organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Piotr Stefanowicz, Łukasz Jaremko, Mariusz Jaremko, Anna Staszewska, Zbigniew Szewczuk, Iwona Bryndal* and Tadeusz Lis

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie Street, 50-383 Wrocław, Poland

Correspondence e-mail: isia@wcheto.chem.uni.wroc.pl

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.004 Å Disorder in solvent or counterion R factor = 0.061 wR factor = 0.112 Data-to-parameter ratio = 22.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(2S)-3-(4-Amino-3-nitrophenyl)-2-(9*H*-fluoren-9-ylmethoxycarbonylamino)propanoic acid dichloromethane disolvate

The title compound, $C_{24}H_{21}N_3O_6\cdot 2CH_2Cl_2$, crystallizes with two independent molecules in the asymmetric unit, each with a different conformation. In the crystal structure, molecules form two-dimensional sheets in the *ab* plane due to a combination of $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds. Only edge-to-face stacking interactions are observed between fluorenyl aromatic groups of adjacent sheets. Solvent molecules are located within the intermolecular voids along the *b* axis and fill the spaces between carbamate linkages or lie between the fluorenyl aromatic groups. Received 17 July 2006 Accepted 20 July 2006

Comment

The title compound, (I), known more simply as *N*-Fmoc 3-(4amino-3-nitrophenyl)alanine dichloromethane disolvate, is a non-proteinaceous amino acid derived from L-phenylalanine and obtained by a four-step synthesis from enantiomerically pure (2*S*)-2-(acetylamino)-3-(4-nitrophenyl)propanoic acid. It forms part of our study of a series of model dipeptides containing various 3-(quinoxaline-6-yl)alanine analogues (Staszewska *et al.*, 2005).

We report here the molecular structure of (I), which crystallizes in the space group $P2_1$ with two independent molecules, A and B, in the asymmetric unit (Figs. 1 and 2), which differ in the orientations of their fluorenyl and aromatic groups (Table 1). Three ordered and one disordered CH_2Cl_2 solvent molecules complete the asymmetric unit.

The orientations of both amino and nitro groups within molecules *A* and *B* are determined by the intramolecular N— $H \cdot \cdot \cdot O$ hydrogen bonds (Table 2). All four N atoms are essentially coplanar with their attached benzene rings. However, the NO₂ group on atom N2*B* is displaced slightly on steric grounds.

All rights reserved

© 2006 International Union of Crystallography

Figure 1

The structure of molecule A of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The urethane amide groups adopt a *cis* conformation, with the C2*n*-N1*n*-C10*n*-O5*n* (n = A or *B*) torsion angles close to 0°. Such a urethane amide conformation in Fmoc-NHgroups is rare (Broda *et al.*, 2004). The C2*n*-C3*n*-C4*n*-C9*n* (χ^{22}) and C2*n*-C3*n*-C4*n*-C5*n* (χ^{21}) torsion angles (Table 2) differ from those observed in L-phenylalanine hydrochloride (Al-Karaghouli & Koetzle, 1975) and L-phenylalanine Lphenylalaninium dihydrogenphosphate (Ravikumar *et al.*, 2002), due to rotation around the C β -C γ bond.

Molecules of (I) are linked together by $N-H \cdots O$ and O- $H \cdots O$ hydrogen bonds (Table 2 and Fig. 3). In a two-centre hydrogen bond, atoms N3A and N3B in molecules A and B at (x, y, z) act as donors to atoms O1A/O1B at (x, y - 1, z). This motif generates by translation a C(10) chain (Bernstein *et al.*, 1995) running parallel to the [010] direction. Two C(7) chains arise from $O2A \cdots O5A^{i}$ and $O2B \cdots O5B^{iii}$ hydrogen bonds [symmetry codes as in Table 2]. These adjacent chains are located alternately on the bc plane and are linked via four additional N-H···O hydrogen bonds, engaging NO₂ groups as acceptors. The combination of interactions between the C(7) chain for molecule A and the C(10) chain for molecule B (Table 2) results in the formation of four edge-fused rings comprising two $R_3^3(11)$ and two $R_2^2(15)$ rings. Similar motifs are present for the C(7) chain for molecule B and the C(10) chain for molecule A. The action of all these chain pairs results in a two-dimensional hydrogen-bond network in the bc plane (Fig. 3).

Two of the CH_2Cl_2 molecules are linked to the *A* molecules by weak $C-H\cdots O$ contacts involving the NO₂/CO₂ groups.

Figure 2

The structure of molecule B of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Other CH₂Cl₂ molecules do not form C-H···O interactions with A or B molecules but fill spaces within the intersheet channels running along the b axis. Each layer of the channel consists of chains of A and B molecules, located alternately on the ac plane (Fig. 4). Only C-H··· π interactions (the geometries of which are not discussed here in detail) are engaged in edge-to-face stacking between the fluorenyl systems from alternating A-to-B sheets.

Experimental

The synthesis and NMR characterization of (I) have been fully described by Staszewska *et al.* (2005). Crystals for X-ray experiments were obtained from a CH_2Cl_2 solution of (I) by slow evaporation.

