically, this project uses data which contains the minimum
dosage of a chemical that elicits an effect in one of the four endpoint categories
of interest. This information was converted into binary data based on whether
a chemical had an effect on a given endpoint. Chemicals with minimum dosages
of one million were considered to have no effect, and were therefore listed as
zeros. Chemicals with minimum dosages less than a million were consider to
have an effect, and were therefore listed as ones. Of the chemicals studied, we
analyze the 485 unique chemicals which were tested for all endpoint categories of
interest. The PaDEL2 chemical descriptor software generated 1,444 molecular
features associated with each chemical. Examples of features generated include
the number of hydrogen atoms, the number of bonds, and the pH.

The set of 1,444 chemical features contains features that have the same value
across all of the tested chemicals. These features are therefore not informative
to our models. Thus, these features were eliminated from the feature set, re-
ducing the features from 1,444 to 1,222.

2The chemical features were extracted using PaDEL software found here http://www.

yapcwsoft.com/dd/padeldescriptor/
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A portion of the machine learning algorithms use distance measurements for
classification [9,29]. In order to ensure the algorithms weigh all features equally,
the input values need to be on the same scale for each feature. The chemical
features for the data use different scales, and thus normalization ensures all
features are considered equally and likely improves accuracy [18]. To normalize
the data, for each feature the minimum value is subtracted from all values and
all values are divided by the range of the feature.

5 Methodology

The 485 observations are split into sets of 435 training data and 50 testing
data. The training data is used to create each model, and the testing data is
inputted into each model to test the predictive accuracy. The predictions from
the testing data are compared to the true testing data results, and the accuracy
is obtained by dividing the number of correct predictions by the total number of
predictions. All machine learning algorithms use the MATLAB machine learn-
ing toolbox except for SVM, which uses the LIBSVM library3.

Method selection is conducted after initial testing shown in Table 1 of the
Results section. In addition to the initial results, other considerations for se-
lection of methods to utilize are the computational expense of Artificial Neural
Networks coupled with the limited computation resources of this project, and
low performance of kNN for large feature sets or irrelevant features [3, 20]. In
light of the initial testing and these other considerations, the set of algorithms
has been refined to Decision Trees and Support Vector Machines. Using these
two methods, we then attempt to improve our accuracy using oversampling,
cross validation, the committee of machines approach, and feature selection
techniques.

5.1 Cross Validation

Cross validation is a method of assessing the performance of each predictive
model. This method takes in the training observations, and splits this data into
“known” data to train the model on and “unknown” data to test the model [19].
The process is then repeated with different splits. Cross validation can also be
used for parameter optimization [30]. We used 10-fold cross validation with 90%
known data and 10% unknown data repeated ten times.

3Documentation for the LBSVM library can be found at https://www.csie.ntu.edu.tw/

~cjlin/libsvm/
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5.2 Parameter Optimization

Decision trees and SVM both have parameters that can be optimized in order
to improve accuracy.

Decision Trees can be optimized by manipulating the tolerance or cost pa-
rameters for making a split in the tree. Tolerance is defined for regression trees
as the allowed quadratic error per node. The splitting of the tree halts “when the
quadratic error per node drops below the tolerance multiplied by the quadratic
error for the entire data.” The default tolerance in MATLAB is 1e-6. Cost is
defined for classification trees as the cost of misclassifying a point into the wrong
class [16]. Both parameters described attempt to reduce the misclassification
cost of making another split [6]. A line search algorithm is used to loop through
various tolerance or cost levels. The tolerance or cost is then chosen based on
the value that creates the highest cross validation accuracy.

SVM, using the Guassian kernel, can be optimized by manipulating two
parameters, C and γ. The parameter C is known as the box constraint or
the regularization parameter, which controls the maximum penalty imposed on
margin violating observations and aids in preventing overfitting. Increasing the
box constrain leads the SVM classifier to assign fewer support vectors. However,
increasing the box constraint can lead to longer training times. The parameter
γ is involved in the Kernel function. This parameter is a distance measure that
defines the training points’ influence on the hyper-plane [9]. The smaller the
distance of a training point from the hyper-plane, the greater the influence of
this point is in determining the optimal hyper-plane.In order to optimize these
parameters, a grid search algorithm is utilized. A grid search takes a range of
combinations of the two parameters and assesses the cross validation accuracy
of each pair. The pair with the highest accuracy is then chosen for the model [9]
(See Figure 1). Our SVM algorithm uses a search range of [0.01,1.01] with a
step size of .2 for γ and a search range of [1,101] with a step size of 20 for C.

