Evolution of locomotion in Anthropoidea: the semicircular canal evidence


Proc. R. Soc. B published online 13 June 2012

Supplementary data
"Data Supplement"
http://rspb.royalsocietypublishing.org/content/suppl/2012/06/07/rspb.2012.0939.DC1.html

References
This article cites 61 articles, 8 of which can be accessed free
http://rspb.royalsocietypublishing.org/content/early/2012/06/07/rspb.2012.0939.full.html#ref-list-1

P<P
Published online 13 June 2012 in advance of the print journal.

Subject collections
Articles on similar topics can be found in the following collections
  evolution (1217 articles)
  palaeontology (105 articles)

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here
Evolution of locomotion in Anthropoidea: the semicircular canal evidence

Timothy M. Ryan1,*, Mary T. Silcox3, Alan Walker1, Xianyun Mao2, David R. Begun4, Brenda R. Benefit5, Philip D. Gingerich6, Meike Köhler7, László Kordos8, Monte L. McCrossin5, Salvador Moyà-Solà7, William J. Sanders6, Erik R. Seiffert9, Elwyn Simons10, Iyad S. Zalmout6 and Fred Spoor11,12

1Department of Anthropology and Center for Quantitative Imaging, EMS Energy Institute, and 2Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA
3Department of Social Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4
4Department of Anthropology, University of Toronto, Toronto, Ontario, Canada M5S 3G3
5Department of Anthropology, New Mexico State University, PO Box 30001, Las Cruces, NM 88003-8001, USA
6Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109-1079, USA
7ICREA at the Institut Català de Paleontologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
8Geological Institute of Hungary, Stefánia u. 14, 1143 Budapest, Hungary
9Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081, USA
10Department of Evolutionary Anthropology, Duke University, PO Box 90383, Durham, NC 27708-0680, USA
11Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
12Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK

Our understanding of locomotor evolution in anthropoid primates has been limited to those taxa for which good postcranial fossil material and appropriate modern analogues are available. We report the results of an analysis of semicircular canal size variation in 16 fossil anthropoid species dating from the Late Eocene to the Late Miocene, and use these data to reconstruct evolutionary changes in locomotor adaptations in anthropoid primates over the last 35 Ma. Phylogenetically informed regression analyses of semicircular canal size reveal three important aspects of anthropoid locomotor evolution: (i) the earliest anthropoid primates engaged in relatively slow locomotor behaviours, suggesting that this was the basal anthropoid pattern; (ii) platyrrhines from the Miocene of South America were relatively agile compared with earlier anthropoids; and (iii) while the last common ancestor of cercopithecoids and hominoids likely was relatively slow like earlier stem catarrhines, the results suggest that the basal crown catarrhine may have been a relatively agile animal. The latter scenario would indicate that hominoids of the later Miocene secondarily derived their relatively slow locomotor repertoires.

Keywords: vestibular system; generalized least-squares analysis; primates

1. INTRODUCTION
The fossil record documenting anthropoid evolution over the last 40 million years (Ma) is comparatively rich, but the locomotor behaviours of many taxa remain poorly understood owing to a paucity of well-preserved, relevant postcranial remains. In the fossil record, the presence of cranial remains preserving inner ear structures, in particular the semicircular canals, presents an opportunity to generate an alternative set of locomotor reconstructions throughout the Cenozoic in the absence of postcranial material, and to provide an independent test of competing hypotheses about locomotor mode in taxa known from the postcranium [1–3]. The semicircular canals are three bony tubes in the otic capsule surrounding membranous ducts that are part of the organ of balance [4]. The semicircular canal system detects angular rotations of the head as an animal moves through the environment, and coordinates posture and body movements during locomotor activities in conjunction with otolithic, visual and proprioceptive information [5–7]. Recent experimental work has demonstrated a strong relationship between canal size and the afferent sensitivity of the vestibular nerve [8,9]. It has also been demonstrated that mammalian semicircular canal arc size scales with body mass (BM) with strong negative

* Author for correspondence (tmr21@psu.edu).
allometry and that the residuals of this regression are positively correlated with locomotor agility [1–3,10].

Here, we reconstruct locomotor agility in 16 fossil anthropoid species dating from the Late Eocene to the Late Miocene based on semicircular canal size and provide new insights into the evolution of anthropoid locomotion over the last 35 Ma. Our analysis provides an insight into three important questions regarding locomotion over the last 35 Ma. Our analysis provides an insight into:

1. The evolution of anthropoid locomotion over the last 35 Ma.
2. The significance of semicircular canal size in determining locomotor agility.
3. The relationships between locomotor agility and other primate evolutionary traits.

