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Abstract:We propose a new algorithm for spectral learning of Hidden Markov Models (HMM). In contrast to
the standard approach, we do not estimate the parameters of the HMM directly, but construct an estimate
for the joint probability distribution. The idea is based on the representation of a joint probability distribu-
tion as an N-th-order tensor with low ranks represented in the tensor train (TT) format. Using TT-format, we
get an approximation byminimizing the Frobenius distance between the empirical joint probability distribu-
tion and tensors with low TT-ranks with core tensors normalization constraints. We propose an algorithm for
the solution of the optimization problem that is based on the alternating least squares (ALS) approach and
develop its fast version for sparse tensors. The order of the tensor d is a parameter of our algorithm. We have
compared the performance of our algorithmwith the existing algorithm by Hsu, Kakade and Zhang proposed
in 2009 and found that it is much more robust if the number of hidden states is overestimated.

Keywords: Multilinear Algebra, Tensor Train Decomposition, Alternating Least Squares (ALS), Hidden
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1 Introduction
Hidden Markov models (HMM) are important techniques in many applications. They are used in speech
recognition [9, 21], natural language processing [16] and genomic sequence modeling [12] and many more.
The HMM observable state xn depends only on a current hidden state hk, where h1, . . . , hR form a classical
Markov chain. The discrete HMMmodel is completely defined by the initial state distribution π ∈ ℝR, a state
transition probability matrix T ∈ ℝR×R for the hidden states and an observation probability matrixO ∈ ℝN×R,
where N is the number of observed states, and R is the number of hidden states. Our goal is to estimate the
joint probability distribution

P(i1, . . . , iN) = Pr(x1 = i1, . . . , xN = iN), (1.1)

given only sequential observations x1, . . . , xN of a HMM. We will use the following operator representation
of HMM, that is straightforward to verify (see for example [10])

P(i1, . . . , id) = π⊤A(i1)⊤ . . .A(id)⊤1r, (1.2)
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where
A(i) = Tdiag(Oi,1, . . . ,Oi,R), i = 1, . . . , N.

is an R × R matrix for any fixed i = 1, 2, . . . , N.
A classical approach is to estimate the set of parameters T,O, π from the data using, for example, the

Expectation Maximization (EM) algorithm [3], which is a local search method that may fall into a local
maximum.

Another approach is to estimate the joint probability distribution (1.1) directly, without estimating the
parameters. Spectral algorithms have proven to be very efficient in this context, see [8, 18]. In this paper we
propose a newmethod for learning joint probability distribution of HMMs from sequential observations that
is based on applying tensor-train decomposition (TT-decomposition) as a low-parametric model. The main
advantage of the proposed method is that it does not require any matrix inversions and does not have any
restrictions on the number of observed and hidden states. We can even overestimate the number of hidden
states R but our algorithm still produces a meaningful estimate.

We formulate the problem of joint probability estimation as a problem of tensor approximation via tensor
networks, especially TT-format. Tensormethods have been already successfully applied to learningHMM (for
example, see [1]), but in a different context, using canonical polyadic (CP) tensor format [4, 11]. The computa-
tion of the CP-decomposition is known to be generally unstable [5]. In this paperweuse the TT-decomposition
[13, 15] as ourmain tool, since it provides stable algorithms. It is alsoworth tonote about thework [20],where
a spectral algorithm based on the SVD (singular value decomposition) is proposed for latent tree graphical
models, but it still involves inversion of matrices. The paper [19] is the closest to our concept. For a tree la-
tent variable model it employs the Hierarchical Tucker (HT) decomposition [6, 7] to approximate the joint
probability distribution. The TT-format is a special case of the HT-format, but in many practical applications
the simplest choice of the tree is the most efficient one. A simple algebraic structure of the TT-format also
significantly simplifies the development of new algorithms.

To summarize, our objective is to present an efficient algorithm for learning HMM using the TT-format
whichhas polynomial complexity in n and r and is suitable for the estimation of the joint probability function.
We also show its efficiency on synthetic examples with randomly generated HMM.

