About
422
Publications
111,139
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,188
Citations
Introduction
Current institution
Additional affiliations
August 2013 - present
Publications
Publications (422)
This paper evaluates geopolitical biases in LLMs with respect to various countries though an analysis of their interpretation of historical events with conflicting national perspectives (USA, UK, USSR, and China). We introduce a novel dataset with neutral event descriptions and contrasting viewpoints from different countries. Our findings show sign...
Large language models (LLMs) excel at reasoning, yet post-training remains critical for aligning their behavior with task goals. Existing reinforcement learning (RL) methods often depend on costly human annotations or external reward models. We propose Reinforcement Learning via Self-Confidence (RLSC), which uses the model's own confidence as rewar...
We present a new viewpoint on a reconstructing multidimensional geological fields from sparse observations. Drawing inspiration from deterministic image inpainting techniques, we model a partially observed spatial field as a multidimensional tensor and recover missing values by enforcing a global low-rank structure. Our approach combines ideas from...
Sliced Mutual Information (SMI) is widely used as a scalable alternative to mutual information for measuring non-linear statistical dependence. Despite its advantages, such as faster convergence, robustness to high dimensionality, and nullification only under statistical independence, we demonstrate that SMI is highly susceptible to data manipulati...
In-context learning (ICL) enables Large Language Models (LLMs) to adapt to new tasks using few examples, with task vectors - specific hidden state activations - hypothesized to encode task information. Existing studies are limited by small-scale benchmarks, restricting comprehensive analysis. We introduce QuiteAFew, a novel dataset of 3,096 diverse...
A recent study showed that large language models (LLMs) can reconstruct surprisingly long texts - up to thousands of tokens - via autoregressive generation from just one specially trained input embedding. In this work, we explore whether such reconstruction is possible without autoregression. We show that frozen LLMs can generate hundreds of accura...
Neural operators (NOs) struggle with high-contrast multiscale partial differential equations (PDEs), where fine-scale heterogeneities cause large errors. To address this, we use the Generalized Multiscale Finite Element Method (GMsFEM) that constructs localized spectral basis functions on coarse grids. This approach efficiently captures dominant mu...
We present a novel method called TESALOCS (TEnsor SAmpling and LOCal Search) for multidimensional optimization, combining the strengths of gradient-free discrete methods and gradient-based approaches. The discrete optimization in our method is based on low-rank tensor techniques, which, thanks to their low-parameter representation, enable efficient...
Artificial Kuramoto oscillatory neurons were recently introduced as an alternative to threshold units. Empirical evidence suggests that oscillatory units outperform threshold units in several tasks including unsupervised object discovery and certain reasoning problems. The proposed coupling mechanism for these oscillatory neurons is heterogeneous,...
This study presents an NNTile framework for training large deep neural networks in heterogeneous clusters. The NNTile is based on a StarPU library, which implements task-based parallelism and schedules all provided tasks onto all available processing units (CPUs and GPUs). It means that a particular operation, necessary to train a large neural netw...
Speaker recognition technology is applied to various tasks, from personal virtual assistants to secure access systems. However, the robustness of these systems against adversarial attacks, particularly to additive perturbations, remains a significant challenge. In this paper, we pioneer applying robustness certification techniques to speaker recogn...
This paper explores the application of quantum annealing to solve the inverse kinematics (IK) problem in robotics by reformulating it as a Quadratic Unconstrained Binary Optimization (QUBO) problem. Using a linear binary approximation of trigonometric functions, we transform the IK problem into a form suitable for quantum optimization, demonstratin...
A common assumption is that MoE routers primarily leverage semantic features for expert selection. However, our study challenges this notion by demonstrating that positional token information also plays a crucial role in routing decisions. Through extensive empirical analysis, we provide evidence supporting this hypothesis, develop a phenomenologic...
Can Visual Language Models (VLMs) effectively capture human visual preferences? This work addresses this question by training VLMs to think about preferences at test time, employing reinforcement learning methods inspired by DeepSeek R1 and OpenAI O1. Using datasets such as ImageReward and Human Preference Score v2 (HPSv2), our models achieve accur...
Large Language Models (LLMs) have achieved remarkable success in natural language processing. Recent advances have led to the developing of a new class of reasoning LLMs; for example, open-source DeepSeek-R1 has achieved state-of-the-art performance by integrating deep thinking and complex reasoning. Despite these impressive capabilities, the inter...
