Ivan De Martino

Ivan De Martino
Universidad de Salamanca · Department of Fundamental Physics

PhD in Fundamental Physics and Mathematics

About

97
Publications
5,927
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,255
Citations
Citations since 2017
72 Research Items
1119 Citations
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
Additional affiliations
September 2020 - present
Universidad de Salamanca
Position
  • Juan de la Cierva - Incorporacion
September 2019 - August 2020
Università degli Studi di Torino
Position
  • PostDoc Position
October 2018 - September 2019
Donostia International Physics Center
Position
  • PostDoc Position
Education
October 2007 - June 2009
University of Naples Federico II
Field of study
  • Astrophysics and Space Science
October 2002 - May 2007

Publications

Publications (97)
Article
The Galactic Center (GC) of the Milky Way, thanks to its proximity, allows to perform astronomical observations that investigate physical phenomena at the edge of astrophysics and fundamental physics. As such, it offers a unique laboratory to probe gravity, where one can not only test the basic predictions of general relativity (GR), but is also ab...
Preprint
We have investigated whether the Scalar-Tensor-Vector Gravity theory (STVG) may explain the kinematic of stars in dwarf spheroidal galaxies. STVG modifies General Relativity by adding extra scalar and vector fields with the main aim of replacing dark matter in astrophysical self-gravitating systems. The weak-field limit of STVG brings a Yukawa-like...
Article
We have investigated whether the Scalar-Tensor-Vector Gravity (STVG) theory may explain the kinematic of stars in dwarf spheroidal galaxies. STVG modifies general relativity by adding extra scalar and vector fields with the main aim of replacing dark matter in astrophysical self-gravitating systems. The weak-field limit of STVG brings a Yukawa-like...
Preprint
We investigate whether the oblate, spheroidal morphology of common dwarf spheroidal galaxies (dSph) may result from the slow relaxation of stellar orbits within a halo of Wave Dark Matter ($\psi$DM) when starting from an initial disk of stars. Stellar orbits randomly walk over a Hubble time, perturbed by the pervasive "granular" interference patter...
Article
We derive new constraints on the dilaton parameter appearing in the spherically-symmetric black hole solution of Einstein-Maxwell-dilaton-axion gravity, by studying the geodesic motion of the S2 star in the Galactic Center. Einstein-Maxwell-dilaton-axion black holes represent a compelling alternative to the standard black hole paradigm in General R...
Article
We developed a numerical methodology to compute the fully-relativistic propagation time of photons emitted by a pulsar in orbit around a massive compact object, like the supermassive black hole Sagittarius A* in the Galactic Center, whose gravitational field is described by a generic spherically symmetric space-time. Pulsars at the Galactic Center...
Presentation
Full-text available
The Galactic Center of the Milky Way can serve as a test bench to investigate physical phenomena at the edge of astrophysics and fundamental physics. As such, it offers a unique laboratory to probe General Relativity, modified theories of gravity, different paradigms of dark matter, and black hole mimickers. I will provide a general overview of the...
Article
We probe four cosmological models which, potentially, can solve the Hubble tension according to the dark energy equation of state. In this context, we demonstrate that the Einstein Telescope is capable of achieving a relative accuracy below 1% on the Hubble constant independently of the specific dark energy model. We firstly build mock catalogs con...
Preprint
We derive new constraints on the dilaton parameter appearing in the spherically-symmetric black hole solution of Einstein-Maxwell-dilaton-axion gravity, by studying the geodesic motion of the S2 star in the Galactic Center. Einstein-Maxwell-dilaton-axion black holes represent a compelling alternative to the standard black hole paradigm in General R...
Preprint
We developed a numerical methodology to compute the fully-relativistic propagation time of photons emitted by a pulsar in orbit around a massive compact object, like the supermassive black hole Sagittarius A* in the Galactic Center, whose gravitational field is described by a generic spherically symmetric space-time. Pulsars at the Galactic Center...
Preprint
Dark matter is undoubtedly one of the fundamental, albeit unknown, components of the standard cosmological model. The failure to detect WIMPs, the most promising candidate particle for cold dark matter, actually opens the way for the exploration of viable alternatives, of which ultralight bosonic particles with masses $\sim 10^{-21}$ eV represent o...
