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The article tackles the practice of testing latent variable models. The analysis covered
recently published studies from 11 psychology journals varying in orientation and impact.
Seventy-five studies that matched the criterion of applying some of the latent modeling
techniques were reviewed. Results indicate the presence of a general tendency to
ignore the model test ( 2χ ) followed by the acceptance of approximate fit hypothesis
without detailed model examination yielding relevant empirical evidence. Due to reduced
sensitivity of such a procedure to confront theory with data, there is an almost invariable
tendency to accept the theoretical model. This absence of model test consequences,
manifested in frequently unsubstantiated neglect of evidence speaking against the
model, thus implies the perilous question of whether such empirical testing of latent
structures (the way it is widely applied) makes sense at all.

Keywords: structural equation modeling, confirmatory factor analysis, model fit, chi square test, approximate fit
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INTRODUCTION

One of the fundamental issues of empirical research in psychology is the measurement of
variables defined within a given research problem. If the researcher discards the doctrine of
operationalism, which equates the theoretical construct with its measure, the most common
alternative measurement theory to be applied is the latent variable theory. Here, the theoretical
construct is defined as a latent variable which acts as a directly unobservable causal determinant
of the variance in a set of manifested variables (Borsboom et al., 2003). Within this paradigm, the
researcher postulates a theory in the form of a statistical model and tests whether the theory models
the observed reality (the data) well. Only if the observation and the theory (data and model) match
each other, is it justified to regard the observation as the measurement of theoretical constructs
(Borsboom, 2005) and proceed to the interpretation of relationships between those constructs. The
primary statistical tool within this measurement theory is the structural equation modeling (SEM)
and its special case, confirmatory factor analysis (CFA). As early as in 2001, SEM was the most
widely used multivariate technique in psychology (Hershberger, 2003) and in recent years, it has
become a standard in solving multivariate research problems in most of the social sciences.

To put it simply, this (dis)confirmatory technique allows testing of several postulated hypotheses
simultaneously. Employing iterative estimation, it tries to find a unique set of implied parameters
(variances, covariances) that would match those in the matrix of observed covariances as much as
possible. In such a manner, it can be tested whether the model-implied relations between latent and
manifested variables correspond with the existing relations observed in the data. Within SEM, the
only statistical test of model-data fit is the chi-square test (χ2, actually, a family of tests). It tests the
null hypothesis that the model-implied covariance matrix �(θ) does not significantly differ from
the matrix of observed covariances S, i.e., that the residuals are not statistically different than zero.
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A high value of χ2 (relative to the model’s df ) associated with
p > 0.05 means the following: Given that the null hypothesis
of no model-data difference is true, the observed discrepancies
between the model and the data are too big to be caused by
random fluctuations due to sampling error alone, indicating the
presence of a systematic misspecification in the tested model.
Logically, following such an indication, the researcher should try
to find the misspecification errors that are present in the model in
order to achieve convergence between scientific explanation and
the principle of phenomena under study.

However, it is a widespread practice in social sciences to ignore
a significant χ2 and point to the theoretical absurdity of the exact-
fit hypothesis postulated by the χ2 test (allowing only for non-
zero deviations due to sampling error) or to some of the technical
properties of the χ2 test. These include high power with rising N,
rising reliability of indicators and higher communalities (Miles
and Shevlin, 2007; Heene et al., 2011), sensitivity to distributional
properties of observed variables (Fouladi, 2000) or inflated Type
I error rate with rising complexity of the model as a function of
the size of the covariance matrix (Moshagen, 2012).

What usually comes next is the judgment whether the model
approximates the data that is based almost exclusively on so-
called approximate fit indices (AFI). If the chosen indices exceed
some conventional thresholds (see Hu and Bentler, 1999), the
model is accepted as adequate (or approximately true) and, based
onmodel parameters, conclusions regarding the nature of studied
phenomena are drawn. The practice outlined above can, however,
lead to questionable conclusions.

