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A Constrained Optimization Approach to Dynamic State Estimation for Power
Systems Including PMU and Missing Measurements

Liang Hu, Zidong Wang, Izaz Rahman, and Xiaohui Liu

Abstract— In this brief, a hybrid filter algorithm is developed
to deal with the state estimation (SE) problem for power systems
by taking into account the impact from the phasor measurement
units (PMUs). Our aim is to include PMU measurements when
designing the dynamic state estimators for power systems with
traditional measurements. Also, as data dropouts inevitably
occur in the transmission channels of traditional measurements
from the meters to the control center, the missing measure-
ment phenomenon is also tackled in the state estimator design.
In the framework of extended Kalman filter (EKF) algorithm,
the PMU measurements are treated as inequality constraints
on the states with the aid of the statistical criterion, and then
the addressed SE problem becomes a constrained optimiza-
tion one based on the probability-maximization method. The
resulting constrained optimization problem is then solved using
the particle swarm optimization algorithm together with the
penalty function approach. The proposed algorithm is applied to
estimate the states of the power systems with both traditional and
PMU measurements in the presence of probabilistic data missing
phenomenon. Extensive simulations are carried out on the
IEEE 14-bus test system and it is shown that the proposed
algorithm gives much improved estimation performances over the
traditional EKF method.

Index Terms— Constrained optimization, extended Kalman
filter (EKF), missing measurements, particle swarm
optimization (PSO), power systems, state estimation (SE).

NOMENCLATURE

k Time index.
k|k − 1 Time index for prediction from instant k − 1 to k.
k|k Time index for update at instant k.
t j The line connecting nodes t and j .
t j0 t side (to the ground) of the line connecting

nodes t and j .
r and i Real and imaginary component.
N Total number of bus nodes of interest.
M Total number of PMUs.
nv Total number of voltage meters.
n p Total number of power meters at the nodes.
n f Total number of power meters at the lines.
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Ns The set of bus numbers directly connected to
node s.

t j
l The lth bus directly connected to bus j .

I. INTRODUCTION

STATE estimation (SE) has long been one of the
fundamental problems in the research on power systems.

Traditional SE approach is typically static, where the
single-scan weighted least-squares estimators are adopted [1].
Static SE method exhibits the features of fast convergence and
easy implementation, but it suffers from the accuracy problems
since the dynamics of the power system is ignored.

With rapid development of the sensing techniques, online
monitoring has recently become popular which gives rise to
the renewed research interests on the design of the dynamic
state estimator (DSE). Comparing with the static SE scheme,
the DSE is capable of achieving better estimation accuracy
since more information about the state evolution is utilized.
Another advantage of the DSE is its potential ability to
provide prediction database that could be adopted as a set of
pseudomeasurements in case of missing data or meter outages
in the power grids.

Note that the missing data phenomenon constitutes one
of the major concerns in SE for power systems since data
dropouts inevitably occur in the transmission channels of
traditional measurements from the meters to the control center.
As discussed in [7], [8], [11], [18], and [21], the commu-
nication constraints (e.g., limited bandwidth) have inevitably
led to network-induced phenomena such as random commu-
nication delays and missing measurements. As for missing
measurements, a conventional way is to treat them as normal
bad data without in-depth characterization of the dropouts.
Very recently, the missing measurement problem has been
tackled in [18] and [19], where a certain stochastic variable
is involved in the estimator, and this renders the difficulties
in the implementation. In our paper, a recursive algorithm
is developed to mitigate the effect of missing measurements
through modifying the traditional DSE approaches.

On the other hand, advanced techniques for synchro-
nized phasor measurements have recently been applied in
power systems. Different from traditional supervisory con-
trol and data acquisition systems, where the magnitude of
the nodal voltage can be directly measured, phasor mea-
surement units (PMUs) are capable to measure both the
magnitude and the phase of nodal voltages. Moreover, due
to their intrinsic advantages, the PMUs have made it pos-
sible to measure the system states in a more accurate and
timely way as compared with the traditional measurements.
Unfortunately, for economic reasons, it is not affordable
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to replace all the remote terminal units (RTUs) with PMUs in
the foreseeable future [14], [22]. In other words, only states
of partial buses could be directly measured by PMUs and
the rest would have to be estimated using the conventional
RTUs. As such, an emerging research issue is how to inte-
grate PMU measurements into traditional SE algorithms, and
this issue has started to gain some initial research attention
(see [3], [14]–[16], [22], [24]). It should be noted that all
the corresponding results available in the literature have been
concerned with static SE problems, and the DSE problem
in the presence of partial PMU involvements remains as a
challenging topic of research [12].