To reconstruct locomotor agility, we analyze 16 fossil anthropoid species dating from the Late Eocene to the Late Miocene based on semicircular canal size and provide new insights into the evolution of anthropoid locomotion over the last 35 Ma. Our analysis provides an insight into three important questions regarding locomotion over the last 35 Ma.

2. MATERIAL AND METHODS

Semicircular canal radii of curvature for the fossil specimens used in this study were measured from computed tomography (CT) scan data following established protocols [1–3]. The CT scan data were collected from a variety of sources using high-resolution CT (see electronic supplementary material, table S1). The radius of curvature was measured for each canal following methods used in previous studies [1–3,11]. A species mean radius of curvature was calculated using high-resolution CT (see electronic supplementary material, table S2). One caveat with respect to the interpretation of our Apidium sample is that all three specimens assessed here are isolated petrosals, not associated with dental or postcranial material. They are attributed to Apidium based on primate anatomy, size and the high relative abundance of that taxon in the relevant deposits. However, until more complete cranial material is known for the genus, these attributions must remain provisional. One specimen (YPM 25972) that has been referred to both Apidium [12] and Agpyopithecus [13,14] is identified here as pertaining to the latter genus based on semicircular canal size and shape, both of which fall within that genus’ range based on specimens that include dentitions.

The fossil taxa were compared with a sample of 91 extant taxa that have been referred to both genera based on semicircular canal size and shape, both of which fall within that genus’ range based on specimens that include dentitions. The fossil specimens and their BMs, taken from the literature or estimated based on available regression equations, are given in the electronic supplementary material, table S2. One caveat with respect to the interpretation of our Apidium sample is that all three specimens assessed here are isolated petrosals, not associated with dental or postcranial material. They are attributed to Apidium based on primate anatomy, size and the high relative abundance of that taxon in the relevant deposits. However, until more complete cranial material is known for the genus, these attributions must remain provisional. One specimen (YPM 25972) that has been referred to both Apidium [12] and Agpyopithecus [13,14] is identified here as pertaining to the latter genus based on semicircular canal size and shape, both of which fall within that genus’ range based on specimens that include dentitions.

The fossil taxa were compared with a sample of 91 extant taxa that have been referred to both genera based on semicircular canal size and shape, both of which fall within that genus’ range based on specimens that include dentitions. The fossil specimens and their BMs, taken from the literature or estimated based on available regression equations, are given in the electronic supplementary material, table S2. One caveat with respect to the interpretation of our Apidium sample is that all three specimens assessed here are isolated petrosals, not associated with dental or postcranial material. They are attributed to Apidium based on primate anatomy, size and the high relative abundance of that taxon in the relevant deposits. However, until more complete cranial material is known for the genus, these attributions must remain provisional. One specimen (YPM 25972) that has been referred to both Apidium [12] and Agpyopithecus [13,14] is identified here as pertaining to the latter genus based on semicircular canal size and shape, both of which fall within that genus’ range based on specimens that include dentitions.

The fossil taxa were compared with a sample of 91 extant taxa that have been referred to both genera based on semicircular canal size and shape, both of which fall within that genus’ range based on specimens that include dentitions. The fossil specimens and their BMs, taken from the literature or estimated based on available regression equations, are given in the electronic supplementary material, table S2. One caveat with respect to the interpretation of our Apidium sample is that all three specimens assessed here are isolated petrosals, not associated with dental or postcranial material. They are attributed to Apidium based on primate anatomy, size and the high relative abundance of that taxon in the relevant deposits. However, until more complete cranial material is known for the genus, these attributions must remain provisional. One specimen (YPM 25972) that has been referred to both Apidium [12] and Agpyopithecus [13,14] is identified here as pertaining to the latter genus based on semicircular canal size and shape, both of which fall within that genus’ range based on specimens that include dentitions.
using the PDTREE and PDDIST packages [22–25] and the custom code pGLS written in R [26].

3. RESULTS
Semicircular canal measurements of each fossil specimen are listed in the electronic supplementary material, table S2 and three-dimensional reconstructions of four fossil specimens are shown in figure 1. Double logarithmic plots of canal size against BM in extant and fossil taxa reveal distinct patterns of variation in locomotor agility across fossil anthropoids (figure 2; electronic supplementary material, figure S1). The pGLS regression analyses of log10AGIL against both log10BM and log10 radius of curvature for the primate sample using Pagel’s arbitrary branch lengths are highly significant for each canal and the mean canal radius (table 1). The ML estimates and the AIC obtained for each model indicate that correlations are strongest for the lateral canal (AIC: –163.4; see electronic supplementary material, table S3).