This paper extends on a series of papers published in a special
issue of the Personality and Individual Differences (Vernon and
Eysenck, 2007) on model testing in SEM followed by an extensive
discussion of this topic on SEMNET (a web discussion group
devoted to SEM). The aim of the paper is to reflect on the
progress of the issues connected with testing of latent models and
to analyze recent studies in the field of psychology that model
latent theoretical structures with respect to the applied testing
practices.

To date, several studies documented practices regarding the
use of SEM in various fields of social sciences and found
several issues of concern. Namely, (1) little attention paid to
distributional assumptions, (2) lacking theoretical justification
and history of post hocmodel modifications, most often involving
dropping indicators, allowing cross-loadings and correlated error
terms, (3) confirmation bias, (4) the use of inadequate estimation
method, (5) the failure to recognize the existence of equivalent
models, (6) poor justification of causal inferences, and (7)
selective reporting and the overall lack of clarity in reporting
(Breckler, 1990; DiStefano and Hess, 2005; Guo et al., 2009;
Jackson et al., 2009; Nunkoo et al., 2013). In comparison to
these past studies, the current study focuses primarily on testing
and the assessment of model fit. The emphasis laid on latent
model testing (even at the expense of other steps of SEM like
specification, identification, modification or interpretation of the
model) stems from the fact that it is only empirical testing
(unlike in exploratory latent techniques like EFA) that is able
to objectively and formally compromise the postulated latent
model as well as the implications and predictions based on that

model. The researcher’s attitude towards testing may be distorted
by fallacious interpretations of some conceptual and technical
principles; this may then open the gate to subsequent acceptance
of possibly flawed psychological models and measures. Based on
the sometimes seemingly unquestionable rigor of confirmatory
techniques like SEM or CFA, these models and measures gain a
lot of credibility, some of whichmay be unjustified. The treatment
throughout is deliberately kept nontechnical to get the message to
those who probably wouldn’t read it otherwise.

MATERIALS AND METHODS

In order to assemble a representative sample of empirical
studies employing some confirmatory technique of modeling
latent structures, 11 journals from the field of psychology
were chosen. These included the British Journal of Psychology
(two studies), Journal of Research in Personality (11), Journal
of Occupational and Organizational Psychology (10), Journal
of Research on Adolescence (6), Developmental Science (3),
Intelligence (12), Early Childhood Research Quarterly (7),
European Journal of Personality (10), Studia Psychologica
(3), Journal of Environmental Psychology (5), and Journal of
Experimental Child Psychology (6). These journals represent a
wide range of psychology subfields (including also journals
of general orientation) and associated impact factors (from
journals with lower impact to top-ranked journals), retrieved
from SCImago Journal Rank (SCImago, 2007). The inclusion
criteria were as follows: (1) The study was published from 2011
to 2013, reflecting recent practices in latent variable modeling;
(2) the study employed some kind of latent variable modeling
technique like SEM, CFA, or latent growth analysis (the latter
two being special cases of SEM). Apart from using these target
words for a full text search (i.e., SEM did not have to be the
primary focus of the study), a search (as a Boolean phrase) for
at least one of the following technical terms contained in these
kinds of analyses was also conducted: RMSEA or CFI or TLI
or GFI or NFI or SRMR or AIC or BIC (the acronyms of Root
Mean Square Error of Approximation, Comparative Fit Index,
Tucker-Lewis Index, Goodness-of-Fit Index, Normed fit Index,
Standardized Root Mean Square Residual, Akaike Information
Criterion, Bayesian Information Criterion). The search resulted
in a universe of 424 studies. To ensure that the sample represents
the universe of selected studies well, a percentage proportion for
every journal was computed (number of studies for every journal
is given in parentheses above). The proportional composition
of the sample (N = 75) reflected the universe from which the
studies for analysis were drawn. Within each journal, a random
number generator was used to choose the studies for the sample.
In the next phase, all the selected studies were screened to see
whether they really match the criterion of applying some kind
of confirmatory latent variable modeling technique. This resulted
in the exclusion of 10 studies (one study was a review, nine
studies employed non-latent path analysis). These studies were
replaced using random sampling from the same journal. If the
study included several independent substudies, the study to be
analyzed was chosen by a random draw. Provided that the study
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reported the testing of several models, the choice of the model for
review followed two criteria: (1) most of the interpretations were
based on that model and its parameter estimates (expected to be
the best fitting one). If not clearly decisive, (2) the model with
better fit (by χ2) was chosen.

