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Abstract—Consider a cloud radio access network where
neighboring basestations are able to jointly encode and decode
their signals via rate-limited links to a central processor. One
promising approach to such systems is for the basestations to
simply quantize their observations and send them to the central
processor (during the uplink phase) and to emit the quantized
signals generated by the central processor (during the downlink
phase). Several recent works have proposed compression-based
architectures based on sequential source and channel coding. In
prior work, we proposed an integer-forcing architecture for the
uplink phase, and, in this paper, we propose an integer-forcing
architecture for the downlink phase. As part of the achievabil-
ity argument, we introduce a novel “reverse” integer-forcing
source coding strategy that can be used to quantize sources so
that their quantization noises are correlated, i.e., multivariate
compression. We also establish uplink-downlink duality between
our uplink and downlink integer-forcing architectures, and use
this as the basis for optimizing the beamforming, equalization,
and integer matrices.

I. INTRODUCTION

Cloud-Radio Access Networks (C-RAN) aim to better
utilize the limited resources available in cellular networks by
employing joint signal processing and coding techniques at a
central processor (CP) rather than relying on local encoding
and decoding at each basestation (BS) [1]. Although joint
signal processing and coding techniques are by now well un-
derstood, C-RANs face the additional obstacle that the links
between the BSs and the CP are rate-limited, and thus some
form of relaying is necessary. During the uplink phase, the
users emit codewords, the BSs observe the resulting channel
outputs and communicate with the CP, which decodes the
users’ messages. During the downlink phase, the CP has
messages for the users and communicates with the BSs,
which then emit signals that are observed and decoded by
the users. In prior work, we proposed an end-to-end integer-
forcing (IF) architecture for the uplink phase [2] and, in this
paper, we propose an IF architecture for the downlink phase
as well as establish uplink-downlink duality.

Several recent works have proposed downlink C-RAN
architectures, including data-sharing of users’ messages with
some of the BSs prior to encoding [3], precoding the data
digitally before sharing it with the BSs [4] (e.g., reverse
compute-and-forward) or compressing the data after encod-
ing and forwarding it to the BSs [5]. In this paper, we focus
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on compression-based schemes, where the CP generates
codes, applies a beamforming matrix, and then quantizes the
resulting analog signals so they can be relayed to the BSs
through the backhaul links. The intuitive way to do this is to
employ single-user encoders to compress each codeword and
forward it to the desired BS. However, one can employ more
sophisticated quantization strategies (such as joint typicality
or sequential encoding) to introduce correlation between the
quantization noises across BSs [5]. The correlation can then
be shaped so that, after passing through the channel, the
effective quantization noise seen by each user is minimized.
It has been shown that compression-based strategies based
on simultaneous joint typicality encoding and decoding can
operate within a constant gap of the capacity region [6].

Here, we propose an end-to-end IF architecture for down-
link C-RANs that combines integer-forcing beamforming
for broadcast channel coding and “reverse” integer-forcing
source coding for multivariate compression. Integer-forcing
beamforming, as introduced in [7], steers the channel matrix
towards an integer matrix, and precodes the messages by
applying the inverse integer matrix, so that by decoding a
linear combination, each user obtains its desired codeword. A
similar idea underpins reverse integer-forcing source coding,
which we propose in this paper: the encoder first applies the
inverse integer matrix to the sources, then applies a lattice
quantizer to each effective source, and finally takes linear
combinations according to the integer matrix. This yields
quantized versions of the original sources that have correlated
quantization noises, without the need for joint typicality or
sequential encoding. Overall, our architecture generates the
signals to be transmitted via integer-forcing beamforming
and quantizes them for the BSs via reverse integer-forcing
source coding. We also establish that our downlink IF scheme
satisfies uplink-downlink duality with the uplink IF scheme
we introduced in [2]. That is, by transposing and exchanging
the roles of the beamforming and equalization matrices and
transposing the integer matrix, we can attain the same sum
rate on the downlink as on the uplink (and vice versa).
One immediate application for this duality relationship is
to optimize the parameters of the downlink C-RAN using
algorithms originally developed to optimize uplink C-RAN
parameters.

The paper is organized as follows. Section II includes



some necessary lattice preliminaries. Section III introduces
the uplink channel and overviews our prior working on
IF for uplink C-RAN. Section IV introduces the downlink
channel and our IF scheme for downlink C-RAN, including
the reverse integer-forcing source coding scheme. Section V
establishes uplink-downlink duality and Section VI utilizes
this duality relationship as part of an optimization algorithm.
Finally, Section VII compares the performance of our scheme
to competing strategies via simulations.