Drawing parallels with the way biological networks are studied, we adapt the treatment--control paradigm to explainable artificial intelligence research and enrich it through multi-parametric input alterations. In this study, we propose a framework for investigating the internal inference impacted by input data augmentations. The internal changes i...
Solving Bayesian inverse problems efficiently remains a significant challenge due to the complexity of posterior distributions and the computational cost of traditional sampling methods. Given a series of observations and the forward model, we want to recover the distribution of the parameters, conditioned on observed experimental data. We show, th...
Domain shift presents a significant challenge in applying Deep Learning to the segmentation of 3D medical images from sources like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). Although numerous Domain Adaptation methods have been developed to address this issue, they are often evaluated under impractical data shift scenarios. Spec...
We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens -- especially stopwords, articles, and commas -- consistently degrades performance on MMLU and BABILong-...
Accurate segmentation of all pathological findings in 3D medical images remains a significant challenge, as supervised models are limited to detecting only the few pathology classes annotated in existing datasets. To address this, we frame pathology segmentation as an unsupervised visual anomaly segmentation (UVAS) problem, leveraging the inherent...
Generative models that can produce realistic images have improved significantly in recent years. The quality of the generated content has increased drastically, so sometimes it is very difficult to distinguish between the real images and the generated ones. Such an improvement comes at a price of ethical concerns about the usage of the generative m...
Modern Video Large Language Models (VLLMs) often rely on uniform frame sampling for video understanding, but this approach frequently fails to capture critical information due to frame redundancy and variations in video content. We propose MaxInfo, a training-free method based on the maximum volume principle, which selects and retains the most repr...
We study fundamental limitations of Graph Neural Networks (GNNs) for learning sparse matrix preconditioners. While recent works have shown promising results using GNNs to predict incomplete factorizations, we demonstrate that the local nature of message passing creates inherent barriers for capturing non-local dependencies required for optimal prec...
While Deep Neural Networks demonstrate remarkable performance in practical tasks, they are vulnerable to membership inference attacks aimed at identifying whether a certain object belongs to the training dataset. To conduct a membership inference attack on a target model, an adversary has to train a set of shadow models and conduct a statistical te...
Tensor decomposition of convolutional and fully-connected layers is an effective way to reduce parameters and FLOP in neural networks. Due to memory and power consumption limitations of mobile or embedded devices, the quantization step is usually necessary when pre-trained models are deployed. A conventional post-training quantization approach appl...
Soil sampling is crucial for capturing soil variability and obtaining comprehensive soil information for agricultural planning. This article evaluates the potential of MaxVol, an optimal design method for soil sampling based on selecting locations with significant dissimilarities. We compared MaxVol with conditional Latin hypercube sampling (cLHS),...
Elements of neural networks, both biological and artificial, can be described by their
selectivity for specific cognitive features. Understanding these features is important for
understanding the inner workings of neural networks. For a living system, such as a
neuron, whose response to a stimulus is unknown and not differentiable, the only way
to...
Non-autoregressive language models are emerging as effective alternatives to autoregressive models in the field of natural language processing, facilitating simultaneous token generation. This study introduces a novel flow matching approach that employs Kullback-Leibler (KL) divergence geodesics to interpolate between initial and target distributio...
Neural networks are deployed widely in natural language processing tasks on the industrial scale, and perhaps most often they are used as compounds of automatic machine translation systems. In this work, we present a simple approach to fool state of the art machine translation tools in the task of translation from Russian to English and vice versa....
We propose a new model for multi-token prediction in transformers, aiming to enhance sampling efficiency without compromising accuracy. Motivated by recent work that predicts the probabilities of subsequent tokens using multiple heads, we connect this approach to rank-$1$ canonical tensor decomposition. By generalizing it to a rank-$r$ canonical pr...
Machine Unlearning (MU) is critical for enhancing privacy and security in deep learning models, particularly in large multimodal language models (MLLMs), by removing specific private or hazardous information. While MU has made significant progress in textual and visual modalities, multimodal unlearning (MMU) remains significantly underexplored, par...