The analysis focused on the following aspects: (1) Aspects
determining the fulfillment of distributional assumptions for
using SEM (i.e., the sample size, the assessment of univariate
and multivariate normality), (2) aspects connected with model
testing (the employed fit function, the use of χ2 test and AFI,
the assessment of local fit by inspecting residual matrix, testing
of alternative models), and (3) outcome of model testing and
the interpretation of the model (interpreted adequacy of the
model, the reasons for model acceptance, the presence of post hoc
modifications, the reasons for the eventual disregard of the model
test, reporting of data and results).

For further analyses, the full dataset can be found in
Supplementary Material.

RESULTS

Out of 75 selected studies, 44% used CFA, 45% used SEM
(models which, apart from the CFA measurement models,
involve regression paths between latent variables), and 11%
employed latent growth analysis. In 66% of the studies, only
questionnaire or rating scales data were analyzed, 28% employed
only tests, 5% made use of both questionnaires and tests, and
there was also one (1%) meta-analysis analyzing secondary data.
The central tendency in sample sizes of the selected studies
was at Mdn = 308 (range = 8658), including six studies using
secondary data. The researchers most frequently reported the use
of the following software packages: Mplus (32%), Amos (24%),
and Lisrel (16%). In justification of the normal theory-based
estimation method, the assumption of univariate normality of
variables was examined in 24% of the studies. The assumption
of multivariate normality was explicitly examined or taken into
account (by using robust estimationmethods – Robust maximum
likelihood (RML), Satorra–Bentler χ2) in 27% of the selected
studies.

Regarding the testing of the model fit, as can be seen in
Table 1, the most frequently used fit function was the method of
maximum likelihood (ML). What is notable is the fact that 43%
of the studies did not report which fit function was used to fit the
model to the data. Model χ2 with degrees of freedom (df ) and
associated significance level was reported in 41% of the studies.
For all of the studies (100%) lacking a report of p-value for the χ2

of the postulated models but reporting the df (40%), theχ2 would
have been significant. Most of the studies (91%) reported more
than two AFI. The most frequently reported ones were RMSEA,
CFI and SRMR (91, 89, and 51%, respectively). Regarding the cut-
off criteria for the AFI, 17% of the studies reported to follow the
conventional criteria recommended by Hu and Bentler (1999).
The author’s custom selection of less strict criteria could be seen
in 30% of the studies and 53% of the studies did not explicitly
report the exact criteria applied. In the case of significant χ2,
the decision on the adequacy of the tested models was usually

TABLE 1 | Aspects of testing latent models.

Study characteristics %

Fit function Maximum likelihood (ML) 40

Robust maximum likelihood (RML) 13

Weighted least squares (DWLS) 4

Not reported 43

χ2 test∗ Reported values of χ2, df, and
significance

41

χ2 not reported 11

df not reported 21

p not reported 40

Satorra–Bentler χ2 12

The usage of approximate
fit indices (AFI)∗

RMSEA
RMSEA confidence intervals

91
24

χ2/df 20

CFI 89

TLI (NNFI) 37

GFI 13

NFI 5

SRMR 51

AIC 13

BIC 8

Other (PCFI, PGFI, IFI, ECVI, BCC) <3

Alternative models Yes 64

Not reported 36

Post hoc modifications Yes 46

No 41

Not clear 13

Overlapping categories are marked with an asterisk (∗).

based on AFI, since the examination of local fit by inspecting the
residual matrix was reported only in 3% of the studies. Residuals
were not reported in any of the models with a non-significant χ2.