We denote column vectors by boldface lowercase (e.g., x)
and matrices by boldface uppercase (e.g., X). Let X† denote
the transpose of a matrix X and let XA,B be the matrix
composed of the rows and columns of X with indices in the
sets A and B, respectively. When A = B, we write XA,B as
XA. We denote by DL, the set of square diagonal matrices
of size L. Define log+(x) ! max(0, log(x)). For simplicity,
we focus on real-valued channels.1 We use the superscripts
‘ul’ and ’dl’ to denote symbols defined for the uplink and
downlink channels, respectively.

II. LATTICE PRELIMINARIES

A lattice is a discrete additive subgroup of RT that is
closed under addition and reflection. The lattice quantizer
maps any point in RT to the nearest point in Λ, i.e.,

QΛ(x) ! argmin
λ∈Λ

∥x− λ∥2,

which in turns defines the fundamental Voronoi region V(Λ)
as the set of points in RT that quantize to the zero vector
with ties broken in a systematic way. The mod Λ operator
returns the lattice quantization error

[x] mod Λ ! x−QΛ(x).

The second moment of a lattice is

σ2(Λ) !
1

T
E∥x∥2

for x ∼ Unif (V (Λ)).
Lemma 1 (Crypto Lemma): For any real vector y ∈ RT and

a dither u ∼ Unif(V(Λ)) independent of y, we have that q =
[y + u] mod Λ is independent of y and q ∼ Unif(V(Λ)). See
[9] for a proof.

For nested lattices ΛC ⊂ ΛF , the associated nested lattice
codebook ΛF ∩V(ΛC) consists of all of the fine lattice points
that fall inside the fundamental Voronoi region of the coarse
lattice. Recall that nested lattices satisfy a distributive law:
for any x,y ∈ RT ,

[a [x] mod ΛC + b [y] mod ΛC ] mod ΛF

= [ax+ by] mod ΛF , ∀a, b ∈ Z

The following theorem restates nested lattice existence
results from [10] in a form suitable for establishing our
integer-forcing achievability results.

1Note that complex-valued channels can be handled via their real-valued
decompositions [8].

Lemma 2 ( [10, Theorem 2]): For θ1, . . . , θK , ϵ > 0, T
large enough, there exists a nested lattice chain ΛK ⊆ . . . ⊆
Λ1 (generated using Construction A from a p-ary linear code
for a prime p) such that

1. θk ≤ σ2(Λk) < θk + ϵ,

2. For any zeff = β0z0 +
K∑

k=1
βnzk where β0, . . . ,βK ∈

R, z0 ∼ N (0, I), zk ∼ Unif(V(Λk)) and if β2
0 +

K∑
k=1

β2
kθk < θm then Pr ([zeff] mod Λm ̸= zeff) ≤ ϵ,

3. For Λℓ ⊆ Λm we have

1

2
log

(
θℓ
θm

)
≤

1

T
log
∣∣V(Λℓ)∩Λm

∣∣ <
1

2
log

(
θℓ
θm

)
+ϵ.

III. UPLINK C-RAN

A. Uplink Channel Model

Consider an uplink C-RAN, where we have a set K !

{1, . . . ,K} of single-antenna users that want to communicate
to a set L ! {1, . . . , L} of single-antenna BSs. The kth user

has a message wul
k ∈

{
1, . . . , 2TRul

k

}
with rate Rul

k . The BSs
are connected to a CP through noiseless backhaul links with
finite sum-rate Ctot. The received signal at the BSs is given
by

Yul = HulXul + Zul, (1)

where Yul ! [yul
1 · · · yul

L]
†, yul

ℓ ∈ RT is the received signal at
the ℓth BS, T is the blocklength, Hul ∈ RL×K is the channel
from all users to all BSs, Xul ! [xul

1 · · · xul
K ]†, xul

k ∈ RT

is the signal transmitted from the kth user and Zul ∈ RL×T

is i.i.d. N (0, 1) noise. The matrix Xul satisfies a total power
constraint2 1

T ETr
(
XulXul†

)
≤ Ptotal.

The kth user encodes its message wul
k into a codeword

sul
k , then transmits xul

k = vul
k s

ul
k . For convenience, let us

define Xul = VulSul where Vul = diag(vul
1 , . . . , v

ul
K) is the

beamforming matrix and Sul = [sul
1 · · · sul

K ]† is the codeword
matrix. The total power constraint becomes

Tr
(
VulPulVul†

)
≤ Ptotal (2)

where Pul ! 1
T E(S

ulSul†) is a diagonal coding power matrix.