Randomized smoothing is the state-of-the-art approach to constructing image classifiers that are provably robust against additive adversarial perturbations of bounded magnitude. However, it is more complicated to compute reasonable certificates against semantic transformations (e.g., image blurring, translation, gamma correction) and their composit...
Reactive flows in porous media play an important role in our life and are crucial for many industrial, environmental, and biomedical applications. Very often the concentration of the species at the inlet is known, and the so-called breakthrough curves, measured at the outlet, are the quantities which could be measured or computed numerically. The m...
The performance of Transformer models has been enhanced by increasing the number of parameters and the length of the processed text. Consequently, fine-tuning the entire model becomes a memory-intensive process. High-performance methods for parameter-efficient fine-tuning (PEFT) typically work with Attention blocks and often overlook MLP blocks, wh...
Nearest-neighbor search in large vector databases is crucial for various machine learning applications. This paper introduces a novel method using tensor-train (TT) low-rank tensor decomposition to efficiently represent point clouds and enable fast approximate nearest-neighbor searches. We propose a probabilistic interpretation and utilize density...
In this paper, we propose to use Sinc interpolation in the context of Kolmogorov-Arnold Networks, neural networks with learnable activation functions, which recently gained attention as alternatives to multilayer perceptron. Many different function representations have already been tried, but we show that Sinc interpolation proposes a viable altern...
In "Large Associative Memory Problem in Neurobiology and Machine Learning," Dmitry Krotov and John Hopfield introduced a general technique for the systematic construction of neural ordinary differential equations with non-increasing energy or Lyapunov function. We study this energy function and identify that it is vulnerable to the problem of dead...
Scalability issue plays a crucial role in productionizing modern recommender systems. Even lightweight architectures may suffer from high computational overload due to intermediate calculations, limiting their practicality in real-world applications. Specifically, applying full Cross-Entropy (CE) loss often yields state-of-the-art performance in te...
The majority of real-world processes are spatiotemporal, and the data generated by them exhibits both spatial and temporal evolution. Weather is one of the most essential processes in this domain, and weather forecasting has become a crucial part of our daily routine. Weather data analysis is considered the most complex and challenging task. Althou...
With growing investigations into solving partial differential equations by physics-informed neural networks (PINNs), more accurate and efficient PINNs are required to meet the practical demands of scientific computing. One bottleneck of current PINNs is computing the high-order derivatives via automatic differentiation which often necessitates subs...
Scalability is a major challenge in modern recommender systems. In sequential recommendations, full Cross-Entropy (CE) loss achieves state-of-the-art recommendation quality but consumes excessive GPU memory with large item catalogs, limiting its practicality. Using a GPU-efficient locality-sensitive hashing-like algorithm for approximating large te...
As deep learning (DL) models are widely and effectively used in Machine Learning as a Service (MLaaS) platforms, there is a rapidly growing interest in DL watermarking techniques that can be used to confirm the ownership of a particular model. Unfortunately, these methods usually produce watermarks susceptible to model stealing attacks. In our rese...
It is known (see, e.g., [SIAM J. Matrix Anal. Appl. 2014;35(1):143‐173]) that the performance of iterative methods for solving the Stokes problem essentially depends on the quality of the preconditioner for the Schur complement matrix, . In this paper, we consider two preconditioners for : the identity one and the SIMPLE one, and numerically study...
The scaling of neural networks with increasing data and model sizes necessitates more efficient deep learning algorithms. This paper addresses the memory footprint challenge in neural network training by proposing a modification to the handling of activation tensors in pointwise nonlinearity layers. Traditionally, these layers save the entire input...
We present ConDiff, a novel dataset for scientific machine learning. ConDiff focuses on the diffusion equation with varying coefficients, a fundamental problem in many applications of parametric partial differential equations (PDEs). The main novelty of the proposed dataset is that we consider discontinuous coefficients with high contrast. These co...
This study presents the extension of the data-driven optimal prediction approach to the dynamical system with control. The optimal prediction is used to analyze dynamical systems in which the states consist of resolved and unresolved variables. The latter variables can not be measured explicitly. They may have smaller amplitudes and affect the reso...
The primal approach to physics-informed learning is a residual minimization. We argue that residual is, at best, an indirect measure of the error of approximate solution and propose to train with error majorant instead. Since error majorant provides a direct upper bound on error, one can reliably estimate how close PiNN is to the exact solution and...