Among the most important aspects of every analysis are the
consequences of model testing and the interpretation of the
model (does the model fit the data so that it is possible to
interpret model parameters?). Here, almost all of the studies
(97%) reported at least one model that was considered adequate
and served as the basis for further interpretations. However, out
of these models (N = 73), 80% did not fit according to the
model test and the decision to retain and interpret the model
was probably based on some other criteria, particularly AFI (40%
of these studies just provided the fit indices and noted that the
model fits but did not explicate the basis for such conclusion).
Only 3% of the studies (N = 2) concluded that the best model
does not fit by any measures, however, one of them proceeded
to the interpretation of model parameters anyway. Overall, 80%
of the studies ignored the χ2 model test either by ignoring the
associated significance of p > 0.05, or by not reporting it at
all. Out of these studies (N = 60), 75% did not mention the
reasons for ignoring the model test. On the other hand, the
explicitly stated reasons given by the authors for ignoring the
outcome of the model test can be summarized as follows: (1) χ2

is overly sensitive to sample size, (2) χ2 penalizes models when
the number of variables gets high, (3) the exact fit hypothesis is
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nonsensical and (4) there is a broad consensus on the preference
of the use of AFI.

Regarding the issues of reporting SEM analyses, 57% of
the studies provided the data needed for the sake of proper
replication of conducted analyses (mostly correlation matrix
and SD’s).

DISCUSSION

Disregard for the χ2 Test
The most disputable tendency observed in analyzed studies is the
disregard for the result of model test. Usually, the result that was
ignored was shown to be invariably the one that spoke against
the theory being tested. If a model significantly departs from the
observed data, it seems that the researchers are much more likely
to slip into a kind of argumentum ad hominem fallacy and blame
the integrity of the test procedure than what should be questioned
in the first instance – the model. However, the only message that
a significant χ2 tells is just this: “Take a good look at that model,
something may be wrong here.”

If stated explicitly, the most frequent justification of disregard
for the χ2 model test was its undeniable sensitivity to the
sample size. In general, χ2 actually gets computed as (N–1)Fmin,
where N is the sample size and Fmin is the minimum of
the fit function which minimizes the discrepancies between
the matrices �(θ) and S. If the model does not correspond
with the data in some way, the sample size multiplies the
detected discrepancies between the model and the data. It is
true that with large samples, even trivial discrepancies caused by
theoretically irrelevant causal factors can produce a significant
misfit. However, a conclusion that a significant χ2 based on a
large sample is a product of its excessive sensitivity is actually
another sort of formal logical fallacy, namely affirming the
consequent. With large enough sample, the statement “if the
misspecification is trivial,χ2 is significant” is true. However, if the
misfit is significant, it does not imply that the misspecification is
trivial. Themodel test failure can be caused by one or even several
serious misspecifications, regardless of sample size (McIntosh,
2012; Hayduk, 2014a).

Instead of perceiving statistical power (primarily but not
exclusively driven by sample size) as the ability of the test to reveal
the discrepancies between the model and the data, it is frequently
regarded as the main reason for disregarding the model test. Now
here comes the question: If the outcome of a hypothesis test
(especially theH0 rejection) is ignored, what was the aim of doing
it? Although several studies ascribed model failure to the high
statistical power of the χ2 test, not even one study empirically
verified this claim by power analysis (see Saris and Satorra, 1993;
MacCallum et al., 1996; Muthén and Muthén, 2002). One could
thus avoid an a posteriori refusal of the model test outcome
even before any data are collected and, in a way, define what
degree of theory-data misfit could be ascribed to sampling error
fluctuations and peripheral causal effects.