Article
The explicit derivation for the orbital precession of the S2 star in the Galactic Center in the Scalar-Tensor-Vector Gravity is discussed and compared with previous research. The two different predictions are validated by numerically integrating the geodesic equations for a test particle.
Article
We investigate a nonsingular black hole spacetime representing a strong deformation of the Schwarzschild solution with mass M by an additional hair ℓ, which may be hierarchically larger than the Planck scale. The spacetime is an exact solution of Einstein’s equations sourced by an anisotropic fluid. The model presents a de Sitter core and O(ℓ2/r2)...
Article
Full-text available
Aims. It is well known that N -body simulations of ultralight bosons display the formation of a solitonic dark matter core in the innermost part of the halo. The scale-length of such a soliton depends on the inverse of the mass of the boson. On the other hand, the orbital motion of stars in the Galactic Center depends on the distribution of matter,...
Article
We use the kinematic data of the stars in eight dwarf spheroidal galaxies to assess whether f(R) gravity can fit the observed profiles of the line-of-sight velocity dispersion of these systems without resorting to dark matter. Our model assumes that each galaxy is spherically symmetric and has a constant velocity anisotropy parameter β and constant...
Article
We have explored a completely new and alternative way to restrict the parameter space of Horndeski theory of gravity. Using its Newtonian limit, it is possible to test the theory at a regime where, given its complexity and the small magnitude of the expected effects, it is poorly probed. At Newtonian level, it gives rise to a generalized Yukawa-lik...
Preprint
We have explored a completely new and alternative way to restrict the parameter space of Horndeski theory of gravity. Using its Newtonian limit, it is possible to test the theory at a regime where, given its complexity and the small magnitude of the expected effects, it is poorly probed. At Newtonian level, it gives rise to a generalized Yukawa-lik...
Preprint
Full-text available
We propose a novel nonsingular black-hole spacetime representing a strong deformation of the Schwarzschild solution with mass $M$ by an additional hair $\ell$, which may be hierarchically larger than the Planck scale. Our black-hole model presents a de Sitter core and $\mathcal{O}(\ell^2/r^2)$ slow-decaying corrections to the Schwarzschild solution...
Preprint
The Galactic Center of the Milky Way, thanks to its proximity, allows to perform astronomical observations that investigate physical phenomena at the edge of astrophysics and fundamental physics. As such, our Galactic Center offers a unique laboratory to test gravity. In this review we provide a general overview of the history of observations of th...
Article
We investigate the capability of Einstein Telescope to constrain the cosmological parameters of the non-flat ΛCDM cosmological model. Two types of mock datasets are considered depending on whether or not a short Gamma-Ray Burst is detected and associated with the gravitational wave emitted by binary neutron stars merger using the THESEUS satellite....
Preprint
We use the kinematic data of the stars in eight dwarf spheroidal galaxies to assess whether $f(R)$ gravity can fit the observed profiles of the line-of-sight velocity dispersion of these systems without resorting to dark matter. Our model assumes that each galaxy is spherically symmetric and has a constant velocity anisotropy parameter $\beta$ and...
Preprint
We probe four cosmological models which, potentially, can solve the Hubble tension according to the dark energy equation of state. In this context, we demonstrate that the Einstein Telescope is capable of achieving a relative accuracy below $1\%$ on the Hubble constant independently of the specific dark energy model. We firstly build mock catalogs...
Article
Full-text available
We show that measuring the proper motion of ∼2000 stars within a dwarf galaxy, with an uncertainty of 1 km/s at most, can establish whether the Dark Matter (DM) density profile of the dwarf has a central core or cusp. We derive these limits by building mock star catalogues similar to those expected from future astrometric Theia-like missions and in...
Preprint
We have used publicly available kinematic data for the S2 star to constrain the parameter space of MOdified Gravity. Integrating geodesics and using a Markov Chain Monte Carlo algorithm we have provided with the first constraint on the scales of the Galactic Centre for the parameter $\alpha$ of the theory, which represents the fractional increment...
Preprint
We use the orbital motion of the star S2 around the supermassive black hole at the center of the Galaxy to narrow the allowed range for the mass of an ultralight boson. It is well known that ultralight bosons form a solitonic dark matter core in the innermost part of the halo. The scale length of such a soliton depends on the inverse of the mass of...