The main purpose of this brief is to design DSEs for power
systems by making one of the first attempts to solve the
aforementioned two challenging problems.

1) How to account for the probabilistic missing data
phenomenon?

2) How to include the PMU measurements in the state
estimator design?

In this brief, the phenomenon of missing measurements is
assumed to occur randomly and the missing probability for
each channel is governed by an individual random variable
satisfying a certain probability distribution over the
interval [0, 1]. The impact of missing measurements on
the overall estimation performance is considered when
designing the estimator. On the other hand, to incorporate
the PMU measurements into the widely used extended
Kalman filter (EKF) algorithm, the PMU measurements are
characterized via a set of inequality constraints based on the
well-known three-sigma rule of the Gaussian distribution,
and then the EKF problem with state constraints becomes
a constrained optimization problem that can be effectively
solved by the particle swarm optimization (PSO) algorithm.
As PSO has primarily been developed as an unconstrained
optimization method, the penalty function approach is utilized
to convert the constrained optimization problem into an
unconstrained one.

In this brief, a hybrid EKF and PSO algorithm is developed
to estimate the states of power system. The main contribution
of this brief is threefold.

1) A new dynamic SE scheme is first proposed to improve
the estimation performance of power system including
PMU measurements. Such a scheme has the advantages
of being scalable to the numbers of the installed PMUs
and of being compatible with existing DSE software.

2) Practical issues of missing measurements in communica-
tion network are thoroughly investigated and a modified
EKF algorithm is developed, which is insensitive to
the measurement unreliability in terms of acceptable
probability.

3) Extensive comparative experiments have been imple-
mented based on different missing rates of the RTU
measurements and it is confirmed that our proposed
estimation algorithm provides better performance than
the traditional EKF in the presence of the missing
measurements.

Notation: The notation used here is fairly standard except
where otherwise stated. Im,1 denotes the m-dimensional vector

with all elements equal to 1. For given matrices A and B with
the same dimension, ◦ is the Hadamard product defined as
[A ◦ B]i j = [Aij × Bij ]. E{x} stands for the expectation of
the stochastic variable x . |C| describes the determinants of a
square matrix C . diag{· · · } and diagn{∗} stand for a block-

diagonal matrix and diag{
n

︷ ︸︸ ︷∗, . . . , ∗}, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Model With Missing RTU Measurements

In this brief, the power network is assumed to operate
among quasi-steady states and such kind of steady-state
dynamics is typically different from the transient ones gener-
ated by the electromechanical power systems. Let us consider
the following model that represents the slow system dynamics
of N buses [4]–[6], [19], [20]:

x(k + 1) − u = A(x(k) − u) + ω(k) (1)

where the state x(k) ∈ R
2N is the vector of the

real parts and the imaginary parts of the voltages
at all buses in the rectangular form, that is,
x(k) = [xr,1(k) xr,2(k) . . . xr,N (k) xi,1(k) xi,2(k) . . . xi,N (k)]T ,
and u ∈ R

2N is the trend behavior of the state trajectory.
ω(k) is a Gaussian sequence with zero mean and covariance
matrix W (k). A represents how fast the transitions between
states are. The initial value of state x(0) is a white Gaussian
noise with mean value x̄(0) and covariance matrix �(0|0).
For computational convenience, the state transition matrix A
has been traditionally assumed to be diagonal in the dynamic
SE algorithms of power systems [6].

For the purpose of simplicity, define B := I − A,
then (1) can be rewritten in the following compact form:

x(k + 1) = Ax(k) + Bu + ω(k). (2)

The ideal measurement (without missing phenomena)
z(r)(k) ∈ R

m collected by RTUs is given as follows:
z(r)(k) = [V T (k) PT (k) QT (k) P f T (k) Q f T (k)]T .