Figure 1: This heat map shows the accuracy of an SVM model trained with
given parameters C and γ.
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5.3 Committee of Machines Approach

We used the committee of machine approach as a way of reducing the variation
across predictions. This approach involves training several different models [15],
using the same machine learning method, on the set of 435 training data. Each
model is then used to predict the set of 50 testing data. As the predictions for
the four endpoint models are binary, the mode of the committee predictions is
taken for the final prediction. These predictions are then used to calculate the
accuracy.

In Decision Trees, using a random forest method is a way of implementing
the committee of machines approach. A random forest method creates an en-
semble of predictive trees and takes the mean of each of the predictions in order
to get a consensus of multiple committee members’ votes [12]. This method was
implemented to create more accurate predictive models.

5.4 Oversampling

For each endpoint, the data is mildly to extremely unbalanced in terms of the
effect or no effect outcome. Unbalanced data will make the models more inaccu-
rate and difficult to analyze [11]. To balance the data, a random oversampling
method is used. Different percentages for oversampling were chosen for each
of the four models. Oversampling creates 1,305 total observations. Increasing
the number of observations relative to the size of the feature set is expected to
increase the predictive accuracy of the models [11].

Oversampling increases the cross validation accuracies of our different mod-
els. This occurs because when a 90-10% split is made of data that has repeated
entries, it is more likely to correctly classify an entry that the model has already
seen.

5.5 Feature Selection

A large number of input variables, as is the case with our data, can lead to poor
performance due overfitting of the model to the training data as well as high
dimensionality issues [10]. Thus, using feature selection methods to filter out ir-
relevant chemical features and determine the most significant chemical features
can reduce the issue of overfitting and ultimately improve the accuracy of the
predictive models.

5.5.1 Pre-Processing

Pre-processing techniques are ways of getting rid of unimportant features. Here
we present three pre-processing techniques, Principal Component Analysis (PCA),

7



F-scores, and Receiver Operating Characteristic (ROC) curves, that are utilized
on this data.

Principal Component Analysis

Principal component analysis is a transformation procedure that changes cor-
related features into linearly uncorrelated features, known as principle compo-
nents, which are eigenvectors of the covariance matrix of the variables. Princi-
ple components are linear combinations of the original features. The principle
components with larger eigenvalues have larger variance and therefore explain
the largest amount of the variance in the data. Considering only the principle
components with large eigenvalues will reduce the number of features while pre-
serving much of the information contained in the features [2].By choosing the
principle components with associated eigenvalues above one, the feature set is
reduced from 1,222 features to 220 features. The classification algorithms are
tested using these 220 principal components.

F-Scores

An F-score is a measurement of the discrimination, or ability to classify data in
a binary way, between two sets of numbers . Equation 1 calculates the F-score
for the ith feature, where xk,i is the kth observation of feature i, n(+) (n(−))

is the count of all positive (negative) observations, x
(+)
i (x

(−)
i ) is the mean of

all observations in the positive (negative) class, and xi is the overall mean of
observations. A larger F-score is indicative of a more discriminative feature.
Therefore, using features with only higher F-Scores reduce the dimensionality
of the feature space while keeping informative features. We choose features with
an F-score above any values stored as zero. One downside to F-Scores is that
they do not reveal any mutual information amongst features. [8].
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x
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+
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x
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x
(+)
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(+)
i

)2
+ 1

n(−)−1
∑n(−)

k=1
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x
(−)
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(−)
i
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ROC Curve

The Receiver Operating Characteristic Curve (ROC) measures the trade-off
between sensitivity and specificity for a binary test. Given some variable, the
ROC curve is plotted by varying the threshold to declare a positive result, and
plotting the true positive rate by the false positive rate for each threshold. As
the threshold increases, the rate of false positives will decrease, but so will the
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rate of true positives. Similarly, decreasing the threshold will result in an in-
crease in true and false positives [24]. The ROC Curve can be used to evaluate
a test through estimating the area under the curve (AUC) [5]. Treating each
feature as the test variable, the AUC shows how well the feature classifies the
data. In our research we estimate the AUC using the trapezoid method. We
select features with an AUC value larger than .5.