Preprint
We investigate the capability of Einstein Telescope to constrain the cosmological parameters of the non-flat $\Lambda$CDM cosmological model. Two types of mock datasets are considered depending on whether or not a short Gamma-Ray Burst is detected and associated with the gravitational wave event using the THESEUS satellite. Depending on the mock da...
Presentation
Full-text available
Despite the huge improvements guaranteed by future GRAVITY observations of the S0-2 star, these will not be able to unveil the fundamental nature, whether black hole or wormhole, of the central supermassive object. Nevertheless, observing stars orbiting closer to the central gravitational source could allow to distinguish between the black hole and...
Article
Despite the huge improvements guaranteed by future GRAVITY observations of the S0-2 star, these will not be able to unveil the fundamental nature, whether black hole or wormhole, of the central supermassive object. Nevertheless, observing stars orbiting closer to the central gravitational source could allow to distinguish between the black hole and...
Article
Full-text available
We have used publicly available kinematic data for the S2 star to constrain the parameter space of MOdified Gravity. Integrating geodesics and using a Markov Chain Monte Carlo algorithm, we have provided the first constraint on the scales of the Galactic Centre for the parameter α of the theory, which represents the fractional increment of the grav...
Article
Full-text available
In this paper, we introduce the post-Minkowskian approximation of energy-momentum-squared gravity (EMSG). This approximation is used to study the gravitational energy flux in the context of EMSG. As an application of our results, we investigate the EMSG effect on the first time derivative of the orbital period of the binary pulsars. Utilizing this...
Preprint
Full-text available
In this paper, we introduce the post-Minkowskian approximation of Energy-Momentum-Squared Gravity (EMSG). This approximation is used to study the gravitational energy flux in the context of EMSG. As an application of our results, we investigate the EMSG effect on the first time derivative of the orbital period of the binary pulsars. Utilizing this...
Article
We have obtained the first constraint of the parameter space of Scalar-Tensor-Vector-Gravity using the motion of the S2-star around the supermassive black hole at the centre of the Milky Way, and we did not find any serious tension with General Relativity. We used the Schwarzschild-like metric of Scalar-Tensor-Vector-Gravity to predict the orbital...
Preprint
Full-text available
Despite the huge improvements guaranteed by future GRAVITY observations of S0-2 star, these will not be able to unveil the fundamental nature, whether black hole or wormhole, of the central supermassive object. Nevertheless, observing stars orbiting closer to the central gravitational source could allow to distinguish between the black hole and wor...
Preprint
Full-text available
The GRAVITY Collaboration achieved the remarkable detection of the orbital precession of the S2 star around the Galactic centre supermassive black hole, providing yet another proof of the validity of the General Relativity. The departure from the Schwarzschild precession is encoded in the parameter $f_{\rm SP}$ which multiplies the predicted genera...
Presentation
Full-text available
We have shown the potential of next-generation astrometric satellites for distinguishing between a cusp and a core in the dark matter density profile. This goal can be achieved with the measure of the proper motions of at least 6000 stars within a nearby dwarf galaxy with an accuracy of 1 km~s$^{-1}$ at most. We have built mock star catalogues simi...
Preprint
We have obtained the first constraint of the parameter space of Scalar-Tensor-Vector-Gravity using the motion of the S2-star around the supermassive black hole at the centre of the Milky Way, and we did not find any serious tension with General Relativity. We used the Schwarzschild-like metric of Scalar-Tensor-Vector-Gravity to predict the orbital...
Presentation
Full-text available
The GRAVITY Collaboration detected the orbital precession of the S2 star around the central supermassive black hole, providing yet another proof of the validity of the General Relativity. The departure from the Schwarzschild precession is encoded in the parameter f_{SP} which multiplies the predicted general relativistic precession. Such a paramete...
Article
Dark matter as a Bose-Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of dark matter on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground state soliton core in every galaxy surrounded by a halo of excited states that interfere on the de B...
Article
Full-text available
In Cosmology and in Fundamental Physics there is a crucial question like: where the elusive substance that we call Dark Matter is hidden in the Universe and what is it made of? that, even after 40 years from the Vera Rubin seminal discovery [ 1 ] does not have a proper answer. Actually, the more we have investigated, the more this issue has become...
Preprint
Full-text available
In Cosmology and in Fundamental Physics there is a crucial question like: where the elusive substance that we call Dark Matter is hidden in the Universe and what is it made of?, that, even after 40 years from the Vera Rubin seminal discovery does not have a proper answer. Actually, the more we have investigated, the more this issue has become stron...