Assuming the general two-port π-model for the network
branches, the explicit element for each aforementioned mea-
surement is given as follows (the symbol of time instant k is
omitted for brevity):

Vs =
√

x2
r,s + x2

i,s

Ps = xr,s

∑

j∈Ns

(Gsj xr, j − Bsj xi, j )

+xi,s

∑

j∈Ns

(Gsj xi, j + Bsj xr, j )

Qs = xi,s

∑

j∈Ns

(Gsj xr, j − Bsj xi, j )

−xr,s

∑

j∈Ns

(Gsj xi, j + Bsj xr, j )

P f
s := P f

t j = (

x2
r,t + x2

i,t

)

(gt j0 + gt j ) − xr,t xr, j gt j

−xi,t xi, j gt j − xi,t xr, j bt j + xr,t xi, j bt j

Q f
s := Q f

t j = −(

x2
r,t + x2

i,t

)

(bt j0 + bt j ) − xi,t xr, j gt j

+ xr,t xi, j gt j + xr,t xr, j bt j + xi,t xi, j bt j (3)
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where V (k) = [V1(k) V2(k) . . . Vnv (k)]T denotes the bus
voltage magnitude measurements, P(k) = [P1(k) P2(k) . . .
Pn p (k)]T and Q(k) = [Q1(k) Q2(k) . . . Qn p (k)]T stand for
the real and reactive bus power injections measurements,
and P f (k) = [P f

1 (k) P f
2 (k) . . . P f

nl (k)]T and Q f (k) =
[Q f

1 (k) Q f
2 (k) . . . Q f

nl (k)]T are the real and reactive trans-
mission line power flows, respectively. Gsj + j Bs j is the
s j th element of the complex bus admittance matrix, gt j + jbt j

is the admittance of the series branch connecting bus t and j ,
gt j0 + jbt j0 is the half admittance of the shunt branch of the
line collecting bus t and j in the π-model circuit, and Ns is
the set of bus numbers which are directly connected to bus s.

Taking the measurement noise into consideration,
z(r)(k) can be rewritten as the following compact form:

z(r)(k) = h(x(k)) + v1(k). (4)

The nonlinear function h(x) is given as follows:
h(x(k)) = [V T (k), PT (k), QT (k), P f T

(k), Q f T
(k)]T

where the variables V (k), P(k), Q(k), P f (k), and Q f (k)
are defined in (3). v1(k) is the RTU measurement noise,
which is also a Gaussian noise with zero mean and covari-
ance matrix R1(k). Assume ω(k) and v1(k) are uncorrelated
with x(0) and with each other.

Considering missing measurements, the actual measurement
z(k) is described by

z(k) = �(k)h(x(k)) + v1(k) (5)

where �(k) = diag{γ1(k), γ2(k), . . . , γm(k)} with γi (k)
(i = 1, 2, . . . , m) being m unrelated random variables.
�(k) is also unrelated with ω(k), v1(k), and x(0).
Furthermore, it is assumed that the stochastic variable γi (k) is
a Bernoulli-distributed white noise sequence taking values
on 0 or 1 with

Prob{γi (k) = 0} = 1 − μi (k), Prob{γi (k) = 1} = μi (k)

where the value of Prob{γi (k) = 0} is also called the missing
rate of the i th measurement.

In RTU measurements, one bus is usually chosen as the
reference bus for all the other buses to obtain the relative phase
angles, while in PMU measurements, all PMU measurements
provide the direct phase angles with respect to the time
reference provided by the GPS. In this brief, we use both
RTU and PMU measurements, and therefore all the bus phase
angles are relative to the reference dictated by the GPS [14].
As a result, no reference buses are needed.

B. PMU Measurements and Inequality Constraints

In this brief, both the state and measured variables are in
the rectangular form, which makes a linear PMU measurement
model. Assume that the lth PMU is installed at bus j , and the
measurement z(p)

l ∈ R
2(1+N j ) can be described as follows:

z(p)
l =

[

z(p)
r, j z(p)

i, j z(p)

r,t j
1

z(p)

i,t j
1

· · · z(p)

r,t j
Nl

z(p)

i,t j
Nl

]T
.

To be more specific, the voltage measurement in the above
vector is given as follows:

z(p)
r, j = xr, j , z(p)

i, j = xi, j . (6)

The current measurement of the line collecting the
bus j and t is as follows:
z(p)

r, j t = xr,l g j t0 − xi, j b j t0 + (xr, j − xr,t )g j t − (xi, j − xi,t )b j t

z(p)
i, j t = xi,l g j t0 + xr, j b j t0 + (xi, j − xi,t )g j t + (xr, j − xr,t )b j t .