The fossil anthropoids analysed here clearly fall into the range of variation of modern primates, making agility reconstructions based on extant taxa relatively robust. Predicted agility scores based on the pGLS regression analyses for each canal radius are listed in table 2. Most of the agility patterns as predicted in the literature are

Figure 1. Three-dimensional reconstructions of bony labyrinths from several fossil specimens used in this study. Reconstructions are scaled for body mass (BM) based on the primate regression for the mean canal radius. Each view is perpendicular to the depicted canal, labelled as follows in the top row: asc, anterior semicircular canal; psc, posterior semicircular canal; lsc, lateral semicircular canal. Axes on bottom provide general anatomical orientation for each canal view: l, lateral; r, rostral; v, ventral. Note that reconstruction for *Apidium phiomense* is reversed for display.
or

Leontopithecus rosalia who suggest that this taxon was similar to extant genera. For example, they have been as fast as extant leaping primates. The results for these groups indicate that early members of this clade were adapted for more agile locomotor behaviours, although none appear to have retained the early anthropoid pattern of medium slow to medium speed, and in lateral semicircular canal size, predicted to be slow or medium in agility based on postcranial evidence, are also reconstructed as medium to medium slow based on semicircular canal size. Protopithecus, predicted to be an agile arborealist [27–30], is reconstructed as the fastest of the Fayum anthropoids based on the semicircular canal data. The extant taxon to which Protopithecus appears most similar in the lateral canal plot is Callimico goeldii, a relatively agile, arboreal New World monkey. In contrast, the results for Apidium are somewhat surprising and contradict expectations. Postcranial remains of Apidium display adaptations to leaping [29,31–36], suggesting this taxon was an agile arborealist. The semicircular canal size data, however, suggest a slower animal more similar to other Fayum anthropoids such as Catopithecus, Parapithecus and Aegyptopithecus. In totality, these results suggest that the basal locomotor adaptation in anthropoids may have been relatively slow and deliberate rather than fast (figure 3 ).

Perhaps as a result of a rapid radiation and diversification at the end of the Eocene, Apidium, along with many of the other Fayum taxa, retains a vestibular system reflective of this slow locomotor ancestry in spite of apparent adaptations to leaping in the postcranial skeleton.

In contrast to the earlier anthropoids of the Fayum, the fossil record for New World monkeys lacks significant postcranial remains. The semicircular canal results, therefore, represent the only available evidence for locomotor behaviour in many of these taxa. All five of the fossil species—D. gaimanensis, Ho. patagonicus, La. concolor, T. harringtoni and Ch. carrascoensis—are reconstructed as being relatively agile with scores of medium to medium fast. These results suggest that the common ancestor of these extinct platyrrhine taxa was an active and agile arboreal primate with locomotor behaviours most similar to those of the small-bodied callitrichids and cebids. On the basis of these semicircular canal data, we propose that basal platyrrhines underwent an early transition away from the relatively slow early anthropoid pattern to a more agile form of locomotion [30,74]. The subsequent radiation and diversification of platyrrhines in the New World may have begun from an agile, arboreal ancestor.

Locomotor agilities of early catarrhines are reconstructed here as predominantly medium to medium slow. A general similarity in relative canal size is evident among Catopithecus, Aegyptopithecus and Saadanim. In contrast to the platyrrhines, therefore, early members of the catarrhine clade retained the primitive anthropoid pattern of relatively slow to medium slow locomotion. Slow locomotor behaviours appear to be retained in most Miocene and recent hominids with the apparent exception of P. heseloni, which seems somewhat derived in canal size, especially compared with the similar-sized earlier catarrhine Saadanim. Relative canal size in P. heseloni is most similar to that of several species of medium-speed macaques (Macaca tonkeana, Macaca fuscata, Macaca mulatta), primarily quadrupedal taxa that engage in agile climbing and leaping at times [75].

This interpretation for P. heseloni differs from most locomotor reconstructions for the species based on postcranial fossil remains, which suggest it was a slow,
Table 1. Phylogenetic generalized least-squares regression results. In ML, natural log maximum likelihood; AIC, Akaike Information Criterion; ASCR, anterior semicircular canal; PSCR, posterior semicircular canal; LSCR, lateral semicircular canal; SCR, mean semicircular canal; s.e., standard error.