Most protein language models (PLMs), which are used to produce high-quality protein representations, use only protein sequences during training. However, the known protein structure is crucial in many protein property prediction tasks, so there is a growing interest in incorporating the knowledge about the protein structure into a PLM. In this stud...
Large linear systems are ubiquitous in modern computational science. The main recipe for solving them is iterative solvers with well-designed preconditioners. Deep learning models may be used to precondition residuals during iteration of such linear solvers as the conjugate gradient (CG) method. Neural network models require an enormous number of p...
This paper reveals a novel linear characteristic exclusive to transformer decoders, including models such as GPT, LLaMA, OPT, BLOOM and others. We analyze embedding transformations between sequential layers, uncovering a near-perfect linear relationship (Procrustes similarity score of 0.99). However, linearity decreases when the residual component...
In this study, we propose a novel SeqMF model to solve the problem of predicting the next app launch during mobile device usage. Although this problem can be represented as a classical collaborative filtering problem, it requires proper modification since the data are sequential, the user feedback is distributed among devices, and the transmission...
In the above article
[1]
, Equation (2) should be changed to
Neural networks (NNs), both living and artificial, work due to being complex systems of neurons, each having its own specialization. Revealing these specializations is important for understanding NNs' inner working mechanisms. The only way to do this for a living system, the neural response of which to a stimulus is not a known (let alone different...
Unsupervised methods for anomaly segmentation are promising for computer-aided diagnosis since they can increase the robustness of medical systems and do not require large annotated datasets. In this work, we propose a simple yet effective two-stage pipeline for improving the performance of existing anomaly segmentation methods. The first stage is...
In this paper, we investigate the structure of the Schur complement matrix for the fully-staggered finite-difference discretization of the stationary Stokes equation. Specifically, we demonstrate that the structure of the Schur complement matrix depends qualitatively on a particular characteristic, namely the number of non-unit eigenvalues, and the...
The tensor train (TT) format, widely used in computational mathematics and machine learning, offers a computationally efficient method for handling multidimensional arrays, vectors, matrices, and discretized functions in various applications. In this work, we propose a new algorithm for estimating min/max elements of TT-tensors, which leads to accu...
Recent advancements in real image editing have been attributed to the exploration of Generative Adversarial Networks (GANs) latent space. However, the main challenge of this procedure is GAN inversion, which aims to map the image to the latent space accurately. Existing methods that work on extended latent space $W+$ are unable to achieve low disto...
Evaluation metrics are essential for assessing the performance of generative models in image synthesis. However, existing metrics often involve high memory and time consumption as they compute the distance between generated samples and real data points. In our study, the new evaluation metric called the "TTJac score" is proposed to measure the fide...
Tensor decomposition of convolutional and fully-connected layers is an effective way to reduce parameters and FLOP in neural networks. Due to memory and power consumption limitations of mobile or embedded devices, the quantization step is usually necessary when pre-trained models are deployed. A conventional post-training quantization approach appl...
If the Stokes equations are properly discretized, it is well-known that the Schur complement matrix is spectrally equivalent to the identity matrix. Moreover, in the case of simple geometries, it is often observed that most of its eigenvalues are equal to one. These facts form the basis for the famous Uzawa and Krylov-Uzawa algorithms. However, in...
Large-scale transformer models have shown remarkable performance in language modelling tasks. However, such models feature billions of parameters, leading to difficulties in their deployment and prohibitive training costs from scratch. To reduce the number of the parameters in the GPT-2 architecture, we replace the matrices of fully-connected layer...
Self-supervised methods received tremendous attention thanks to their seemingly heuristic approach to learning representations that respect the semantics of the data without any apparent supervision in the form of labels. A growing body of literature is already being published in an attempt to build a coherent and theoretically grounded understandi...
In this paper, we propose a new adaptive cross algorithm for computing a low tubal rank approximation of third-order tensors, with less memory and demands lower computational complexity than the truncated tensor SVD (t-SVD). This makes it applicable for decomposing large-scale tensors. We conduct numerical experiments on synthetic and real-world da...
Currently, we can solve a wide range of tasks using computer vision algorithms, which reduce manual labor and enable rapid analysis of the environment. The remote sensing domain provides vast amounts of satellite data, but it also poses challenges associated with processing this data. Baseline solutions with intermediate results are available for v...