Considering the measurement noise, the PMU measurements
can be presented in the following compact vector form:

z(p)(k) = H (p)x(k) + v2(k) (7)

where z(p) is the PMU measurement vector, and v2(k) is the
PMU measurement noise, which is also a Gaussian noise with
zero mean and covariance matrix R2(k). H (p) can be obtained
directly from PMU configurations, and it can be found that the
measurement z(p)(k) is linearly related to the state x(k).

A seemingly natural idea is to treat the PMU measurements
as an additional set similar to the RTU measurements. Note
the fact reported in [3] and [14] that the standard deviation
of the errors of PMU measurements is one to two orders
of magnitude less than the one of traditional RTU measure-
ments. Unfortunately, since the PMU measurements are much
more accurate than the RTU measurements, including these
two kinds of measurements in the estimation process often
results in illconditioned filtering procedure due primarily to
the low covariance matrix for the PMU measurement noises.

As R2(k) is always a real symmetric matrix, we can find
a transformation matrix M(k) of appropriate dimension such
that the matrix M(k)R2(k)MT (k) is diagonal. Accordingly,
we can obtain the following equation from (7):

M(k)z(p)(k) = M(k)H (p)x p(k) + M(k)v2(k) (8)

where M(k)v2(k) is still a Gaussian noise with zero mean and
covariance matrix M(k)R2(k)MT (k).

Based on the well-known three-sigma rule of Gaussian
distribution, we can conclude that the following inequality sets
are satisfied with probability 99.7%:
−3R̃2(k) ≤ M(k)z(p)(k) − M(k)H (p)x p(k) ≤ 3R̃2(k) (9)

where R̃2(k) := M(k)R2(k)MT (k)Im1,1. From the perspective
of engineering applications, it is reasonable to assume that the
above inequality sets are satisfied all the time. So far, we have
characterized the PMU measurements by a set of inequality
constraints on the states for the power system.

III. FILTER SCHEMES

A. EKF Design for the System With RTU Measurements

In this section, we first introduce the EKF approach to
estimating the system state for the system (2) with missing
measurements (5). The EKF is of the following form:
x̂(k|k − 1) = Ax̂(k − 1|k − 1) + Bu

x̂(k|k) = x̂(k|k − 1) + K (k)[z(k) − �̄(k)h(x̂(k|k − 1))]
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where x̂(k|k) is the estimate of x(k) at the time instant k
with x̂(0|0) = x̄(0), and x̂(k|k − 1) is the one-step predic-
tion of x(k) at time k − 1. K (k) is the filter gain to be
determined at the time instant k, and �̄(k) := E{�(k)} =
diag{μ1(k), μ2(k), . . . , μm(k)}. P(k|k −1) and P(k|k) are the
covariance matrices of, respectively, the one-step prediction
error and the filtering error defined by

x̃(k|k − 1) = x(k) − x̂(k|k − 1), x̃(k|k) = x(k) − x̂(k|k)

P(k|k − 1) = E{x̃(k|k − 1)x̃(k|k − 1)T }
P(k|k) = E{x̃(k|k)x̃(k|k)T }.

Denoting H (k) = (∂h(x(k))/∂x(k))|x(k)=x̂(k|k−1), the
gain K (k) can be obtained using the following recursive
algorithm:
P(k|k − 1) = AP(k − 1|k − 1)AT + W (k − 1) (10)

P(k|k) = [I − K (k)�̄(k)H (k)]P−1(k|k − 1) (11)

S(k) = �̃(k) ◦ (h(x̂(k|k − 1))hT (x̂(k|k − 1)))

+�̃(k) ◦ (H (k)P(k|k − 1)H T (k)) + R(k)

+�̄(k)H (k)P(k|k − 1)H T (k)�̄(k) (12)

K (k) = P(k|k − 1)H T (k)�̄(k)S−1(k) (13)

where �̃(k) := diag{μ̃1(k), μ̃2(k), . . . , μ̃m(k)} with
μ̃i (k) = μi (k)(1 − μi (k)) (i = 1, 2, . . . , m).