5.5.2 Post-Processing

Post-processing techniques are methods which selecting important features, us-
ing the machine learning algorithms.

Sensitivity Analysis on Decision Trees

The OOBPermutedVarDeltaError output is a measure of feature importance
generated by the MATLAB decision tree toolbox, which calculates the amount
of error resulting from varying feature input values. Higher error is indicative
of a more important feature. We generate OOBPermutedVarDeltaError values
for all features using the oversampled full feature set, as well the three feature
sets reduced by ROC curves, F-score, and PCA. We find the average error of
each of the 1,222 features across ten treebags for each of the four models. The
four models are then run on the set of features associated with the top 30% of
errors. Figure 2 shows the distribution of errors found across each of the four
endpoint models.

Sensitivity Analysis on Support Vector Machines

The method we use for sensitivity analysis on the Support Vector Machine mod-
els estimates the derivative of the the change in decision values with respect to
the change in values of a feature. Decision values are scalar values SVM as-
signs to each observation before making a final classification. The derivative is
estimated using the central difference method. For each feature f , the decision
values for the h = .001 added to the original values and h = .001 subtracted from
the original values using the p prediction function for each observation xi,m,f ,
the ith observation predicted by the mth machine. The derivatives are averaged
across the committee of machines, and the absolute value of the derivatives are
averaged across observations. Finally, the sensitivity scores are compared in
order to find the most significant features. The sensitivity for feature f is cal-
culated using equation 2. Figure 3 shows the distribution of sensitivity scores
across each of the four models.

Sf =
1

n

n∑
i=1

∣∣∣∣∣∣ 1

m

m∑
j=1

p(xi,m,f + h) − p(xi,m,f − h)

2h

∣∣∣∣∣∣ (2)

9



Sensitivity Results

Below are the results of running sensitivity analysis across all chemical features.
The values are skewed to the right, meaning that most of the chemical features
had a corresponding sensitivity score of nearly zero, meaning that these features
were not as important in predicting the toxicological endpoints of interest (See
Figures 2 and 3).

Figure 2: The distribution of the errors calculated from sensitivty analysis of the
decision tree models for Developmental Reproductive, Non-Proliferative Pathol-
ogy, Proliferative Pathology, and Neoplastic Pathology.

Figure 3: The distribution of sensitivity scores of the support vector machine
models for Developmental Reproductive, Non-Proliferative Pathology, Prolifer-
ative Pathology, and Neoplastic Pathology.
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5.6 Selected Features

Table 1 lists the amount of features which are selected by both pre-processing
feature selection methods. Table 1 also contains the overlapping features se-
lected by both the pre-processing and post-processing methods combined. For
each comparison of methods, the size of the set of features selected by each
post-processing technique is equal to the size of the set of features selected by
each pre-processing techniques. An example of a feature selected by SVM and
F-scores for all endpoints is number of nitrogen atoms. Examples of features
given ROC curve and decision trees for all endpoints include Atomic logP and
autocorrelation.

Table 1: Size of the Intersection between Feature Selection Methods

Devlopmental Proliferative Non-Proliferative Neoplastic

Roc ∩ Fsc 287 188 68 39
SVM ∩ Fsc 58 181 118 90
SVM ∩ Roc 874 452 193 71
DT ∩ Fsc 62 119 85 83
DT ∩ Roc 254 209 144 128

Intersections are listed as counts of features. Decision Tree Sensitivity abbreviated as DT,
SVM Sensitivity abbreviated as SVM, F-score abbreviated as Fsc.