B. Integer-Forcing for Uplink C-RAN

We begin with an overview of the integer-forcing scheme
proposed for uplink C-RAN in [2]. Without loss of generality,
we assume for both the source and channel coding stages
that the identity permutation is admissible [11, Definition 2],
which will impose constraints on the effective noises and
integer matrices.
Uplink Source Coding. The ℓth BS uses a lattice codebook
Cℓ ! ΛF,ℓ∩V(ΛC,ℓ) with rate Cul

ℓ to quantize its observation
yul
ℓ ,

λul
ℓ =

[
QF,ℓ(y

ul
ℓ + uul

ℓ )
]
mod ΛC,ℓ (3)

2Although standard uplink channel models employ individual power
constraints on the users, a total power constraint is necessary here to enable
us to establish uplink-downlink duality.



where uul
ℓ is a random dither independent of yul

ℓ and uni-
formly distributed over V(ΛF,ℓ), ΛC,L ⊆ · · · ⊆ ΛC,1 are L
nested coarse lattices nested in L fine lattices ΛF,1 ⊆ · · · ⊆
ΛF,L and all lattices are chosen according to Lemma 2. The

ℓth BS then forwards the index iul
ℓ ∈

{
1, . . . , 2TCul

ℓ

}
of λul

ℓ

to the CP through the backhaul link.

Upon receiving the indices iul
1 , . . . , i

ul
L, the CP first recovers

λul
1 , . . . ,λ

ul
L, removes the dithers uul

1 , . . . ,u
ul
L to get

ỹul
ℓ =

[
λul
ℓ − uul

ℓ

]
mod ΛC,ℓ

(a)
=
[
yul
ℓ + qul

ℓ

]
mod ΛC,ℓ

=
[
ŷul
ℓ

]
mod ΛC,ℓ (4)

where qul
ℓ = −[yul

ℓ + uul
ℓ ] mod ΛF,ℓ ∼ Unif (V(ΛF,ℓ)),

(a) holds from the distributive law and Lemma 1 and
ŷul
ℓ ! yul

ℓ + qul
ℓ , then the CP proceeds to decode integer-

linear combinations vul
s,1, . . . ,v

ul
s,L where

vul
s,m !

L∑

ℓ=1

aul
s,m,ℓŷ

ul
ℓ , ∀m ∈ L, aul

s,m,ℓ ∈ Z.

At the mth decoding step (i.e., while recovering vul
s,m)

and assuming correct recovery of vul
s,1, . . . ,v

ul
s,m−1, the CP

first recovers tul
m,ℓ !

[
yul
ℓ + qul

ℓ

]
mod ΛC,m, ∀ℓ = 1, . . . , L

using [2, Lemma 12] as an intermediate decoding point.
Upon recovering tul

m,1, . . . , t
ul
m,L, the CP makes the esti-

mate

v̂ul
s,m =

[
L∑

ℓ=1

aul
s,m,ℓt

ul
m,ℓ

]

mod ΛC,m

(a)
=

[
L∑

ℓ=1

aul
s,m,ℓŷ

ul
ℓ

]

mod ΛC,m
w.h.p.
=

L∑

ℓ=1

aul
s,m,ℓŷ

ul
ℓ (5)

where (a) holds from the distributive law and (b) holds w.h.p.
from Lemma 2 if 1

T E∥v
ul
s,m∥2 < σ2(ΛC,m).

Lemma 3 ( [2, Lemma 9]): For a fixed channel Hul,
beamforming matrix Vul, coding power matrix Pul, effective
covariance matrix Kul

Y Y ! HulVulPulVul†Hul† + I and
by choosing a full-rank integer matrix Aul

s with full-rank
submatrices3 Aul

s,[1:m] for m = 1, . . . , L and target distortion

levels dul
1 , . . . , d

ul
L such that

Rul
s,ℓ !

1

2
log

(
a

ul†
s,ℓ

(
Kul

Y Y +Dul
)
aul
sℓ

dul
ℓ

)

L∑

ℓ=1

Rul
s,ℓ ≤ Ctot

a
ul†
s,1(K

ul
Y Y +Dul)aul

s,1 < · · · < a
ul†
s,L(K

ul
Y Y +Dul)aul

s,L , (6)

the integer-forcing source coding scheme allows the CP to
recover

Ŷul = HulVulSul + Zul +Qul (7)

3Without loss of generality, we may assume that the BSs have been re-
indexed so that this assumption holds.

with high probability where Ŷul ! [ŷul
1 · · · ŷul

L]
†, Qul !

[qul
1 · · · qul

L]
† has effective covariance matrix Dul !