Remark 1: In this brief, the exact occurrence time for the
randomly missing measurements is not required to be exactly
known, and this reflects the practical situation in power system.
Nonetheless, the statistical law (i.e., the first and second order
of moments) of the random occurrence of missing measure-
ments is needed in the filter design, where the statistical law
could be obtained through statistic tests.

Remark 2: There are mainly two kinds of DSE paradigms
in power system SE. These two paradigms differ from each
other in system dynamics model and time scale. In one
paradigm (see [5], [6], [20], and the references therein) called
forecasting-aided SE, the bus voltages are chosen as state vari-
ables and a succession of the quasi-steady states is assumed
to evolve in time. Therefore, a dynamic model is adopted to
describe the slow time evolution of the quasi-steady state.
In the other paradigm (see [9], and the references therein),
rotor angles and rotor speeds of generators are chosen as
state variables, and the classic dynamic model of generators
is considered. The DSE of such a paradigm is concerned with
the low frequency electromechnical dynamics.

B. Probability-Maximum Method

For the constrained estimation problem, it is difficult to
incorporate the inequality/equality constraint of system states
into the traditional EKF estimator. Fortunately, the probability-
maximum method has been successfully exploited in [17] to
convert the constrained estimation problem into a constrained
optimization one after each step of the EKF algorithm and,
therefore, this method is chosen to handle the constrained
EKF problem in this brief.

For presentation conciseness, the notation for time instant k
is omitted in this section. It is known from [2] that, based on

the Kalman filter theory, the state estimate of x maximizes the
conditional probability density

P(x |Z) = (2π)−
n
2 |P|− 1

2 exp

{

−1

2
(x − x̄)T P−1(x − x̄)

}

(14)

where n is the dimension of x , P is the covariance of the
Kalman filter estimate, Z � {z(0), z(1), . . . , z(k)} denotes the
set of measurements available at time instant 0, 1, . . . , k, and
x̄ is the conditional mean of x given Z .

The constrained EKF can be derived by finding an
estimate x̂ such that the conditional probability P(x̂ |Z) is
maximized and x̂ satisfies the constraint (9). Since maximizing
P(x̂ |Z) is equivalent to maximizing its natural logarithm, the
problem to be solved can be expressed as

max ln P(x̂ |Y ) ⇒ min(x̂ − x̄)T P−1(x̂ − x̄)

s.t. − 3R̃2 ≤ Mz(p) − M H (p)Cx̂ ≤ 3R̃2. (15)

So far, the constrained SE problem has been converted into an
equivalent constrained optimization problem that can be solved
after each time step of the EKF algorithm. As is impossible to
develop a deterministic method for the constrained nonlinear
optimization problem (15) in the global optimization category,
we adopt the PSO algorithm, which is a popular evolutionary
algorithm in solving the nonlinear optimization problem.

IV. PSO FOR CONSTRAINED OPTIMIZATION PROBLEM

PSO is a metaheuristic that optimizes a problem by
iteratively searching in a large spaces of candidate
solutions [13]. In PSO, a population of candidate solutions
(called as particles) moves in the search space according to
two simple mathematic formulas over the particle’s position
and velocity. More specifically, each particle’s movement is
influenced by its local best known position and also the best
known positions, which are updated by other particles, in
the search space. By such an iterate approach, the swarm of
the particles moves toward the best solutions. The velocity
and position of the particle at the next iteration are updated
according to the following:

⎧

⎪
⎨

⎪
⎩

vi (s + 1) = ωvi (s) + c1r1(pi(s) − xi (s))

+ c2r2(pg(s) − xi (s))

xi (s + 1) = xi (s) + vi (s + 1)

(16)

where xi(s) = [xi1(s), . . . , xid (s)], xi (s) is the position of the
i th particle at the sth iteration, and xi (s) ∈ [xmin,n, xmax,n],
with xmin,n and xmax,n being the lower and the upper bounds
for all particles’ positions. vi (s) = [vi1(s), . . . , vid (s)],
vi (s) is the velocity of the i th particle at the sth iteration.
ω is the inertia weight, c1 and c2 are called the acceleration
coefficients, namely, cognitive and social parameters, respec-
tively. r1 and r2 are the two uniform random number samples
from [0, 1]. pi(s) is the local best position encountered by the
i th particle at the sth iteration, and pg(s) is the global best
position in the swarm at the sth iteration.