2 Hidden Markov Model (HMM) as a Tensor Train (TT)
A tensor of dimensionality d, A(i1, . . . , id), is said to be in the TT-format if its elements can be represented in
the form

A(i1, . . . , id) = G1(i1) . . .Gd(id),

where Gk(ik) is an Rk−1 × Rk matrix, with R0 = Rd = 1. For a given HMM, we associate with it a joint proba-
bility distribution Pd(i1, . . . , id) and treat it as a tensor. The number d ≤ N is a parameter of our algorithm
(recall that our final goal is to estimate the joint probability distribution defined by (1.1)), which defines the
dimensionality of the joint probability distribution, and should be defined on the basis of reasons discussed
below in Section 3.

Equation (1.2) justifies the TT-structure of the joint probability distribution of the HMM with additional
structure: all the cores are equal to each other. In our approach, we lift this restriction and seek for a low-
parametric representation of the joint probability distribution in the form

Pd(i1, . . . , id) ≈ G1(i1) . . .Gd(id). (2.1)

This increases the number of parameters to be estimated, but allows for nice and efficient algorithms. Equa-
tion (2.1) can be treated as a data model, that allows us to use presented algorithm in case when number of
hidden states are unknown or probably overestimated as well and in principle the TT-based algorithm can be
applied beyond the homogeneous HMM concept, because the TT-structure seems to be more general model
than HMM.
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3 Estimating TT-Model from the Data: Optimization Problem
Given sequential observations x1, . . . , xN of the HMM, we can estimate the joint probability distribution as
their relative frequencies from the observations:

P̂d(i1, . . . , id) = α
N−d+1
∑
k=1

I[xk = i1, xk+1 = i2, . . . , xk+d−1 = id], (3.1)

where scaling coefficient α is chosen in such a way that

∑
i1 ,...,id

P̂d(i1, . . . , id) = 1

and I[xk = i1, xk+1 = i2, . . . , xk+d−1 = id] is indicator.
Using the TT-structure of Pd, the estimate can be significantly improved. Among all possible tensors with

such structure, wewant to find the one that gives the bestmatch in Frobenius norm to the empirical joint prob-
ability distribution tensor. Also, such tensor should correspond to a probability distribution, i.e. its elements
should be non-negative and sum up to 1. This yields an optimization problem on the class of TT-tensors of
rank R TT(R):

min
Z
‖P̂d − Z‖2F subject to Z ∈ TT(R), ∑

i1 ,...,id
Z(i1, . . . , id) = 1. (3.2)

Problem (3.2) needs a non-negativity constraint, but that it is typically numerically satisfied in the algorithm.
Theminimization problem (3.2) allows us to find an improved estimatePd of the joint probability distribution
tensor as follows. First, we estimate probabilities

Pk(i1, . . . , it) = Pk,t(xk = i1, . . . , xk+t−1 = it)

by the following formula:
Ĝi =∑

ji
Gi(αi−1, ji , αi) for all i ∈ [d]

and
P1 = G1 . . .GtĜt+1 . . . Ĝd .

Every Pi, i = 1, . . . , d − t + 1, can be obtained in a similar way by cyclic shift of the matricesG1, . . . ,Gd. The
final estimate reads

P̂d =
∑l Pl

d − t + 1 .

There is a tradeoff between smaller and larger d. The larger d, the worse P̂d approximates Pd, but more esti-
mates of P̂d are available due to the gap (d − t). The selection of optimal d is an interesting question that
requires additional study.

4 Solution of the Optimization Problem

4.1 TT-SVD Algorithm

There are several ways to solve the optimization problem (3.2). If we for a second omit the normalization
condition and consider just the problem of approximation of a given tensor by a tensor in TT-format, this can
be done by the TT-SVD algorithm [13]. The computation of a quasi-optimal approximation is reduced to d
singular value decompositions (SVD) of auxiliary matrices. The corresponding algorithm is summarized in
Algorithm 1.
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Algorithm 1. TT-SVD Algorithm.
1 Data: d-dimensional tensor A, TT-ranks Rk.
Result: TT-decomposition core tensors G1 . . . Gd corresponding to tensor B ≈ A, with TT-ranks Rk.