Crystal data

Diffraction, 2003)

THNO 2CH CL	$\mathbf{Z} = \mathbf{A}$
$2_{24}\Pi_{21}\Pi_{3}O_{6}U\Pi_{2}O_{2}$	L = 4
$M_r = 617.29$	$D_x = 1.415 \text{ Mg m}^{-5}$
Monoclinic, $P2_1$	Mo $K\alpha$ radiation
a = 12.362 (3) Å	$\mu = 0.45 \text{ mm}^{-1}$
b = 10.489 (3) Å	T = 100 (2) K
c = 22.958 (4) Å	Block, yellow
$\beta = 103.17 (3)^{\circ}$	$0.25 \times 0.2 \times 0.15 \text{ mm}$
$V = 2898.6 (12) \text{ Å}^3$	
Data collection	
Oxford Diffraction KM-4-CCD	44865 measured reflections
diffractometer	15906 independent reflections
v scans	9639 reflections with $I > 2\sigma(I)$
Absorption correction: numerical	$R_{\rm int} = 0.064$
(CrysAlis RED: Oxford	$\theta = 33.0^{\circ}$

g the NO₂/CO₂ groups. $T_{\min} = 0.913, T_{\max} = 0.947$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.112$ S = 0.9515906 reflections 715 parameters H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^{-2}) + (0.0457P)^2] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{max} < 0.001 \\ &\Delta\rho_{max} = 0.51 \ e \ \text{\AA}^{-3} \\ &\Delta\rho_{min} = -0.54 \ e \ \text{\AA}^{-3} \\ &Absolute \ structure: \ Flack \ (1983), \\ &with \ 4474 \ Friedel \ pairs \\ &Flack \ parameter: \ 0.12 \ (4) \end{split}$$

 Table 1

 Selected torsion angles (°).

-4.5(4)	O1B-C1B-C2B-N1B	-7.3 (3)
113.4 (3)	C2B-C3B-C4B-C5B	103.9 (3)
-64.6(3)	C2B-C3B-C4B-C9B	-74.3(3)
13.3 (4)	C2B-N1B-C10B-O5B	-0.1(4)
65.5 (3)	O6B-C11B-C12B-C24B	-62.4(3)
	$\begin{array}{r} -4.5 (4) \\ 113.4 (3) \\ -64.6 (3) \\ 13.3 (4) \\ 65.5 (3) \end{array}$	$\begin{array}{rll} -4.5 (4) & 01B-C1B-C2B-N1B \\ 113.4 (3) & C2B-C3B-C4B-C5B \\ -64.6 (3) & C2B-C3B-C4B-C9B \\ 13.3 (4) & C2B-N1B-C10B-O5B \\ -65.5 (3) & 06B-C11B-C12B-C24B \end{array}$

Hydrogen-bond	geometry	(Å,	°).

Table 2

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$O2A - H2OA \cdots O5A^{i}$	0.84	1.80	2.631 (3)	173	
$N1A - H1A \cdots O3B$	0.88	2.35	3.134 (3)	148	
$N3A - H3A1 \cdots O3A$	0.88	2.03	2.643 (3)	126	
$N3A - H3A1 \cdots O4B^{ii}$	0.88	2.32	2.958 (3)	129	
$N3A - H3A2 \cdots O1A^{ii}$	0.88	2.08	2.932 (3)	163	
$O2B - H2OB \cdot \cdot \cdot O5B^{iii}$	0.84	1.83	2.669 (3)	178	
$N1B - H1B \cdot \cdot \cdot O3A^{iv}$	0.88	2.37	3.186 (3)	154	
$N3B - H3B2 \cdot \cdot \cdot O3B$	0.88	2.01	2.630 (3)	126	
$N3B - H3B2 \cdot \cdot \cdot O4A$	0.88	2.39	2.942 (3)	121	
$N3B - H3B1 \cdots O1B^{ii}$	0.88	2.13	2.977 (3)	161	
$C5B-H5B\cdots O3A^{iv}$	0.95	2.50	3.277 (3)	139	
$C8B - H8B \cdot \cdot \cdot O5B^{v}$	0.95	2.41	3.326 (3)	162	
$C30-H301\cdots O1A^{vi}$	0.99	2.49	3.170 (4)	125	
$C40-H401\cdots O4A^{iii}$	0.99	2.35	3.239 (7)	149	

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z$; (ii) x, y - 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iv) x, y + 1, z; (v) $-x + 1, y - \frac{1}{2}, -z + 1$; (vi) x - 1, y, z.

The absolute configuration of (I) was established by the anomalous scattering of solvent Cl atoms, and is in accord with the enantiomerically pure L-phenylalanine derivative.

H atoms bonded to N and O atoms were treated as riding, with N-H = 0.88 Å and O-H = 0.84 Å, and with $U_{iso}(H) = 1.2U_{eq}(N,O)$. H atoms bonded to C atoms were also treated as riding, with C–H distances in the range 0.95–1.00 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. One of the CH₂Cl₂ molecules is disordered over two positions and was refined with site occupancies of 0.764 (6) and 0.236 (6). This CH₂Cl₂ molecule was subject to geometrical and displacement parameter constraints and restraints.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2003); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

References

Al-Karaghouli, A. R. & Koetzle, T. F. (1975). Acta Cryst. B31, 2461-2465.

Figure 3

A view of the intermolecular hydrogen bonds (dashed lines) involving molecules *A* and *B*. For the sake of clarity, H atoms bonded to C atoms and fluorenyl groups have been omitted. (Symmetry codes as in Table 2.)

Figure 4

A view of the crystal packing in (I). Hydrogen bonds are indicated by dashed lines. Channels can be seen, where the solvent molecules reside.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany.
- Broda, M. A., Mazur, L., Kozioł, A. E. & Rzeszotarska, B. (2004). J. Pept. Sci. 10, 448–461.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Oxford Diffraction (2003). *CrysAlis CCD* and *CrysAlis RED*. Versions 1.171. Oxford Diffraction Poland, Wrocław, Poland.
- Ravikumar, B., Sridhar, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o123– 0125.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Staszewska, A., Stefanowicz, P. & Szewczuk, Z. (2005). Tetrahedron Lett. 46, 5525–5528.