Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Piotr Stefanowicz, Łukasz

Jaremko, Mariusz Jaremko, Anna Staszewska, Zbigniew Szewczuk, Iwona Bryndal* and Tadeusz Lis

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie Street, 50-383 Wrocław, Poland

Correspondence e-mail:
isia@wcheto.chem.uni.wroc.pl

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in solvent or counterion
R factor $=0.061$
$w R$ factor $=0.112$
Data-to-parameter ratio $=22.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(2S)-3-(4-Amino-3-nitrophenyl)-2-(9H-fluoren-9-ylmethoxycarbonylamino)propanoic acid dichloromethane disolvate

The title compound, $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, crystallizes with two independent molecules in the asymmetric unit, each with a different conformation. In the crystal structure, molecules form two-dimensional sheets in the $a b$ plane due to a combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Only edge-to-face stacking interactions are observed between fluorenyl aromatic groups of adjacent sheets. Solvent molecules are located within the intermolecular voids along the b axis and fill the spaces between carbamate linkages or lie between the fluorenyl aromatic groups.

Comment

The title compound, (I), known more simply as N-Fmoc 3-(4-amino-3-nitrophenyl)alanine dichloromethane disolvate, is a non-proteinaceous amino acid derived from L-phenylalanine and obtained by a four-step synthesis from enantiomerically pure (2S)-2-(acetylamino)-3-(4-nitrophenyl)propanoic acid. It forms part of our study of a series of model dipeptides containing various 3-(quinoxaline-6-yl)alanine analogues (Staszewska et al., 2005).

(I)

We report here the molecular structure of (I), which crystallizes in the space group $P 2_{1}$ with two independent molecules, A and B, in the asymmetric unit (Figs. 1 and 2), which differ in the orientations of their fluorenyl and aromatic groups (Table 1). Three ordered and one disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules complete the asymmetric unit.

The orientations of both amino and nitro groups within molecules A and B are determined by the intramolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). All four N atoms are essentially coplanar with their attached benzene rings. However, the NO_{2} group on atom $\mathrm{N} 2 B$ is displaced slightly on steric grounds.

Received 17 July 2006
Accepted 20 July 2006

Figure 1
The structure of molecule A of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The urethane amide groups adopt a cis conformation, with the $\mathrm{C} 2 n-\mathrm{N} 1 n-\mathrm{C} 10 n-\mathrm{O} 5 n(n=A$ or $B)$ torsion angles close to 0°. Such a urethane amide conformation in Fmoc-NHgroups is rare (Broda et al., 2004). The $\mathrm{C} 2 n-\mathrm{C} 3 n-\mathrm{C} 4 n-\mathrm{C} 9 n$ $\left(\chi^{22}\right)$ and $\mathrm{C} 2 n-\mathrm{C} 3 n-\mathrm{C} 4 n-\mathrm{C} 5 n\left(\chi^{21}\right)$ torsion angles (Table 2) differ from those obserevd in L-phenylalanine hydrochloride (Al-Karaghouli \& Koetzle, 1975) and L-phenylalanine Lphenylalaninium dihydrogenphosphate (Ravikumar et al., 2002), due to rotation around the $\mathrm{C} \beta-\mathrm{C} \gamma$ bond.

Molecules of (I) are linked together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 3). In a two-centre hydrogen bond, atoms $\mathrm{N} 3 A$ and $\mathrm{N} 3 B$ in molecules A and B at (x, y, z) act as donors to atoms $\mathrm{O} 1 A / \mathrm{O} 1 B$ at $(x, y-1, z)$. This motif generates by translation a $C(10)$ chain (Bernstein et al., 1995) running parallel to the [010] direction. Two $C(7)$ chains arise from $\mathrm{O} 2 A \cdots \mathrm{O} 5 A^{\mathrm{i}}$ and $\mathrm{O} 2 B \cdots \mathrm{O} 5 B^{\mathrm{iii}}$ hydrogen bonds [symmetry codes as in Table 2]. These adjacent chains are located alternately on the $b c$ plane and are linked via four additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, engaging NO_{2} groups as acceptors. The combination of interactions between the $C(7)$ chain for molecule A and the $C(10)$ chain for molecule B (Table 2) results in the formation of four edge-fused rings comprising two $R_{3}^{3}(11)$ and two $R_{2}^{2}(15)$ rings. Similar motifs are present for the $C(7)$ chain for molecule B and the $C(10)$ chain for molecule A. The action of all these chain pairs results in a two-dimensional hydrogen-bond network in the $b c$ plane (Fig. 3).

Two of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules are linked to the A molecules by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts involving the $\mathrm{NO}_{2} / \mathrm{CO}_{2}$ groups.

Figure 2
The structure of molecule B of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Other $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules do not form $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions with A or B molecules but fill spaces within the intersheet channels running along the b axis. Each layer of the channel consists of chains of A and B molecules, located alternately on the $a c$ plane (Fig. 4). Only $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (the geometries of which are not discussed here in detail) are engaged in edge-to-face stacking between the fluorenyl systems from alternating A-to- B sheets.