1 {Initialization}
Temporary tensor C = A

2 for k = 1 to d − 1 do
3 C := reshape(C, [rk−1nk , numel(C)

rk−1nk ]).
4 Compute the singular value decomposition: C = USV⊤, and in the matrix U leave only Rk singular vec-

tors, corresponding to the Rk largest singular values.
5 New core Gk := reshape(U, [rk−1, nk , rk]).
6 C := SV⊤.
7 end
8 Gd = C.

To make the result of Algorithm 1 to be a probability distribution, we can just divide it by the sum of its
elements. From numerical experiments we observed, that the result of the TT-SVD algorithm has negligibly
small negative elements (if any), so explicit non-negativity constraint is not required. This fact requires an
additional study and theoretical investigation. The main problem with the TT-SVD algorithm is its computa-
tional cost: it requires dense matrices with O(nd) elements to be handled, and the final complexity can be
estimated as O(nd+1r2), see [13] for details.

4.2 Removing Exponential Complexity: ALS Algorithm

An input tensor P̂ is in fact a sparse tensor [2]: it has at most N non-zero elements (in practice, less), and this
number is much smaller than nd. Incorporation of sparsity in the TT-SVD algorithm is not a straightforward
task, since the matrices will become denser and denser at each step and moreover, we need only left factors
of the singular value decomposition which again is not easy to be done in the sparse format. Instead, we
propose to use the alternating least squares (ALS) algorithm which is a standard tool in the computation of
tensor decompositions.

The idea of ALS can be simply presented as follows:
(1) We fix all factors except k-th.
(2) Minimize (3.2) over Gk, which reduces to a quadratic optimization problem.
(3) Cycle for all factors.
It is now well understood that the convergence of the ALS-type algorithms for the TT-format is much bet-
ter than for the canonical format [14, 17]. Moreover, the ALS algorithm can be implemented in an cheap
way. The TT-representation is non-unique, and the cores Gk(ik) can be orthogonalized in two ways: from
the left and from the right. The core Gk(ik) can be stored as an rk−1 × nk × rk tensor. Its left unfolding G<k
is defined as an rk−1 × (nkrk) matrix obtained from this tensor by reshaping in Fortran order. Analogously,
G>k is defined as an (rk−1nk) × rk matrix obtained from Gk(ik) by reshaping in Fortran order. To optimize
over Gk, we first orthogonalize all cores G1, . . . ,Gk−1 from the left by sequential orthogonalization: First,
compute the QR-factorization of the first factor G1 = Q>1R1. The matrix R1 is then transferred to the second
core, G󸀠2(i2) = R1G2(i2), it is orthogonalized from the right: G󸀠2(i2) = Q

>
2(i2)R2, transfer R2 to the third core

and so on. Analogously we could make the cores Gk+1, . . . ,Gd right-orthogonalized, yielding an equivalent
representation of the form

Z(i1, . . . , id) = Q>1(i1) . . .Q
>
k−1(ik−1)G

󸀠
k(ik)Q<k+1(ik+1). (4.1)

Equation (4.1) is a linear mapping fromG󸀠k(ik) to the space of D-dimensional tensors. It can be written in the
matrix form

‖p̂ − Qgk‖→ min, (4.2)
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where p̂ is a vector of length (n1 ⋅ ⋅ ⋅ nd), gk is a vector of length (rk−1nkrk) and Q is a matrix of dimension
(n1 ⋅ ⋅ ⋅ nd) × (rk−1nkrk). The prominent feature of the orthogonalization process is that the matrixQwill have
orthonormal columns [13]. Then the solution of the optimization problem (3.2) without constraint reads

gk = Q⊤p̂.