It can be concluded that even though the χ2 test is by far
not flawless, with adequate power that allows the model test
to miss only sufficiently peripheral causal effects (verified by

an a priori power analysis), it is nowadays the best, formally
definable protection against ill-specified theories represented by
latent models. In addition, its sensitivity to misspecifications
easily outperforms all the other fit indices (Marsh et al., 2004;
McIntosh, 2012).

Approximate Fit Indices
On the other hand, the structural equation model is usually a
system of many hypotheses, every single one of which can be true
or false. The rejection of the model’s exact fit hypothesis, however,
does not necessarily falsify all the hypotheses comprising the
model. A significance of χ2 can have several causes. As well as
resulting from the invalidity of any of the postulated hypotheses,
it can also be caused by the heterogeneity of the studied sample
(i.e., the underlying causal model varies between subgroups of
subjects, or there are some intervening within-subject factors),
the observations may not be truly independent, or in some cases
it can be a severe violation of multivariate normality assumption
(Fouladi, 2000; Yuan et al., 2005). Any one of these eventualities
coupled with adequate power can lead to the rejection of the null
hypothesis of exact fit. A strict requirement for a non-significant
χ2 may appear absurd, and maybe one has to accept the fact that
all models in social sciences only approximate the reality and so
are bound to be wrong to a certain degree (Browne and Cudeck,
1992; MacCallum et al., 1996; Mulaik, 2009). In this context, do
the AFI allow for the renunciation of such a philosophically and
technically questionable χ2 test?

Unfortunately, the impression that the AFI (especially the way
they are used) are loaded with lesser problems is just illusory.
Despite the fact that the term AFI represents a conceptually
heterogeneous group of fit indices, none of them offer critical
values and their associated significance. Their distributions
(except for RMSEA) are unknown (Yuan, 2005), and although
most of them (the group of absolute fit indices) are, apart from
sample size and df, a function of the χ2, these indices have no
established statistical basis and do not represent a formal test of
the model (Hayduk et al., 2007).

In theory, all the AFI can be used for hypotheses testing,
but what is needed are the cut-off values indicating acceptable
approximate fit. Within the sample of analyzed studies, the
authors applied a wide range of criteria, some of them more,
some less strict. These criteria (e.g., Hu and Bentler, 1999) are
mostly based on Monte-Carlo simulations and reflect a limited
array of situations. Despite the warnings of their authors, AFI
criteria are frequently regarded as golden axiomatic rules having
universal validity. Follow-up simulation studies, however, clearly
showed that: (1) It is not possible to establish universal cut-off
criteria regardless of the character of the model tested (Marsh
et al., 2004; Beauducel and Wittmann, 2005; Fan and Sivo, 2005;
Sharma et al., 2005; Yuan, 2005); (2) with several frequently used
AFI, the probability of correctly rejecting misspecified models
systematically decreases with growing N (Marsh et al., 2004;
Sharma et al., 2005) which is, paradoxically, the very opposite
as with the χ2 test, and (3) the behavior of the AFI is highly
unpredictable in the presence of severe misspecifications (Fan
et al., 1999), which also holds under various degrees of correlated
errors (Heene et al., 2012).
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Regarding the AFI, an exemplary case of their problematic
usage is the χ2/df. One fifth of the analyzed studies based their
decision to accept the model also on χ2/df although the author
of this index withdrew his recommendation for its usage quite
a long time ago (see Wheaton, 1987). Apart from that, several
simulation studies clearly demonstrated that the χ2/df indicated
a good fit of the model and the data despite severe model
misspecifications (Kaplan, 1988; Steiger, 2000). Saris et al. (1985)
found that if the model did not fit the data, the authors regarded
almost every sample size as too large for the χ2 and almost
everyχ2/df ratio as acceptable. Here, among the analyzed studies,
none discarded the model due to a high χ2/df ratio and there
were some that did not even see ratios as large as e.g., 5, 10, 19,
or even 20 as problematic, although there is a massive degree
of non-centrality. Rather loose and confirmationist practices
can also be seen with other AFI where one can often find
the reference for a convenient cut-off value (see Hooper et al.,
2008).