1
T E(Q

ulQul†) = diag(dul
1 , . . . , d

ul
L) and a

ul†
s,ℓ is the ℓth row

of Aul
s .

Uplink Channel Coding. The users draw their codewords
sul
1 , . . . , s

ul
K from nested lattice codebooks, which are selected

via Lemma 2. After reconstructing the quantized BS obser-
vations Ŷul, the CP proceeds to successively decode integer-
linear combinations vul

c,1, . . . ,v
ul
c,K of channel codewords

sul
1 , . . . , s

ul
K where

vul
c,m !

K∑

k=1

aul
c,m,ks

ul
k , ∀m ∈ K, ac,m,k ∈ Z.

At the mth channel decoding step (i.e., when decoding
vul
c,m) and assuming correct decoding of vul

c,1, . . . ,v
ul
c,m−1,

the CP first employs a linear equalizer bul
m to obtain

bul†
m Ŷul

= vul†
c,m + (bul†

m HulVul − aul†
c,m)Sul + bul†

m Zul + bul†
m Qul

︸ ︷︷ ︸
z

ul†
eff,m

where the effective noise zul
eff,m has an effective variance

(σul
m)2 !

1

T
E∥zul

eff,m∥2 (8)

= ∥(bul†
m HulVul − aul†

c,m)Pul 1
2 ∥2 + ∥bul

m∥2 + bul†
m Dulbul

m.

It can be shown [12, Lemma 13] that the achievable end-
to-end sum-rate for this IF strategy is

Rul
IF-CRAN(H

ul) = max
B

ul∈R
K×L,Aul

c∈Z
K×K

rank(Aul
c )=K

K∑

k=1

1

2
log+

(
βul
k

)
(9)

where βul
k = P ul

k /(σul
k )

2 denotes the kth effective SINR and
the kth effective variance (σul

k )
2 is given by (8).

Finally, it is worth noting that the MMSE equalizer that
minimizes (8) and the corresponding variance are given by

bul†
m = aul†

c,mPul†Vul†Hul†
(
HulVulPulVul†Hul† + I+Dul

)−1

(10)

(σul
m)2 = ∥Ful

c a
ul
c,m∥2 (11)

where Ful
c is any matrix that satisfies

Ful†
c Ful

c =
(
(Pul)−1 +Vul†Hul†

(
I+Dul

)−1
HulVul

)−1
.

(12)

Lemma 4: For an uplink channel Hul, beamforming matrix
Vul, coding power matrix Pul, coding power vector ρul =
diag(Pul) and equalization matrix Bul, we can write (8) as

(
I− diag(βul)Mul

)
ρul = Julβul (13)

where βul = [βul
1 · · ·βul

K ]†, βul
k = P ul

k /(σul
k )

2 is the kth

effective SINR, Jul = diag(Jul
1 , . . . , J

ul
K), Jul

k = ∥bul
k ∥

2 +∑
i

∑
j(b

ul
k,i)

2Cul
i,j∥a

ul
s,j∥

2, M ul
k,ℓ = (bul†

k hul
ℓ v

ul
ℓ − aul

c,k,ℓ)
2 +∑

i

∑
j(b

ul
k,i)

2Cul
i,j(a

ul†
s,jh

ul
ℓ )

2(vul
ℓ )

2 is the (k, ℓ)th element of

Mul and hul
ℓ is the ℓth column of Hul.

The proof of Lemma 4 is given in Appendix A.



IV. DOWNLINK C-RAN

In the downlink channel, we employ the basic idea from
reverse compute-and-forward [4]: the encoder first applies
the inverse integer matrix so that, when an individual user
(or BS) obtains a linear combination of codewords, it can
directly obtain its desired message (or quantized source).
For the source coding phase, we introduce an integer-forcing
multivariate compression scheme that allows us to create
correlated quantization noises, which ultimately help lower
the effective noise variances seen at the users.

A. Downlink Channel

Consider the downlink channel where there is a CP
connected to a set L of BSs through backhaul links with
sum-rate Ctot. The CP wants to communicate K messages

wdl
k ∈ {1, . . . , 2TRdl

k} with rate Rdl
k , for k ∈ K, to a set of

users K where the kth user is interested in wdl
k . The received

signal across all users is

Ydl = HdlXdl + Zdl (14)

where Ydl ! [ydl
1 · · · ydl

K ]†, ydl
k ∈ RT is the received signal

at the kth user, Hdl ∈ RK×L is the channel matrix from the
L BSs to the K users, Xdl ! [xdl

1 · · · xdl
L]

†, xdl
ℓ ∈ RT is

the transmitted signal from the ℓth BS and Zdl ∈ RK×T

is AWGN. Similar to the uplink, we have a total power
constraint 1

T ETr
(
XdlXdl†

)
≤ Ptotal.