Normalization constraint can easily be incorporated. In terms of the cores, the restriction

∑
i1 ,...,id

Q>1(i1) . . .Q
>
k−1(ik−1)G

󸀠
k(ik)Q<k+1(ik+1) = 1

reduces to the equation
∑
ik
Φ>kG
󸀠
k(ik)Φ

<
k = 1, (4.3)

whereΦ>k is computed by summing eachQ>s (is), s = 1, . . . , k, over is and taking thematrix-by-matrix product

Φ>k = (∑
i1
Q>1(i1)) . . . ( ∑

ik−1 Q>k−1(ik−1)).
The matrixΦ<k is computed analogously. The constraint (4.3) can be rewritten as

(gk , v) = 1, (4.4)

where v is a vector of length rk−1nkrk. The solution of the optimization problem (4.2) with constraint (4.4)
reads

gk = Q⊤p̂ − αv,

where α is selected in such a way that (gk , v) = 1.
The main computational complexity comes from the product Q⊤p̂. It can be rewritten in the index form

(we go back from vectors to tensors)

Gk(αk−1, ik , αk) =∑ P̂(i1, . . . , id)Q>1(i1, α1) . . .Q
>
k−1(αk−2, ik−2, αk−1)

× Q<k+1(αk+1, ik+1, αk+2) . . .Q
<
d(αd−1, id), (4.5)

where the sum goes through i1, . . . , ik−1, ik+1, . . . , id and α1, . . . , αk−2, αk+1, . . . , αd.
If the elements of the tensor P̂ are obtained as relative frequencies, it contains at most N non-zero

elements. We store P̂ as a sparse tensor in the coordinate format, i.e. we store the location of all non-zero
elements and their frequencies. Suppose that there are T ≤ N non-zero elements in P̂. Then the summation
in (4.5) can be replaced by the summation over all non-zero elements, and instead of nd operations it will
take T operations to compute a sum over i1, . . . , id and its corresponding contribution to Gk(αk−1, ik , αk). In
our current implementation, we just compute an element by such summation, leading to an algorithm with
complexity CALS = N ∗ Cstep + Ctdot = O(dr3n + Tdnr2) operations.

5 Experiments
We tested and validated our method on a synthetically generated data. We initialize the matrices O, T, the
vector π randomly, then we generated an HMM realization x1 . . . xn of length n = 10000. We will compare
our method with a spectral method described in [8]. Since we know the exact values ofO and T, the required
probabilities can be computed exactly. As an accuracymeasure, we use relative error ε in the Frobenius norm
for tensors.

Firstwe study the effect of order d on the accuracy of the estimates for different t. The results are presented
in Figure 1.

In general, the number of hidden states is unknown, that is why r could be chosen incorrectly. The fol-
lowing experiment illustrates that the TT-method is stable with varying R and the spectral algorithm from [8]
is unstable. Fix N = 3, d = 7, and “real” rank R̂ = 2, we will vary R as an algorithm parameter. The results are
presented in Figure 2.
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Figure 1: Accuracy of estimates of different marginal probability distributions P1,d(x1 , . . . , xt) using the TT-algorithm
with different values of d, N = 3, R = 2 for different t.
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Figure 2: Dependence of the accuracy of the estimate from R with the true number of hidden states R̂ = 2, N = 7, d = 5,
the spectral algorithm from the paper [8].

6 Conclusions
We consider the problem of estimation of a joint probability distribution for HMM using the tensor network
approach. The solution has a low-rank TT-structure, and thus we formulate the optimization problem as
a minimization problem over a manifold of tensors with bounded TT-ranks and propose an efficient algo-
rithm to estimate the TT-cores, based on the ALS approach. Our algorithm uses only QR decompositions and
matrix-by-matrix products and does not rely on inversion of matrices. We compared its efficiency and vali-
dated our algorithm on synthetic data with a spectral algorithm from [8] and found it comparable in terms
of accuracy when the number of hidden states R is chosen correctly, but superior when it is overestimated.
Moreover, the model for a joint probability distribution using the TT-format is more general than the Hidden
Markov Model itself, since it allows to employ different numbers of hidden states at each step.
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