Knowledge of thermodynamic properties of mixtures is essential in many fields of science and engineering. However, the experimental data is usually scarce, so prediction methods are needed. Matrix completion methods have proven to be very successful in predicting thermodynamic properties of binary mixtures. In this approach, the experimental data i...
This paper addresses the following research question: ``can one compress a detailed 3D representation and use it directly for point cloud registration?''. Map compression of the scene can be achieved by the tensor train (TT) decomposition of the signed distance function (SDF) representation. It regulates the amount of data reduced by the so-called...
Large datasets catalyze the rapid expansion of deep learning and computer vision. At the same time, in many domains, there is a lack of training data, which may become an obstacle for the practical application of deep computer vision models. To overcome this problem, it is popular to apply image augmentation. When a dataset contains instance segmen...
Neural networks are deployed widely in natural language processing tasks on the industrial scale, and perhaps the most often they are used as compounds of automatic machine translation systems. In this work, we present a simple approach to fool state-of-the-art machine translation tools in the task of translation from Russian to English and vice ve...
In this study, we propose a novel SeqMF model to solve the problem of predicting the next app launch during mobile device usage. Although this problem can be represented as a classical collaborative filtering problem, it requires proper modification since the data are sequential, the user feedback is distributed among devices and the transmission o...
We propose a new method for learning deep neural network models, which is based on a greedy learning approach: we add one basis function at a time, and a new basis function is generated as a non-linear activation function applied to a linear combination of the previous basis functions. Such a method (growing deep neural network by one neuron at a t...
The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap surrogate for the solver. The bottleneck in this sche...
We develop new method PROTES for optimization of the multidimensional arrays and discretized multivariable functions, which is based on a probabilistic sampling from a probability density function given in the low-parametric tensor train format. We tested it on complex multidimensional arrays taken, among other, from real-world applications, includ...
The size and complexity of deep neural networks used in AI applications continue to grow exponentially, significantly increasing energy consumption for training and inference by these models. We introduce an open-source package eco2AI to help data scientists and researchers to track the energy consumption and equivalent CO2 emissions of their model...
Reactive flows in porous media play an important role in our life and are crucial for many industrial, environmental and biomedical applications. Very often the concentration of the species at the inlet is known, and the so-called breakthrough curves, measured at the outlet, are the quantities which could be measured or computed numerically. The me...
We introduce the novel approach towards fake text reviews detection in collaborative filtering recommender systems. The existing algorithms concentrate on detecting the fake reviews, generated by language models and ignore the texts, written by dishonest users, mostly for monetary gains. We propose the contrastive learning-based architecture, which...
Self-attentive transformer models have recently been shown to solve the next item recommendation task very efficiently. The learned attention weights capture sequential dynamics in user behavior and generalize well. Motivated by the special structure of learned parameter space, we question if it is possible to mimic it with an alternative and more...
Increasingly, automation helps to minimize human involvement in many mundane aspects of life, especially retail. During the pandemic it became clear that shop automation helps not only to reduce labor and speedup service but also to reduce the spread of disease. The recognition of produce that has no barcode remains among the processes that are com...
In this paper, we propose a new neural network architecture based on the H2 matrix. Even though networks with H2-inspired architecture already exist, and our approach is designed to reduce memory costs and improve performance by taking into account the sparsity template of the H2 matrix. In numerical comparison with alternative neural networks, inc...
Self-attentive transformer models have recently been shown to solve the next item recommendation task very efficiently. The learned attention weights capture sequential dynamics in user behavior and generalize well. Motivated by the special structure of learned parameter space, we question if it is possible to mimic it with an alternative and more...
Remote sensing is increasingly recognized as a convenient tool with a wide variety of uses in agriculture. Landsat-7 has supplied multi-spectral imagery of the Earth’s surface for more than 4 years and has become an important data source for a large number of research and policy-making initiatives. Unfortunately, a scan line corrector (SLC) on Land...
Accurate information about growing crops allows for regulating the internal stocks of agricultural products and drawing strategies for negotiating agricultural commodities on financial markets. Machine learning methods are widely implemented for crop type recognition and classification based on satellite images. However, field classification is com...