B. Integer-Forcing for Downlink C-RAN

We begin with an overview of the integer-forcing beam-
forming strategy for downlink channel coding, which was
originally proposed in [4]. Afterwards, we introduce our
integer-forcing multivariate compression strategy.

Downlink Channel Encoding. Due to space limitations, we
only present integer-forcing beamforming for the special case
of symmetric rates, and point to [11, Section VI] for the
asymmetric case. The CP first forms the precoded messages
w̃dl

1 , . . . , w̃
dl
K as suggested by [4]:

⎡

⎢⎣
w̃

dl†
1
...

w̃dl†
K

⎤

⎥⎦ ! Adl
c,inv

⎡

⎢⎣
w

dl†
1
...

wdl†
K

⎤

⎥⎦ (15)

where p is a prime, wdl
k is the p-ary expansion of wdl

k , Adl
c,inv ∈

ZK×K
p is the inverse of [Adl

c ] mod p over Zp, and each row

of Adl
c ∈ ZK×K contains the coefficients of the integer-linear

combinations to be decoded at one of the users. The precoded
messages are then mapped to lattice codewords sdl

k ∈ RT for
k ∈ K. The pre-inversion step in (15) allows the mth user,
after decoding

vdl
c,m !

K∑

k=1

adl
c,m,ks

dl
k

where adl
c,m,k is the (m, k)th element of Adl

c , to map vdl
c,m

back to the desired message wdl
m.

After forming the channel codewords Sdl ! [sdl
1 · · · sdl

K ]†,
the CP uses a beamforming matrix Bdl ∈ RL×K to form

S̃dl = BdlSdl (16)

where S̃dl ! [̃sdl
1 · · · s̃dl

L]
†.

Downlink Source Coding. The CP then compresses
s̃dl
1 , . . . , s̃

dl
L using a reverse integer-forcing source coding. Due

to space limitations, we only provide a succinct description
of our coding scheme. Detailed proofs will be provided in
an extended version of this work. The goal is to quantize
s̃dl
1 , . . . , s̃

dl
L so that the reconstructed versions at the BSs have

correlated quantization noises. This idea was first introduced
in [5] using Gaussian codebooks. Toward this end, the CP
first pre-inverts S̃dl to get

Vdl
s =

(
Adl

s,inv

)−1
S̃dl (17)

where Vdl
s ! [vdl

s,1 · · · vdl
s,L]

† and Adl
s is a full-rank integer

matrix with full-rank submatrices Adl
s,[1:m], ∀m ∈ L, and

As,inv is the inverse of [Adl
s ] mod p over Zp. Next, using lat-

tice codebooks Cℓ ! ΛF,ℓ ∩ V(ΛC,ℓ), where ΛC,1, . . . ,ΛC,L

are L coarse lattices nested in L fine lattices ΛF,1 ⊆ · · · ⊆
ΛF,L, all are chosen according to Lemma 2, the CP quantizes
and forms integer-linear combinations

λdl
m =

[
m∑

k=1

adl
m,kQΛF,k

(vdl
s,k + udl

k + gdl
k )− tdl

F,m

]

mod ΛC,m

(18)

where udl
1 , . . . ,u

dl
L are independent dithers with udl

k ∼
Unif (V (ΛF,k)) , ∀k ∈ L and gdl

1 , . . . ,g
dl
m, tdl

F,m are DPC

parameters chosen as in Appendix D.
The index of λdl

m is then forwarded to BS m to recover

ŝdl
m =

[

λdl
m −

L∑

k=1

adl
m,ku

dl
k

]

mod ΛC,m

(a)
=

[
L∑

k=1

adl
m,k

(
vdl
s,k + qdl

k

)
]

mod ΛC,m

=

[

s̃dl
m +

L∑

k=1

adl
m,kq

dl
k

]

mod ΛC,m

(b)
= s̃dl

m +
L∑

k=1

adl
m,kq

dl
k (19)

where qdl
k = −[vdl

s,k + udl
k + gdl

k ] mod ΛF,k is uniformly
distributed over V(ΛF,k), (a) follows from Appendix D and
(b) follows w.h.p. if

var
(
s̃dl
m

)
+ adl†

s,mDdladl
s,m < σ2(ΛC,m)

where Ddl is the covariance matrix of Qdl ! [qdl
1 · · · qdl

L]
†

and var
(
s̃dl
m

)
! 1

T
E∥s̃dl

m∥2 = bdl†
m Pdlbdl

m.
Theorem 1: For the distributed decompression problem

shown in Fig. 1, where the source wants to convey s̃dl
1 , . . . , s̃

dl
L

to L independent decoders and the ℓth decoder wants to
decode ŝdl

ℓ ! s̃dl
ℓ + q̃dl

ℓ with a quantization noise Q̃dl =



s̃dl
1

s̃dl
L

Encoder
...