As well as the above mentioned issues with the AFI, there
is another that is also important. Some studies (e.g., Hayduk
and Glaser, 2000; Hayduk et al., 2005; Saris et al., 2009) suggest
that acceptable fit indices may (but do not have to) reflect an
inconsequential misspecification since a pattern of even rather
moderate residuals can be a sign of serious misspecification.
Therefore, satisfactory values of AFI indicating close fit (e.g.,
CFI ≥ 0.95) do not ensure that the model failed the χ2

test because of a trivial misspecification (Olsson et al., 2000;
Tomarken and Waller, 2003; McIntosh, 2012; Hayduk, 2014a).

The Consequences of Disregarding the
Model Test
Disregarding the outcome of the χ2 test and, based on the
AFI, assuming the triviality of the misspecification without a
detailed inspection of the model, can in some cases lead to
an unjustified acceptance of an incorrect theory. There is but
another consequence that is not a possibility, but rather a
certainty.

Namely, one of the assumptions of iterative estimation
procedures used in SEM is that the model is fully correctly
specified. If that assumption is violated, even onemisspecification
can spread throughout the model and affect all the estimated
parameters (Kaplan, 1988). If such a model contains several
misspecifications, their effects can be combined in unpredictable
directions. It follows that if the researcher does not trust the
significant χ2, he/she should not trust the model parameter
estimates either (Bollen et al., 2007; Antonakis et al., 2010).
Actually, the χ2 employs the same statistical principles on which
the parameter estimation is based (Bollen et al., 2007). If the χ2 is
significant, it means that the fit function was unable to find a set of
parameters that would fit the data sufficiently well. A significant
χ2 (especially with high degree of non-centrality) thus warrants
that the parameter estimates are inaccurate at best and, at worst,
squarely wrong.

To be able to interpret the estimated parameters and carry out
further procedures (e.g., the testing of measurement invariance,
the use of item parcels), the model must be correctly specified

in the first place and the χ2 is the most direct formal proxy for
such an assessment. Although the detection of misspecification
is not the only aspect of model assessment (others are, e.g.,
the examination of predictive power, explanatory parsimony,
theoretical backing of direct, and indirect effects), it is the
most important one since just one misspecification can possibly
affect the parameter estimates throughout the entire model
and all the other mentioned aspects of model assessment are
based on these estimates (Hayduk et al., 2007). None of the
analyzed studies that interpreted the model parameters despite
a significant misfit warned the reader that these interpretations
are questionable, because they are based on potentially distorted
parameter estimates.

Just to add, some of other problematic practices that could
be observed in the reviewed papers include: (1) A badly fitting
model is suggested to fit well because it fits better (by �χ2) than
a much worse fitting alternative model; (2) depriving the model
of its df (i.e., testability) to mask misfit by creating item parcels
when independent clusters model does not fit the data, or by (3)
dropping indicators and correlating error terms until the model
fits.

Suggested Solutions
We have to admit that in social sciences, the model-data exact
fit hypothesis postulated by the χ2 is actually unrealistic for
many typical applications. At the same time, such a conclusion
should not be used as a universal argument for the acceptance
of any seemingly adequate model without it first being carefully
inspected. If the theory fails the empirical testing against the data,
the explanation of the model failure (and eventual acceptance of
the model) has to go beyond an appeal to fit indices thresholds
(Millsap, 2007).