Preprint
Full-text available
Most nearby classical dwarf galaxies are now known to be surrounded by large halos of stars extending to over $2~{\rm kpc}$, adding to the puzzling properties of these dark matter dominated galaxies. Here we show that simulations of dark matter as a Bose Einstein condensate, $\psi$DM, predict large halos surrounding a soliton core with a marked den...
Preprint
Full-text available
Cosmic history can be traced considering further curvature contributions inside the gravitational action. Assuming that standard General Relativity can be extended by other curvature invariants, we discuss the possibility that an action containing higher-order curvature terms can fit, in principle, the whole universe evolution. In particular, a the...
Article
Full-text available
The cold dark-matter model successfully explains both the emergence and evolution of cosmic structures on large scales and, when we include a cosmological constant, the properties of the homogeneous and isotropic Universe. However, the cold dark-matter model faces persistent challenges on the scales of galaxies. Indeed, N-body simulations predict s...
Article
Full-text available
The large dark cores of common dwarf galaxies are unexplained by the standard heavy particle interpretation of dark matter. This puzzle is exacerbated by the discovery of a very large but barely visible, dark matter dominated galaxy Antlia II orbiting the Milky Way, uncovered by tracking star motions with the Ĝaia satellite. Although Antlia II has...
Preprint
Full-text available
Dark matter as a Bose-Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of dark matter on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground state soliton core in every galaxy surrounded by a halo of excited states that interfere on the de B...
Preprint
Full-text available
The lack of detection of supersymmetric particles is leading to look at alternative avenues for explaining dark matter's effects. Among them, modified theories of gravity may play an important role accounting even for both dark components needed in the standard cosmological model. Scalar-Tensor-Vector Gravity theory has been proposed to resolve the...
Article
A wavelike solution for the non-relativistic universal dark matter (wave-DM) is rapidly gaining interest, following pioneering simulations of cosmic structure as an interference pattern of coherently oscillating bosons. A prominent solitonic standing wave is predicted at the center of every galaxy, representing the ground state solution of the coup...
Article
Full-text available
In this paper, we study the Jeans analysis in the context of energy–momentum-squared gravity (EMSG). More specifically we find the new Jeans mass for non-rotating infinite mediums as the smallest mass scale for local perturbations that can be stable against its own gravity. Furthermore, for rotating mediums, specifically for rotating thin disks in...
Preprint
Full-text available
In this paper, we study the Jeans analysis in the context of energy-momentum-squared gravity (EMSG). More specifically we find the new Jeans mass for non-rotating infinite mediums as the smallest mass scale for local perturbations that can be stable against its own gravity. Furthermore, for rotating mediums, specifically for rotating thin disks in...
Presentation
Full-text available
The standard cosmological model has been constrained with unprecedented accuracy. Nevertheless, we are facing off new challenges. The lack of detection of Dark Matter has opened to the "no-WIMP" era. I will introduce a relatively new paradigm for Dark Matter based on ultra-light particles and explain how to probe it with the current and forthcoming...
Article
Full-text available
We analyze axion-photon mixing in the framework of quantum field theory. The condensate structure of the vacuum for mixed fields induces corrections to the oscillation formulae and leads to non-zero energy of the vacuum for the component of the photon mixed with the axion. This energy generates a new effect of the vacuum polarization and it has the...
Presentation
Full-text available
The standard cosmological model has been constrained with unprecedented accuracy. Nevertheless, we are facing off new challenges. The lack of detection of Dark Matter and Dark Energy have opened to new paths. On one side, we are entering the "no-WIMP" era. On the other side, explaining the accelerated expansion of the Universe may require an extens...
Article
Full-text available
The study of the dynamics of a two-body system in modified gravity constitutes a more complex problem than in Newtonian gravity. Numerical methods are typically needed to solve the equations of geodesics. Despite the complexity of the problem, the study of a two-body system in f (R) gravity leads to a new exciting perspective hinting the right stra...
Preprint
The study of the dynamics of a two-body system in modified gravity constitutes a more complex problem than in Newtonian gravity. Numerical methods are typically needed to solve the equations of geodesics. Despite the complexity of the problem, the study of a two-body system in $f(R)$ gravity leads to a new exciting perspective hinting the right str...