Rdl
s,L

Rdl
s,1

λdl
L

λdl
1 Decoder 1

Decoder L

...

ŝdl
1 ! s̃dl

1 + q̃dl
1

ŝdl
L ! s̃dl

L + q̃dl
L

Fig. 1: The distributed decompression problem with a single
source and distributed L decoders.

[q̃dl
1 · · · q̃dl

L]
† that has a target covariance matrix Ω !

Adl
s D

dlAdl†
s for Adl

s ∈ ZL×L and Ddl ∈ DL, the following
rates are achievable

Rdl
s,ℓ !

1

2
log

(
var
(
s̃dl
ℓ

)
+ a

dl†
s,ℓD

dladl
s,ℓ

ddl
ℓ

)

. (20)

The proof of Theorem 1 is omitted due to space limitations.
Using Theorem 1 and by choosing Adl

s and Ddl such that
L∑

ℓ=1
Rdl

s,ℓ ≤ Ctot, the BSs can recover, w.h.p., and re-transmit

Xdl = S̃dl + Q̃dl

where Q̃dl ! Adl
s Q

dl is correlated quantization noise.
Downlink Channel Decoding. As discussed earlier, the kth

user wants to decode v
†dl
c,k = a

dl†
c,kS

dl, which can be mapped

back to its desired message wdl
k . To do so, it equalizes its

received signal to get

ỹ
dl†
k ! vdl

k y
dl†
k

= vdl†
c,k + zdl†

eff (21)

where z
dl†
eff ! (vdl

k h
dl†
k Bdl −a

dl†
c,k)S

dl +vdl
k z

dl†
k +vdl

k h
dl†
k Adl

s Q
dl

is an effective noise with effective variance

(σdl
k )

2 !
1

T
E(∥zdl

eff∥
2) = ∥

(
vdl
k h

dl†
k Bdl − a

dl†
c,k

)
Pdl 1

2 ∥2

+ (vdl
k )

2 + (vdl
k )

2h
dl†
k Adl

s D
dlAdl†

s hdl
k . (22)

It can be shown that the achievable sum-rate for the IF
strategy with algebraic successive decompression and parallel
channel decoding is

Rdl
IF-CRAN(H

dl) = max
B

dl∈R
L×K ,Aul

c∈Z
K×K

rank(Adl
c )=K

K∑

k=1

1

2
log+

(
βdl
k

)
.

(23)

where βdl
k ! P dl

k /(σdl
k )

2 is the kth effective SINR for the kth

decoded combination (user).
Finally, the MMSE equalizer that minimizes the variance

in (22) and the corresponding variance are given by

vdl
m =

adl†
c,mPdl†Bdl†hdl

m

1 + h
dl†
m

(
Adl

s D
dlA

dl†
s +BdlPdlBdl†

)
hdl
m

(24)

(σdl
m)2 = ∥Fdl

c,madl
c,m∥2 (25)

where Fdl
c,m is the Cholesky decomposition Fdl†

c,mFdl
c,m =(

(Pdl)−1 +Bdl†hdl
m

(
1 + hdl†

m Adl
s D

dlAdl†
s hdl

m

)−1
hdl†
m Bdl

)−1
.

Lemma 5: Let

βdl !

⎡

⎢⎣
P dl
1 /(σdl

1 )
2

...
P dl
K/(σdl

K)2

⎤

⎥⎦ and ρdl !

⎡

⎢⎣
P dl
1
...

P dl
K

⎤

⎥⎦ (26)

denote the effective SINR and coding power vectors, respec-
tively, then (8) can be written as

(
I− diag(βdl)Mdl

)
ρdl = Jdlβdl (27)

where M dl
ℓ,k = (hdl†

ℓ bdl
k v

dl
ℓ − adl

c,ℓ,k)
2 +∑

i

∑
j b

dl2
i,kC

dl
j,i(ã

dl†
s,jh

dl
ℓ )

2(vdl
ℓ )

2 is the (ℓ, k)th element

of Mdl, hdl
ℓ is the ℓth column of Hdl, ãdl

s,j is the j th column

of Adl
s and Jdl = diag ((vdl

1 )
2, . . . , (vdl

K)2).
The proof of Lemma 5 is given in Appendix B.