6 Results

The tables presented in this section show the predictive accuracies of each of the
machine learning methods used for each in of the four endpoint models. The
first percentage in each cell of the tables is the cross validation accuracy, and
the second is the out of sample prediction accuracy. The best guess accuracy
is the percent correct predictions obtained by simply guessing the effect that
occurs most often. The bold numbers are the prediction scores of the models
that met or exceeded the out of sample best guess accuracy. Each experiment
was completed with 10-fold cross validation.

6.1 Initial Results

In order to asses the performance of each of the initial six machine learning
methods, each of the endpoint models are evaluated using the algorithms with-
out any pre-processing or post-processing.
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Table 2 displays the accuracy results for each of the machine learning models
predicting an effect or no effect for the Developmental Reproductive,
Proliferative Pathology, Non-Proliferative Pathology, and Neoplastic
Pathology endpoints categories. The top two methods, Decision Trees and
Support Vector Machines, were then analyzed further based on highest
accuracy and lowest run time.

Table 2: Initial Results Across all Six Machine Learning Methods

Endpoint Devlopmental Proliferative Non-Proliferative Neoplastic

Best Guess 60% / 72% 72% / 80% 50% / 60% 66% / 60%

R-Tree 58% / 64% 71% / 80% 53% / 48% 68% / 54%

C-Tree 58% / 72% 67% / 68% 54% / 46% 67% / 52%

SVM 62% / 72% 72% / 80% 58% / 46% 67% / 58%

ANN 80% / 68% 53% / 78% 51% / 52% 61% / 62%

kNN 62% / 66% 72% / 80% 56% / 48% 68% / 54%

LDA 52% / 70% 53% / 54% 53% / 50% 60% / 50%

6.2 Oversampling Results

Table 3 below contains the accuracy results for each of the chosen machine learn-
ing algorithms, Decision Trees and Support Vector Machines, predicting effect
or no effect on the four toxicological endpoints. The models used to obtain these
results are based on the oversampled data sets without feature selection.

Table 3: Oversampling Results Across Top Machine Learning Methods

Endpoint Devlopmental Proliferative Non-Proliferative Neoplastic

Best Guess 60% / 72% 50% / 80% 50% / 60% 50% / 60%

R-Tree 97% / 64% 97% / 69% 97% / 42% 98% / 52%

C-Tree 99% / 65% 98% / 66% 98% / 38% 99% / 55%

SVM 99% / 72% 99% / 60% 99% / 42% 99% / 52%

6.3 Feature Selection Results

The tables presented display the top accuracy results for each of the chosen
machine learning algorithms, Decision Trees and Support Vector Machines, pre-
dicting effect or no effect on the four toxicological endpoints. The models used
to obtain these results are based on the oversampled data sets with feature se-
lection.
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6.3.1 Pre-Processing Results

Table 4 displays the top accuracy results chosen based on the best results for
each of the impacts observed across all of the pre-processing techniques used.
More detailed results are shown in Appendix A.

Table 4: Pre-Processing Results Across Top Machines Learning Methods

Endpoint Developmental Proliferative Non-Proliferative Neoplastic

Best Guess 60% / 72% 50% / 80% 50% / 60% 50% / 60%

Best R-Tree 97% / 67%** 99% / 78%*** 97% / 45%* 99% / 56%***

Best C-Tree 99% / 70%** 99% / 78%*** 98% / 45%* 99% / 58%***

Best SVM 99% / 74%* 98% / 76%*** 98% / 54%* 99% / 60%*

Accuracies for each outcome using each pre-processing technique and each algorithm (Cross
Validation/Out of Sample) rounded to the nearest whole number. Accuracies in red are at or
above the accuracy obtained by always guessing the most frequent outcome. The percentages
labeled with * are from ROC pre-processing, ** are from F-Score pre-processing, and *** are
from PCA pre-processing.

6.3.2 Post-Processing Results

Table 5 displays the top accuracy results chosen based on the best results for
each of the impacts observed across all of the pre-processing techniques used.
More detailed results are shown in Appendix B.