Article
Full-text available
Decaying Dark Energy models modify the background evolution of the most common observables, such as the Hubble function, the luminosity distance and the Cosmic Microwave Background temperature–redshift scaling relation. We use the most recent observationally-determined datasets, including Supernovae Type Ia and Gamma Ray Bursts data, along with H (...
Preprint
Full-text available
A wavelike solution for the non-relativistic universal dark matter (wave-DM) is rapidly gaining interest, following distinctive predictions of pioneering simulations of cosmic structure as an interference pattern of coherently oscillating bosons. A prominent solitonic standing wave is predicted at the center of every galaxy, representing the ground...
Preprint
Full-text available
We find the generalized version of the Toomre's criterion for the stability of a rotating thin disk in the context of Eddington inspired Born-Infeld (EiBI) gravity which possesses one free parameter $\chi$. To do so we use the weak field limit of the theory and find the dispersion relation for the propagation of matter density waves on the surface...
Article
Full-text available
We find the generalized version of the Toomre's criterion for the stability of a rotating thin disk in the context of Eddington inspired Born-Infeld (EiBI) gravity which possesses one free parameter χ. To do so we use the weak field limit of the theory and find the dispersion relation for the propagation of matter density waves on the surface of a...
Article
Full-text available
We find the generalized version of the Toomre's criterion for the stability of a rotating thin disk in the context of Eddington inspired Born-Infeld (EiBI) gravity which possesses one free parameter χ. To do so we use the weak field limit of the theory and find the dispersion relation for the propagation of matter density waves on the surface of a...
Article
Full-text available
The {\it concordance} cosmological model has been successfully tested throughout the last decades. Despite its successes, the fundamental nature of dark matter and dark energy is still unknown. Modifications of the gravitational action have been proposed as an alternative to these dark components. The straightforward modification of gravity is to g...
Article
Full-text available
Alternative theories of gravity may serve to overcame several shortcomings of the standard cosmological model but, in their weak field limit, they must recover General Relativity to match the tight constraints at Solar System scale. Therefore, testing such alternative models at scale of stellar systems could give a unique opportunity to confirm or...
Conference Paper
Full-text available
The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors...
Article
Full-text available
Light Axionic Dark Matter, motivated by string theory, is increasingly favored for the "no-WIMP era". Galaxy formation is suppressed below a Jeans scale, of $\simeq 10^8 M_\odot$ by setting the axion mass to, $m_B \sim 10^{-22}$eV, and the large dark cores of dwarf galaxies are explained as solitons on the de-Broglie scale. This is persuasive, but...
Article
Full-text available
We analyze the stability of self-gravitating systems which dynamics is investigated using the collisionless Boltzmann equation, and the modified Poisson equation of Eddington-inspired Born-Infield gravity. These equations provide a description of the Jeans paradigm used to determine the critical scale above which such systems collapse. At equilibri...
Presentation
Full-text available
We used the data on the Cosmic Microwave Background (CMB) temperature anisotropies measured by the Planck satellite and a sample of X-ray selected clusters with spectroscopically measured redshifts to probe the standard cosmological model and the underlying theory of gravity. To avoid antenna beam effects, we brought all the maps to the same resolu...
Presentation
Full-text available
Light Axionic Dark Matter, motivated by string theory, is increasingly favored for the ”no-WIMP era”. Galaxy formation is suppressed below an Jeans scale, of $simeq 10^8 M_odot$ by setting the axion mass to, $m_B sim 10^{-22}$eV, and the large dark cores of dwarf galaxies are explained as solitons on the de-Broglie scale. The oscillating field pres...
Poster
Full-text available
Here, we demonstrate that the predicted thermal Sunyaev-Zeldovich (TSZ) profile of galaxy clusters, in both $f(R)$ and MOG theories, agrees with the observed profile when their Intra Cluster gas is in hydrostatic equilibrium within the modified Newtonian potential. There is no need to introduce a dominant DM component. We particularize our analysis...
Article
Full-text available
Using Planck satellite data, we construct SZ gas pressure profiles for a large, volume-complete sample of optically selected clusters. We have defined a sample of over 8,000 redMaPPer clusters from the Sloan Digital Sky Survey (SDSS), within the volume-complete redshift region 0.100 < z < 0.325, for which we construct Sunyaev-Zel'dovich (SZ) effect...