PSO has been successfully applied to various optimization
problems. As to constrained optimization problem, PSO is still
valid with the aid of the popular constraint-handling technique:
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TABLE I

TREND VOLTAGE AT NORMAL STATES

Fig. 1. Estimated states of bus 2 from the traditional EKF and our proposed EKF. (a) Real part. (b) Imaginary part.

the penalty function approach. Using the penalty function
approach, a constrained optimization problem can be converted
into a corresponding unconstrained optimization one by adding
a penalty term to the original objective function [23].

In this brief, the penalty function F(x) is defined as

F(x) = f (x) + h(s)g(x), x ∈ R
n (17)

where f (x) is the original objective function of the constrained
optimization problem in (15), h(s) is a dynamic penalty
coefficients with the sth iteration steps, g(x) is a penalty factor
defined as g(x) = θ

∑m1
i=1 q2

i (x). Here qi (x) = max{0, ci (x)}
with ci (x) = (|Mi (k)(z(p) − H (p)x p)|/3R̃2i (k)) − 1,
i = 1, . . . , m1, where Mi (k) and R̃2i (k) are the i th row of
M(k) and R̃2(k) in inequality (9).

V. SIMULATION RESULTS

In this section, the proposed hybrid algorithm of EKF and
PSO is tested in the case study of the IEEE 14-bus test
system. The simulation is implemented in MATLAB with the
Matpower package [25]. First, the IEEE 14-bus test system
can be model as (1) with parameters A = diag28{0.98},
B = diag28{0.02} and W (k) = diag28{0.012}. The trend u of
the normal state is the base case voltages given in Table I.
Furthermore, assume that the initial voltages of all buses are
at flat start, that is, xr,l(0) = 1 p.u, xi,l (0) = 0 for all
l = 1, 2, . . . , 14.

The measurement configuration is the same as the one
used in [14], where RTU measurements consist of three cate-
gories: 1) the voltage magnitude at bus 1; 2) power injections
at bus 3, 5, 13 and 14; and 3) power flows at branches 1–2,
1–5, 2–5, 3–4, 4–7, 4–9, 6–11, 6–12, 6–13, 7–8, 7–9, 9–10,
9–14, 10–11, 12–13, and 13–14. In addition, PMUs are
deployed at buses 2, 7, and 9. Furthermore, the covari-
ance matrices of the traditional RTU measurement and
PMU measurement noise are R1(k) = diag43{0.12} and
R2(k) = diag28{0.012}, respectively.

The algorithm is implemented in MATLAB R2010a.
The simulation is performed on a PC with a

Intel Core CPU i5-2500 @3.30 GHz and 4-GB RAM.
The time required by the proposed EKF without
PSO algorithm at each step is 0.81 s. For the proposed
EKF with PSO algorithm, the computation time is related
to the population of the swarm (ps) and the iterations (iter).
In the simulation, we have set ps = 100 and iter = 200, and
the time required by the proposed EKF with PSO algorithm
at each step is 1.47 s. It can be concluded that the proposed
EKF with PSO algorithm is quite fast and hence is suitable
for online implementations. Moreover, the integration of
PSO into EKF slows the computational speed slightly, yet
improves the performance of SE obviously.

In this test system, three comparative experiments regarding
the estimation accuracy are carried out as follows.
Case 1: Both the proposed EKF considering measurements

with certain missing rate and the traditional EKF
ignoring the missing measurements are imple-
mented for the system with missing measurements.

Case 2: When the missing rate of the measurements varies
from zero to higher values, the proposed EKF is
implemented in all the cases.

Case 3: The SEs based on the proposed EKF with/without
PSO algorithm are compared.

In order to have more general and significant experimental
results, 100 Monte Carlo simulations are run in Cases 2 and 3.
The notion mean square error (MSE) is adopted to evaluate the
estimation accuracy, where MSEi denotes MSE for the esti-
mate of the i th state, i.e., MSEi (k) = (1/100)

∑100
j=1(xi(k) −

x̂i (k))2. To evaluate the average estimation performance of
all states, average MSE (AMSE) is defined as AMSE(k) :=
(1/n)

∑n
j=1 MSE j (k), where n is the number of the state

variables. In Figs. 1–7, R.V and I.V denote the real and
imaginary parts of voltage, respectively.