Table 5: Post-Processing Results Across Top Machine Learning Methods

Endpoint Developmental Proliferative Non-Proliferative Neoplastic

Best Guess 60% / 72% 50% / 80% 50% / 60% 50% / 60%

Best R- Tree 97% / 69%** 98% / 77%*** 98% / 47%*** 99% / 57%***

Best C-Tree 99% / 67%* 97% / 77%*** 96% / 46%*** 97% / 57%***

Best SVM 99% / 66%* 99% / 80%*** 98% / 60%*** 99% / 60%***

Accuracies for each outcome using each pre-processing technique and each algorithm (Cross
Validation/Out of Sample) rounded to the nearest whole number. Accuracies in red are at or
above the accuracy obtained by always guessing the most frequent outcome. The percentages
labeled with * are from ROC pre-processing, ** are from F-Score pre-processing, and *** are
from PCA pre-processing.
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7 Conclusion

Our results show that using the chosen machine learning methods to create
predictive models for impacts of chemicals on toxicological endpoints do not
significantly improve upon the accuracy of simply guessing the most frequent
outcome. Using Support Vector Machines and Decision Trees, high cross vali-
dation accuracies were obtained across all of the endpoints of interest. However,
the out of sample accuracies remained low. The low out of sample prediction
performance compared to the high cross validation performance is likely a result
of artificial inflation of cross validation results due to oversampling, as well as
the result of overfitting the data. The poor out of sample performance may also
be due to the high dimensionality of the feature space, despite the use of feature
selection methods.

Another potential source of error is flawed feature information, which may be
caused either by errors in the chemical structures themselves or in the PaDEL
software. This error could be reduced by processing the chemical structures
for potential issues such as the presence of salts, problem causing metals, and
charged structures. This could be implemented using a KNIME (Konstanz In-
formation Miner) workflow as shown in Mansouri et al. [22].

The in vivo data used could also be an explanation for the poor results.
While in vivo biological effects are clearly the result of bio-chemical interac-
tions, the processes which connect chemical structure to in vivo toxicology are
likely complex and difficult to predict using only chemical structure data. A
solution may be to include in vitro testing results, which are less removed from
in vivo results, as additional inputs into the models.

The in vivo data also used endpoint categories that contained a diverse vari-
ety of toxicological effects which were aggregated due to the low sizes of the set
of chemicals tested for any specific effect. For example, the endpoint category
of Developmental Reproductive contains data on cleft pallets along with data
on fertility, among other effects. Thus, we may be predicting too broad of a
category. If more observations are obtained, narrowing the endpoint categories
to predict more specific outcomes will likely improve the models.

Another solution to connecting the chemical features to the in vivo data may
be to create new features which are functions of the original chemical features.
Certain chemical features may work together in order to elicit a toxicological
effect. This relationship could be obtained by using biochemical knowledge of
the interaction between structural properties.

An additional way to improve out of sample prediction accuracies is to com-
bine different machine learning algorithms within one overall predictive model
in order to capitalize on the strengths of each algorithm. This is known as con-
sensus modeling, and could be implemented similarly to the consensus model in
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Mansouri et al. [22].

A potential future direction for this research is creating continuous models
to predict the minimum dosage of a chemical that would cause a toxicological
effect on an given endpoint. A classification model could be created to predict
a category specifying the range in which the minimum dose falls. In addition,
a regression model could be created to predict the exact value of the mini-
mum dose. For the categorized continuous model, accuracy would be evaluated
by diving the correct predictions by the total predictions. For the continuous
dosage model, accuracy would be calculated by looking at the mean squared
error.
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A Results: Pre-Processing

Results for the full, F-Score reduced, ROC curve reduced, and PCA reduced
data sets were obtained for all endpoints. Results are listed in the form cross
validation accuracy/out of sample accuracy.