<table>
<thead>
<tr>
<th>canal</th>
<th>coefficient</th>
<th>s.e.</th>
<th>T</th>
<th>p-value</th>
<th>ln ML</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCR</td>
<td>(intercept)</td>
<td>1.080</td>
<td>0.120</td>
<td>9.025</td>
<td>&lt;0.001</td>
<td>79.0</td>
</tr>
<tr>
<td></td>
<td>logBM</td>
<td>−0.254</td>
<td>0.037</td>
<td>−6.916</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>logASCR</td>
<td>1.152</td>
<td>0.223</td>
<td>5.177</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>PSCR</td>
<td>(intercept)</td>
<td>1.112</td>
<td>0.122</td>
<td>9.095</td>
<td>&lt;0.001</td>
<td>76.9</td>
</tr>
<tr>
<td></td>
<td>logBM</td>
<td>−0.254</td>
<td>0.039</td>
<td>−6.506</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>logPSCR</td>
<td>1.191</td>
<td>0.256</td>
<td>4.647</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>LSCR</td>
<td>(intercept)</td>
<td>1.027</td>
<td>0.111</td>
<td>9.284</td>
<td>&lt;0.001</td>
<td>85.7</td>
</tr>
<tr>
<td></td>
<td>logBM</td>
<td>−0.231</td>
<td>0.030</td>
<td>−7.749</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>logLSCR</td>
<td>1.356</td>
<td>0.203</td>
<td>6.698</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>SCR</td>
<td>(intercept)</td>
<td>1.083</td>
<td>0.113</td>
<td>9.617</td>
<td>&lt;0.001</td>
<td>84.5</td>
</tr>
<tr>
<td></td>
<td>logBM</td>
<td>−0.282</td>
<td>0.035</td>
<td>−8.010</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>logSCR</td>
<td>1.571</td>
<td>0.244</td>
<td>6.450</td>
<td>&lt;0.001</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Predicted agility measures based on semicircular canal radius using phylogenetic generalized least-squares models with Pagel’s arbitrary branch length transformations. Agility measures are given on a six-point scale ranging from 1 (very slow) to 6 (fast). Agilities in brackets are hypothesized agilities based on postcranial remains taken from the literature. Colours indicate relative agility: blue, slow; yellow, medium; pink, fast. ASCR, anterior semicircular canal; PSCR, posterior semicircular canal; LSCR, lateral semicircular canal; SCR, mean semicircular canal.

taxon                          | ASCR | PSCR | LSCR | SCR | agility prediction (LSCR) |
-----                          |------|------|------|-----|--------------------------|
Catopithecus browni           | —    | 3.0  | 3.3  | —   | medium slow (slow)       |
Proteopithecus syliciae       | —    | 3.6  | 3.7  | —   | medium (fast)            |
Apidium phiomense             | 3.1  | 3.3  | 3.2  | 3.0 | medium slow (fast)       |
Parapithecus grangeri         | 3.4  | 3.7  | 3.4  | 3.3 | medium slow (medium)     |
Aegyptopithecus zeuxis (4400 g) | 3.2  | 3.1  | 3.0  | 3.0 | medium slow (slow)       |
Aegyptopithecus zeuxis (2866 g) | 3.6  | 3.4  | 3.3  | 3.4 | medium slow (slow)       |
Dolichocebus gaimanensis      | 4.5  | 4.5  | 4.3  | 4.4 | medium                   |
Homunculus patagonicus        | 5.0  | 4.5  | 4.1  | 4.5 | medium fast (fast (46)—medium (48)) |
Lagonimico conclucatus        | 4.4  | 4.6  | 3.7  | 4.2 | medium                   |
Tremacebus harringtoni        | 4.5  | 5.4  | 4.8  | 4.9 | medium fast              |
Chilecebus carrascoensis      | 4.2  | 4.2  | 4.1  | 3.9 | medium                   |
Saadanius hijazensis          | 2.6  | 3.0  | 2.9  | 2.8 | medium slow              |
Victoriapithecus macinnesi    | 3.0  | 3.1  | 3.5  | 3.1 | medium (medium)          |
Proconsul heseloni            | 2.9  | 2.9  | 3.8  | 3.2 | medium (slow)            |
Oreopithecus bamboli          | 2.3  | 3.1  | 3.0  | 2.7 | medium slow (slow)       |
Hispanopithecus laetanus      | 2.0  | 2.5  | 2.5  | 2.2 | slow (slow)              |
Rudapithecus hungaricus       | 2.1  | 2.6  | 2.4  | 2.2 | slow (slow)              |