A. Traditional EKF Versus the Proposed EKF

In this case, the probability density function for the missing
�(k) is Prob{�i (k) = 0} = 0.5, Prob{�i (k) = 1} = 0.5.
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Fig. 2. Estimated states of bus 5 from the traditional EKF and our proposed EKF. (a) Real part. (b) Imaginary part.

Fig. 3. MSEs of the estimated state at bus 2 under different missing rates. (a) Real part. (b) Imaginary part.

Fig. 4. MSEs of the estimated state at bus 5 under different missing rates. (a) Real part. (b) Imaginary part.

The expectation can be easily calculated as μi (k) = 0.5.
The estimated states of the representative buses 2 and 5
obtained from traditional EKF without considering the missing
measurements and our proposed EKF considering missing
measurements are plotted in Figs. 1 and 2, respectively. From
the comparison, it can be found that our proposed EKF algo-
rithm performs well in the presence of missing measurements,
whereas the state estimate obtained from the traditional EKF

cannot track the real states when missing measurements occur
randomly.

B. EKF With Individual Missing Measurements

In order to see how different missing rates impact on the
estimation accuracy, three missing rates of 0.15, 0.02, and 0
(without missing measurements) are considered. The MSEs of
the estimated states of buses 2 and 5 for all the three missing
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Fig. 5. Estimated state at bus 2 by EKF and the proposed hybrid algorithm. (a) Real part. (b) Imaginary part.

Fig. 6. Estimated state at bus 5 by EKF and the proposed hybrid algorithm. (a) Real part. (b) Imaginary part.

Fig. 7. MSEs of estimated states by EKF and the proposed hybrid algorithm. (a) Bus 2. (b) Bus 5.

rates are compared in Figs. 3 and 4. The AMSE(k) in all
three cases are given in the first three rows of Table II, for
k = 1, . . . , 15. From the comparisons, it can be found the less
the missing rate is, the more accurate the SE obtained from
the proposed EKF algorithm will be.

C. EKF Versus Hybrid EKF and PSO Algorithm

We are now in a position to evaluate the effectiveness of
including the PSO scheme in the EKF design. A comparison
is made between the EKF algorithm alone and the hybrid

EKF and PSO algorithm. For this purpose, the missing rate
is fixed as 0.15. Regarding the penalty function parameters,
θ = 1000 and h(s) = s are chosen in all the iteration steps.

For the same test system, one realization of the EKF and one
realization of the hybrid algorithm are simulated simultane-
ously, and the estimated states of bus voltages 2 and 5 obtained
from the two algorithms are illustrated in Figs. 5 and 6. It is
seen that the trajectory by the proposed hybrid approach is
much closer to the true state trajectory than the one only
by the EKF. The MSE2 and MSE5 at all time instants for
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TABLE II

AMSE FOR ESTIMATED STATES BY DIFFERENT ALGORITHMS WITH DIFFERENT MISSING RATES, WHERE MR DENOTES THE MISSING RATE

both algorithms are plotted in Fig. 7. It can be found that
for the same state variable, the MSE of EKF-based SE is
bigger than the MSE of the SE obtained from the hybrid
algorithm. Especially, when the accumulated error of
EKF-based SE becomes bigger after several integrations, the
subsequent PSO algorithm can refine the SE and diminish
the error. The AMSEs of EKF and of the proposed hybrid
algorithm are given in the last two rows of Table II. It can
be found the AMSE(k) of EKF is bigger than the one of the
proposed hybrid algorithm at each step.

From the comparative experiments, it can be concluded that
our proposed hybrid EKF and PSO algorithm outperforms
the traditional EKF algorithm in the presence of probabilistic
missing measurements by including PMU measurements.

VI. CONCLUSION

In this brief, we have developed a hybrid EKF and
PSO algorithm for power system dynamic SE. In consid-
eration of the missing traditional measurements, a novel
EKF estimator has been designed for the power system. The
PMU measurements have been incorporated in the designed
EKF estimator via the characterization of a set of inequality
constraints. The SE problem has been transformed to a
constrained optimization problem. Then, the PSO algorithm
together with the penalty function has been employed to
solve the constrained optimization problem. Simulations have
confirmed the effectiveness of the propose method.
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