Article
Full-text available
In its weak field limit, Scalar-tensor-vector gravity theory introduces a Yukawa-correction to the gravitational potential. Such a correction depends on the two parameters, $\alpha$ which accounts for the modification of the gravitational constant, and $\mu^{*-1}$ which represents the scale length on which the scalar field propagates. These paramet...
Conference Paper
Full-text available
We have constrained the spatial variation of the fine structure constant using multi-frequency measurements of the thermal Sunyaev-Zeldovich effect of 618 X-ray selected clusters. Although our results are not competitive with the ones from quasar absorption lines, we improved by a factor 10 and ~2.5 previous results from Cosmic Microwave Background...
Article
We propose an improved methodology to constrain spatial variations of the fine structure constant using clusters of galaxies. We use the {\it Planck} 2013 data to measure the thermal Sunyaev-Zeldovich effect at the location of 618 X-ray selected clusters. We then use a Monte Carlo Markov Chain algorithm to obtain the temperature of the Cosmic Micro...
Presentation
Full-text available
We propose an improved methodology to constrain spatial variations of the fine structure constant using clusters of galaxies. We use the Planck 2013 data to measure the thermal Sunyaev-Zeldovich effect at the location of 618 X-ray selected clusters. We then use a Monte Carlo Markov Chain algorithm to obtain the temperature of the Cosmic Microwave B...
Article
We determine the relation between the Comptonization parameter predicted using X-ray data YC, Xray and the X-ray luminosity LX, both magnitudes derived from ROSAT data, with the Comptonization parameter YC, SZ measured on Planck 2013 foreground cleaned Nominal maps. The 560 clusters of our sample includes clusters with masses M ≥ 1013M⊙, one order...
Poster
Full-text available
The poster refers to the full article entitled ”Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data”, 2016, arXiv:1605.03053
Article
In the weak field limit, analytic $f(R)$ models of gravity introduce a Yukawa-like correction to the Newtonian gravitational potential. These models have been widely tested at galactic scales and provide an alternative explanation to the dynamics of galaxies without Dark Matter. We study if the temperature anisotropies due to the thermal Sunyaev-Ze...
Research
Full-text available
Over the past decades, General Relativity and the concordance ΛCDM model have been successfully tested using several different astrophysical and cosmological probes based on large datasets ({\it precision cosmology}). Despite their successes, some shortcomings emerge due to the fact that General Relativity should be revised at infrared and ultravio...
Article
Full-text available
We constrain the deviation of adiabatic evolution of the Universe using the data on the Cosmic Microwave Background (CMB) temperature anisotropies measured by the Planck satellite and a sample of 481 X-ray selected clusters with spectroscopically measured redshifts. To avoid antenna beam effects, we bring all the maps to the same resolution. We use...
Article
Full-text available
here are several approaches to extend General Relativity in order to explain the phenomena related to the Dark Matter and Dark Energy. These theories, generally called Extended Theories of Gravity, can be tested using observations coming from relativistic binary systems as PSR J0348 +0432. Using a class of analytical f(R)-theories, one can construc...
Conference Paper
Full-text available
Using the Post-Keplerian parameters to obtain, in the Minkowskian limit we obtain constraints on f(R)-theories of gravity from the first time derivative of the orbital period of a sample of binary stars. In the approximation in which the theory is Taylor expandable, we can estimate the parameters of an an analytic f(R)-theory, and fulfilling the ga...
Conference Paper
Full-text available
Analytical $f(R)$-gravity models introduce Yukawa-like corrections to the Newtonian potential in the weak field limit. These models can explain the dynamics of galaxies and cluster of galaxies without requiring dark matter. To test the model, we have computed the pressure profile of 579 X-ray galaxy clusters assuming the gas is in hydrostatic equil...
Poster
Full-text available
Models of f(R) gravity that introduce corrections to the Newtonian potential in the weak field limit are tested at the scale of galaxy clusters. These models can explain the dynamics of spiral and elliptical galaxies without resorting to dark matter. We compute the pressure profiles of 579 galaxy clusters assuming that the gas is in hydrostatic equ...
Article
Full-text available
Models of f(R) gravity that introduce corrections to the Newtonian potential in the weak field limit are tested at the scale of galaxy clusters. These models can explain the dynamics of spiral and elliptical galaxies without resorting to dark matter. We compute the pressure profiles of 579 galaxy clusters assuming that the gas is in hydrostatic equ...