V. UPLINK DOWNLINK DUALITY FOR IF C-RAN

We now turn to establishing uplink-downlink duality. The
next two lemmas allow us to express the distortion levels
achieved by both the IF downlink scheme and the IF uplink
scheme in terms of the rate allocation of the backhaul
network for the uplink channel.

Lemma 6: For the uplink C-RAN with sum-rate back-
haul constraint Ctot and an integer matrix Aul

s that satisfies
rank(Aul

s,[1:m]) = m, ∀m ∈ L, the achievable distortion

levels dul
1 , . . . , d

ul
L can be written in terms of the achievable

compression rates Cul
1 , . . . , C

ul
L as

dul = Culeul (28)

where dul
ℓ and eul

ℓ ! a
ul†
s,ℓ(H

ulVulPulVul†Hul†+I)aul
s,ℓ are the

ℓth elements of dul and eul, respectively, while

Cul !

⎡

⎢⎢⎣

22C
ul
1 − (aul

s,1,1)
2 . . . −(aul

s,1,L)
2

...
. . .

...

−(aul
s,L,1)

2 . . . 22C
ul
L − (aul

s,L,L)
2

⎤

⎥⎥⎦

−1

(29)

for some rate allocation that satisfies
L∑

ℓ=1
Cul

ℓ ≤ Ctot.

The proof of Lemma 6 follows from Lemma 3.
Lemma 7: For the downlink C-RAN with sum-rate capacity

constraint Ctot and integer matrix Adl
s = Aul†

s , the following
distortion levels ddl

1 , . . . , d
dl
L are achievable using the previ-

ously discussed compression scheme

ddl = Cdledl (30)

where ddl
ℓ and edl

ℓ ! b
dl†
ℓ Pdlbdl

ℓ are the ℓth elements of ddl

and edl, respectively, while

Cdl !

⎡

⎢⎢⎣

22C
ul
1 − (adl

s,1,1)
2 . . . −(adl

s,1,L)
2

...
. . .

...

−(adl
s,L,1)

2 . . . 22C
ul
L − (adl

s,L,L)
2

⎤

⎥⎥⎦

−1

= Cul†



where Cul
1 , · · · , C

ul
L are the achievable rates for the corre-

sponding uplink channel. The proof of Lemma 7 is given in
Appendix C.

Remark 1: For the dual channel Hdl = Hul† and by choos-
ing Bdl = Bul†,Vdl = Vul,Adl

c = Aul†
c and Adl

s = Aul†
s , it

can be shown that

Cdl = Cul† (31)

Mdl = Mul†. (32)

Theorem 2: Let Rul
IF-CRAN be the achievable sum-rate using

integer-forcing equalization and compression for a given
uplink channel Hul, integer matrices Aul

c and Aul
s , coding

power matrix Pul, equalization matrix Bul and beamforming
matrix Vul that satisfies the total power constraint Ptotal.
Then, for the dual downlink channel Hdl = Hul†, we can
achieve a sum-rate Rdl

IF-CRAN ≥ Rul
IF-CRAN.

Proof : By setting Bdl,Vdl,Adl
c and Adl

s as in Remark
1, we have Mdl = Mul†. Let dul ≥ 0 be a solution for
(Cul)−1x = eul where

(
Cul
)−1

is a Z-matrix and eul >
0. Then, it follows that (Cul)−1 is an M-matrix (and the
same argument holds for (Cdl)−1). Using [13, Theorem 1],
it follows that Cdl (as well as Cul) is a non-negative matrix
and so is Mdl (as well as Mul), respectively. This implies
that (I− diag (βul)Mul) is a Z-matrix.

Similarly, since ρul ≥ 0 is a solution for (13) where
Julβul > 0, it follows directly that (I− diag (βul)Mul) is an
M-matrix. Furthermore, it can be shown that diag (βul)Mdl

and diag (βul)Mul have the same eigenvalues. Thus, by
setting βdl = βul, we deduce from [13, Theorem 1] that there
exist a unique non-negative downlink coding power vector

ρdl = (I− diag (βdl)Mdl)−1Jdlβdl. (33)

Now, it remains to check that this coding power vector
satisfies the total power constraints. To this end, define

ρul
tot ! Gulρul ∈ R

K

ρdl
tot ! Gdlρdl ∈ R

L

as the power allocated across transmitters for the uplink and
downlink, where Gul = diag ((vul

1 )
2, . . . , (vul

K)2) and Gdl
ℓ,k =

(bdl
ℓ,k)

2 +
∑L

j=1

∑L
i=1(a

dl
s,ℓ,j)

2Cdl
j,i(b

dl
i,k)

2, ∀ℓ ∈ L and ∀k ∈
K.