*aCatopithecus browni* [27–29], *Proteopithecus syliciae* [27–30], *Apidium phiomense* [29,31–36], *Parapithecus grangeri* [32,35,37,38], *Aegyptopithecus zeuxis* [28,32,35,39–41], *Dolichocebus gaimanensis* [35,42], *Homunculus patagonicus* [43–48], *Victoriapithecus macinnesi* [49–55], *Proconsul heseloni* [56–59], *Oreopithecus bamboli* [53,60–68], *Hispanopithecus laetanus* and *Rudapithecus hungaricus* [53,63,64,69–72].

The results of the current analysis indicate that basal Old World monkeys (represented by *V. macinnesi*) and basal hominoids (represented by *P. heseloni*) were both relatively derived in vestibular morphology compared with earlier catarrhines pre-dating the ape–Old World monkey split (e.g. *Aegyptopithecus, Saadanius*). This derived condition in early members of both extant catarrhine lineages implies either that early OWMs and hominoids independently derived this behaviour from a less agile common ancestor, or that the last common ancestor of crown catarrhines may have been an active arboreal quadruped with relatively more agile behaviour than earlier catarrhines. Cercopithecoids largely retain a deliberate arboreal quadruped [56–59]. In contrast, however, analyses of humeral and femoral diaphyseal strength suggest that *P. heseloni* had forelimb to hind limb strength proportions most similar to those of extant colobines [76]. Ruff [76] considered this limb bone diaphyseal pattern, with stronger femora than humeri, indicative of at least some leaping in *P. heseloni*, a locomotor reconstruction also partially supported by morphological features of the pedal phalanges [69]. On the basis of semicircular canal size and the various lines of postcranial evidence, we hypothesize that *P. heseloni* was an arboreal quadruped that at times engaged in some leaping, as seen in many cercopithecoids.
relatively agile locomotor pattern with a few derived, even faster, taxa evolving more recently, mostly among the colobines.

Contrasting with the relatively agile locomotor reconstruction for *P. heseloni* and cercopithecoids, diversification of apes during the later Miocene through the present was characterized by species with slower, more deliberate arboreal locomotion (*Hispanopithecus*, *Rudapithecus*, *Oreopithecus* and the extant great apes), except in the case of the agile hylobatids. It seems most reasonable that the basal ape, and perhaps basal crown catarrhine, locomotor mode was slow, representing a retention of the primitive catarrhine condition seen in *Saadanius*. This primitive locomotor pattern was retained by most hominoid taxa throughout the Neogene with the exception of a few lineages that independently derived more agile locomotion, including *Proconsul* and the hylobatids. If the last common ancestor of apes and OWM was relatively fast, then the pattern of slow, deliberate locomotion seen in living apes and large-bodied apes of the later Miocene would have been secondarily derived from a relatively agile ancestral state.

At present, the evidence from the semicircular canals does not specifically favour one of these alternative scenarios. Beyond recovering new fossils, our understanding of anthropoid locomotor evolution during the Caenozoic will also benefit from further analyses of the canal system, including the introduction of more sophisticated morphometric methods [77,78]. Such an approach will allow for an integrated assessment of functionally relevant aspects, including planar orientation of the canals, which, like arc size, is now known to affect their sensitivity, and may correlate well with locomotor repertoire [8,79,80].

REFERENCES


J. Thewissen, J. Wible and G. Weber. We thank R. Kay who kindly provided CT scan data for platyrrhine fossil material, supported by National Science Foundation (BCS-0851272, 0824546) and National Geographic grants. Mark Coleman and one anonymous reviewer provided helpful comments that improved the manuscript. The following institutions lent specimens or allowed scanning: The Carnegie Museum of Natural History, Duke Lemur Center Division of Fossil Primates, National Museums of Kenya, Field Museum of Natural History, Grant Museum of Zoology and Napier Collection, University College London, National Museum of Natural History, Smithsonian Institution, Natural History Museum of Los Angeles County, Pratt Museum, Amherst College, Royal College of Surgeons, London, University of Kansas Natural History Museum, University of Michigan Museum of Paleontology, Natural History Museum of Vienna. This work is Duke Primate Center publication no. 1223. This research was supported by National Science Foundation award BCS-0003920 to A.W. and F.S and an NSERC discovery grant to M.T.S.