Experimental

The synthesis and NMR characterization of (I) have been fully described by Staszewska et al. (2005). Crystals for X-ray experiments were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of (I) by slow evaporation.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=617.29$
Monoclinic, P2 ${ }_{1}$
$a=12.362(3) \AA$
$b=10.489(3) \AA$
$c=22.958(4) \AA$
$\beta=103.17(3){ }^{\circ}$
$V=2898.6(12) \AA^{3}$

Data collection

Oxford Diffraction KM-4-CCD diffractometer
ω scans
Absorption correction: numerical
(CrysAlis RED; Oxford
Diffraction, 2003)
$T_{\text {min }}=0.913, T_{\text {max }}=0.947$
$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$=617.29$
Monoclinic, $P 2$
$b=10.489$ (3) \AA
$c=22.958$ (4) \AA
$\beta=103.17$ (3) ${ }^{\circ}$
$V=2898.6(12) \mathrm{A}^{3}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.112$
$S=0.95$
15906 reflections
715 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0457 P)^{2}\right]$

$$
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.51 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), with 4474 Friedel pairs Flack parameter: 0.12 (4)

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

| $\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{N} 1 A$ | $-4.5(4)$ | $\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{N} 1 B$ | $-7.3(3)$ |
| :--- | ---: | :--- | ---: | ---: |
| $\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 5 A$ | $113.4(3)$ | $\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$ | $103.9(3)$ |
| $\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 9 A$ | $-64.6(3)$ | $\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 9 B$ | $-74.3(3)$ |
| $\mathrm{C} 2 A-\mathrm{N} 1 A-\mathrm{C} 10 A-\mathrm{O} 5 A$ | $13.3(4)$ | $\mathrm{C} 2 B-\mathrm{N} 1 B-\mathrm{C} 10 B-\mathrm{O} 5 B$ | $-0.1(4)$ |
| $\mathrm{O} 6 A-\mathrm{C} 11 A-\mathrm{C} 12 A-\mathrm{C} 24 A$ | $65.5(3)$ | $\mathrm{O} 6 B-\mathrm{C} 11 B-\mathrm{C} 12 B-\mathrm{C} 24 B$ | $-62.4(3)$ |

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 A-\mathrm{H} 2 O A \cdots \mathrm{O} 5 A^{\text {i }}$	0.84	1.80	$2.631(3)$	173
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 3 B$	0.88	2.35	$3.134(3)$	148
$\mathrm{~N} 3 A-\mathrm{H} 3 A 1 \cdots \mathrm{O} 3 A$	0.88	2.03	$2.643(3)$	126
$\mathrm{~N} 3 A-\mathrm{H} 3 A 1 \cdots \mathrm{O} 4 B^{\text {ii }}$	0.88	2.32	$2.958(3)$	129
$\mathrm{~N} 3 A-\mathrm{H} 3 A 2 \cdots \mathrm{O} 1 A^{\text {ii }}$	0.88	2.08	$2.932(3)$	163
$\mathrm{O} 2 B-\mathrm{H} 2 O B \cdots \mathrm{O} 5 B^{\text {iii }}$	0.84	1.83	$2.669(3)$	178
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 3 A^{\text {iv }}$	0.88	2.37	$3.186(3)$	154
$\mathrm{~N} 3 B-\mathrm{H} 3 B 2 \cdots \mathrm{O} 3 B$	0.88	2.01	$2.630(3)$	126
$\mathrm{~N} 3 B-\mathrm{H} 3 B 2 \cdots \mathrm{O} 4 A$	0.88	2.39	$2.942(3)$	121
$\mathrm{~N} 3 B-\mathrm{H} 3 B 1 \cdots \mathrm{O} 1 B^{\text {ii }}$	0.88	2.13	$2.977(3)$	161
$\mathrm{C} 5 B-\mathrm{H} 5 B \cdots \mathrm{O} 3 A^{\text {iv }}$	0.95	2.50	$3.277(3)$	139
$\mathrm{C} 8 B-\mathrm{H} 8 B \cdots \mathrm{O} 5 B^{\mathrm{v}}$	0.95	2.41	$3.326(3)$	162
$\mathrm{C} 30-\mathrm{H} 301 \cdots \mathrm{O} 1 A^{\text {vi }}$	0.99	2.49	$3.170(4)$	125
$\mathrm{C} 40-\mathrm{H} 401 \cdots \mathrm{O} 4 A^{\text {iii }}$	0.99	2.35	$3.239(7)$	149

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z$; (ii) $x, y-1, z$; (iii) $-x+1, y+\frac{1}{2},-z+1$; (iv) $x, y+1, z ;(\mathrm{v})-x+1, y-\frac{1}{2},-z+1$; (vi) $x-1, y, z$.

The absolute configuration of (I) was established by the anomalous scattering of solvent Cl atoms, and is in accord with the enantiomerically pure l-phenylalanine derivative.

H atoms bonded to N and O atoms were treated as riding, with $\mathrm{N}-\mathrm{H}=0.88 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}, \mathrm{O})$. H atoms bonded to C atoms were also treated as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. One of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules is disordered over two positions and was refined with site occupancies of 0.764 (6) and 0.236 (6). This $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule was subject to geometrical and displacement parameter constraints and restraints.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: SHELXL97.

References

Al-Karaghouli, A. R. \& Koetzle, T. F. (1975). Acta Cryst. B31, 2461-2465.

Figure 3
A view of the intermolecular hydrogen bonds (dashed lines) involving molecules A and B. For the sake of clarity, H atoms bonded to C atoms and fluorenyl groups have been omitted. (Symmetry codes as in Table 2.)

Figure 4
A view of the crystal packing in (I). Hydrogen bonds are indicated by dashed lines. Channels can be seen, where the solvent molecules reside.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany.
Broda, M. A., Mazur, L., Kozioł, A. E. \& Rzeszotarska, B. (2004). J. Pept. Sci. 10, 448-461.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Poland, Wrocław, Poland.
Ravikumar, B., Sridhar, B. \& Rajaram, R. K. (2002). Acta Cryst. E58, o123o125.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Staszewska, A., Stefanowicz, P. \& Szewczuk, Z. (2005). Tetrahedron Lett. 46, 5525-5528.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