Table 6: Developmental Reproductive

Method Best Guess R-Tree C-Tree SVM

Full 60.23% / 72% 97.21% / 63.6% 98.57% / 65.4% 99.08% / 70%

F-Score 60.23% / 72% 96.99% / 67.4% 98.55% / 69.6% 99.15% / 62%

ROC 60.23% / 72% 96.81% / 66% 97.68% / 67% 99.14% / 74%

PCA 60.23% / 72% 98.23% / 58% 98.4% / 66% 98.70% / 60%

Table 7: Proliferative Pathology

Method Best Guess R-Tree C-Tree SVM

Full 50.04% / 80% 97.48% / 69% 98.23% / 66.4% 99.10% / 48%

F-Score 50.04% / 80% 97.18% / 62.2% 97.98% / 61.8% 98.89% / 66%

ROC 50.04% / 80% 97.24% / 70% 97.95% / 69% 99.12% / 32%

PCA 50.04% / 80% 98.5% / 78% 98.75% / 78% 98.19% / 76%

Table 8: Non-Proliferative Pathology

Method Best Guess R-Tree C-Tree SVM

Full 50.34% / 60% 97.09% / 42.2% 98.35% / 38.4% 98.64% / 46%

F-Score 50.34% / 60% 96.98% / 37.6% 98.34% / 32.8% 98.57% / 44%

ROC 50.34% / 60% 97% / 45% 97.68% / 45% 98.42%/ 54%

PCA 50.34% / 60% 98.18% / 43% 98.02% / 38% 98.44% / 54%

Table 9: Neoplastic Pathology

Method Best Guess R-Tree C-Tree SVM

Full 50.04% / 60% 97.5% / 52.2% 98.9% / 55.4% 99.69% / 60%

F-Score 50.04% / 60% 96.86% / 51.6% 99.09% / 51% 99.27% / 46%

ROC 50.04% / 60% 97.25% / 51% 97.98% / 51% 99.2% / 60%

PCA 50.04% / 60% 98.71%/ 56% 99.16% / 58% 98.97% / 40%
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B Results: Post-Processing

Results for the full, F-Score reduced, ROC curve reduced, and PCA reduced
data sets were obtained using the top 30% of features chosen by the sensitivity
analysis. This cutoff was chosen based on the percentile that resulted in the
highest accuracy for the full oversampled data sets. Results are listed in the
form cross validation accuracy/out of sample accuracy.

Table 10: Developmental Reproductive

Method Best Guess R-Tree C-Tree SVM

Full 60.23% / 72% 97.63% / 65.4% 98.64% / 68.6% 99.14%/ 60%

F-Score 60.23% / 72% 96.98% / 69.4% 98.68% / 66.8% 99.90% / 62%

ROC 60.23% / 72% 97.96% / 62.8% 98.57% / 67.4% 99.14% / 66%

PCA 60.23% / 72% 98.25% / 54.8% 95.53% / 58.4% 99.04% / 56%

Table 11: Proliferative Pathology

Method Best Guess R-Tree C-Tree SVM

Full 50.04% / 80% 98.17% / 68.2% 98.25% / 65.6% 99.03% / 44%

F-Score 50.04% / 80% 96.98% / 67.6% 98.23% / 66.8% 98.57% / 64%

ROC 50.04% / 80% 97.71% / 68.2% 98.05% / 67.8% 98.52% / 68%

PCA 50.04% / 80% 98.48% / 76.8% 97.24% / 77% 98.62% / 80%

Table 12: Non-Proliferative Pathology

Method Best Guess R-Tree C-Tree SVM

Full 50.34% / 60% 97.8% / 40.4% 98.35% / 39.4% 98.51%/ 42%

F-Score 50.34% / 60% 96.99% / 40.2% 97.95% / 37.2% 99.57%/ 40%

ROC 50.34% / 60% 97.65% / 44% 98.07% / 44% 98.40%/ 56%

PCA 50.34% / 60% 97.91% / 47.2% 95.65% / 46.4% 98.25%/ 60%

Table 13: Neoplastic Pathology

Method Best Guess R-Tree C-Tree SVM

Full 50.04% / 60% 98.06% / 52% 98.92% / 54.4% 99.63% / 54%

F-Score 50.04% / 60% 96.8% / 51.6% 99.02% / 51.6% 99.57% / 60%

ROC 50.04% / 60% 97.32% / 51.8% 99.03% / 54.4% 90.57% / 56%

PCA 50.04% / 60% 98.68% / 57.2% 96.88% / 56.6% 99.27% / 60%
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