Although the AFI might be useful especially in comparing
non-nested models, the danger of the actual practice in their use
lies in the fact that it enables one to flexibly label a statistically
falsified model as approximately true and does not force the
researcher into careful inspection of the detected model-data
discrepancies. Opposed to it stands the only statistical test of
latent models, the χ2 test. That test cannot say whether the
model is true (the absence of evidence against the model does not
mean that it is correct), but if provided with adequate statistical
power (large samples, reliable indicators, large communalities), it
is superior to all the other fit indices in detecting problems within
the tested model (see Marsh et al., 2004). In fact, carrying out an
a priori power analysis helps to specify a target amount of misfit
that is acceptable. Although the AFI do essentially the same job
without any power analysis, it is impossible to determine what
amount of model-data misfit they fail-to-detect.

Model testing is the primary tool in the assessment of
model adequacy; however, it is in no way the only one.
As was suggested, whether the model fits the data or not
(by any global measure, be it χ2 or AFI), it is essential to
carry out a careful inspection in order to identify eventual
misspecifications – especially in underpowered designs (see Chen
et al., 2001; McIntosh, 2007; Kline, 2011). Although there is no
universal recipe, several approaches has been proposed. The most
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common is the inspection of the standardized residual matrix,
examination of the Lagrange multiplier statistics (modification
indices) along with the expected parameter change statistics
(Saris et al., 2009), or the equation-by-equation misspecification
search (Shipley, 2003; Kirby and Bollen, 2009). Generally, one
cannot rely on global indices (e.g., SRMR) since every global
index is a reduction of dimensionality, reducing several specific
model-data discrepancies into one number (Mulaik, 2009).
However, even the inspection of the residual matrix can be
quite tricky. Because the residuals (and local fit indices) for
a misspecified model are biased as well, only the minimum
needed number of theoretically justifiable model modifications
should be made, and tested each separately. However, the more
data-driven modifications are made, the less probable is the
reproducibility of such a model (MacCallum et al., 1992) since
they may capitalize on chance variation. Interpretations of such
a posteriori modification and the related inflation of Type I
error probability should, therefore, be always taken into account.
On the other hand, in some situations, the data are expected
to be too noisy and/or the researcher is not able to meet the
overly restrictive requirement of zero cross-loadings of the CFA
measurement model. In that case, rather than engaging in many
data-driven model modifications, resulting in an unreproducible
model under the guise of confirmatory analysis, it is better to
explicitly acknowledge the uncertainty and employ a procedure
that is suited for that purpose, like the Exploratory SEM (Marsh
et al., 2014). In this technique, in addition to or instead of
CFA measurement model parts, EFA measurement model parts
with factor loading matrix rotations can be used, while still
preserving the ability to formulate testable predictions and have
the access to all the usual SEM parameters, such as residual
correlations, regressions of factors on covariates, and regressions
among factors. This ensures that, e.g., the misspecification of
zero loadings will not lead to distorted factors with overestimated
factor correlations and subsequent distorted structural relations
(Asparouhov and Muthén, 2009).

Only if there are (1) no signs of severe local misspecification,
(2) no other indications of misfit (convergence problems,
improbable signs and values of estimated parameters,
collinearity, inflated standard errors, negative variances,
standardized solution involving values exceeding the interval
(1,–1), empirical underidentification due to near zero
intercorrelations of the indicators), and (3) there is adequate
power, it is justified to conclude that the theoretical model
probably approximates the observed reality and that the model
test failure is an artifact of high power.

On the other hand, even in the case of exact fit, it is not
guaranteed that the model is a true representation of the data.
The interpretation of any unrejected model thus rests on an
inference that must be based on strong assumption, namely
that there is no other alternative explanation (model) for the
data at hand. However, especially for cross-sectional data, such
inference cannot be formally justified. Actually, the data usually
fit several mathematically equivalent models (which is not a real
threat), but sometimes even some theoretically justifiable models
(Raykov and Penev, 1999; Tomarken and Waller, 2003). “That
is, if a model is consistent with reality, then the data should

be consistent with the model. But if the data are consistent
with a model, this does not imply that the model corresponds
to reality” (Bollen, 1989, p. 68). As was already mentioned,
achieving fit is quite easy since every model can be made to fit
the data well simply by adding free parameters (Kline, 2011).
It is often overlooked that the eventual acceptance of model-
data fit hypothesis provides only the evidence in favor of fixed
parameters (not to be freely estimated). The free parameters are
in fact ignored, since every free parameter (e.g., a regression
path) expresses an irrefutable hypothesis that there may or may
not be a relationship between given variables. The more free
parameters (and less df ) the model has, the fewer dimensions
of data space there are along which a model could be rejected
(Mulaik, 2001). The information used for the estimation of free
parameters cannot be subsequently used for model testing. It
follows that a researcher who intends to test a theoretical model
should not weaken it by adding free parameters in an ad hoc
manner (see Mulaik et al., 1989).

To sum up the recommendations: (1) Under all circumstances,
it is important to carefully evaluate and properly report the
result of the model test (see Kline, 2011; Boomsma et al.,
2012, for SEM reporting guidelines); (2) especially in the case
of a significant χ2 test (the model departs from the observed
reality), it should not be concluded that the model approximates
the data and ascribe the model test failure to statistical power
without a careful inspection of local fit and reporting of achieved
power. Satisfactory values of AFI do not guarantee that the
misspecification is of trivial magnitude and character; (3) a
significant χ2 tells that the parameter estimates are inaccurate
at best, and possibly wrong. All interpretations based on these
estimates should take this fact into account. In any case, one
should examine both the causes and consequences of a failed
model test.

CONCLUSION

The study at hand discussed the practices that are applied in
the testing of latent models. But is such a specific treatment
of any broader relevance? For a layman reader, it may seem
that it is a technical issue of only marginal importance.
However, the discussed practices of testing latent structures
(especially the disregard for the model test in combination
with an uncritical acceptance of the approximate fit hypothesis
without any examination of relevant evidence) can have far-
reaching consequences, since they weaken the ability of the
data to contradict the postulated models (see Barrett, 2007;
McIntosh, 2007; Millsap, 2007; Kline, 2011; Hayduk, 2014b,
for discussion). Moreover, the current reproducibility crisis
(Open Science and Collaboration, 2015) has shown that such
issues cannot be regarded peripheral since they lie right at the
heart of credibility of science as such.

As one may have guessed, it is unrealistic to expect that the
verification of a theory postulating complex interrelationships
between latent and manifested variables is a matter of a single
test and a bunch of indices. In fact, a significant χ2 does not
necessarily imply a useless model – just as satisfactory AFI do
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not imply that the model is roughly true. It is always the (partly
subjective) judgment informed by data that should act as a referee
(Mulaik, 2009). In concord with the Popperian logic, it can be
concluded that the confirmatory latent techniques cannot truly
verify models, but they have the capability of digging up empirical
evidence of problems in these models (see Hayduk, 2014b). If this
accept-support statistical paradigm gets robbed of its strictness by
the loosely applied dogma of approximate fit, it loses its scientific
value of pushing the researcher to look for eventual flaws of
the postulated theory in order to improve it. The findings of
this study indicate that researchers generally tend to regard their
models as an adequate representation of the data, irrespective
of model test outcome, since as many as 80% of these accepted
models failed in the face of statistical testing. At the same time,
in just 3% of the studies did the authors set out to examine
the evidence concerning the triviality of model misspecification
(i.e., the inspection of the residual matrix) and none verified the
claim about excessive power of the model test. In the light of
these arguments, it leads to a perilous question: Does it make
sense to statistically confront the theoretical models with the
data provided that no consequences exist, i.e., that the model is

accepted even after failing the statistical test of fit to the data?
Unfortunately, the pragmatic answermight be no, testing with no
consequences is useless. And that is the danger here – discarding
model testing – the primary means of quantitative inference
without any real alternative.

Hopefully, this non-technical reflection will lead to more
critical insight into the issues of latent modeling techniques and
prompt researchers to more rigorously test and carefully inspect
(and not just confirm) modeled latent structures.
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