Since ρul satisfies the total power constraint, we have

Ptotal = 1†ρul
tot

= 1†Gul(I− diag(βul)Mul)−1Julβul

= 1†Gul(I− diag(βul)Mul)−1diag(βul)Jul1

= 1†Gul(diag(βul)−1 −Mul)−1Jul1

= 1†Jdl†(diag(βdl)−1 −Mdl†)−1Jul1

= 1†diag(βdl)Jdl†(I−Mdl†diag(βdl))−1Jul1

= βdl†Jdl†(I−Mdl†diag(βdl))−1Jul1

= βdl†Jdl†(I−Mdl†diag(βdl))−1Gdl†1

= ρdl†
tot1.

Finally using (9) and (23), similar to [11], and since the
achievable SINRs for the uplink and downlink are equal, we
have our result.

Theorem 3: Let Rdl
IF-CRAN be the achievable sum-rate

using integer-forcing equalization and compression for a
given downlink channel Hd, integer matrices Ad,c and
Ad,s, coding power matrix Pd, equalization matrix Vd

and beamforming matrix Bd that satisfies the total power
constraint Ptotal. Then, for the dual uplink channel Hu = H

†
d,

we can achieve a sum-rate Rul
IF-CRAN ≥ Rdl

IF-CRAN.

Proof : The proof is similar to the proof of Theorem 2 and
omitted due to space limitations.

VI. DOWNLINK IF-CRAN OPTIMIZATION

The problem of choosing the integer matrix Adl
c and beam-

forming matrix Bdl to maximize the SINRs was considered
in [11] for the broadcast channel. Here, we have the added
challenge of selecting a source coding integer matrix Adl

s as
well as distortion levels Ddl.

A. One-shot Duality Algorithm

Our approach is to first choose Aul
c , Bdl, Aul

s and Dul

that maximize the sum-rate of the corresponding dual uplink
channel Hul = Hdl†, then set

Adl
c = Aul†

c

Bdl = Bul†

Adl
s = Aul†

s

ddl = Cul†edl (34)

to achieve the same sum-rate on the downlink channel.
Unfortunately, optimizing Aul

c , Bdl, Aul
s and Dul for the

corresponding uplink channel is also challenging. In prior
work [2], we proposed a suboptimal solution, which demon-
strated good performance via simulations, and we will use
this as a part of our approach. The details for our optimization
algorithm is given below in Algorithm 1.

VII. SIMULATIONS

In this section, we show the performance (in terms of av-
erage sum-rate in bits/sec/Hz) of the proposed IF architecture
and compare it to independent compression with successive
channel encoding as well as multivariate compression with
successive channel encoding. The optimization of the rate
achieved by multivariate compression with dirty paper en-
coding is carried out jointly using the successive convex
approximation algorithm proposed in [5]. (Note that this op-
timization must be performed over all K! possible decoding
orders.) For more details about multivariate compression, we
refers the readers to [5].

For our simulations, we generated 500 realizations for the
channel matrix Hdl, each elementwise i.i.d. N (0, 1). We also
fix the number of BSs to L = 4. Figure 2 shows the case



Algorithm 1 One-shot duality

1: procedure DUALITY(Hdl, Ctot,tol)
2: Initialization: Set Hul = Hdl†, Vul = I, Pul = SNR

K
I,

dmin = 0 and dmax large enough such that
L∑

ℓ=1
Rul

s,ℓ < Ctot.

3: while Ctot −
L∑

ℓ=1
Rul

s,ℓ > tol or
L∑

ℓ=1
Rul

s,ℓ > Ctot do

4: if
L∑

ℓ=1
Rul

s,ℓ < Ctot then

5: dmax = dul/2.
6: else

7: dmin = dul/2.
8: end if

9: dul = (dmin + dmax)/2.
10: Ful

s = chol(Kul
Y Y /d

ul + I)
11: Aul

s = LLL-reduction(Ful
s ).

12: Rul
s,ℓ =

1
2 log

+(∥Ful
s a

ul
s,ℓ∥

2)
13: end while
14: Calculate Cul using (29).
15: Calculate Ful

c using (12).
16: Aul

c = LLL-reduction(Ful
c ).

17: Calculate Bul using (10).
18: return (Aul

c ,A
ul
s ,C

ul).
19: end procedure

of L = 4 users where we fix the total SNR = 30dB and
plot the average sum-rate with the sum-rate of the backhaul
network Ctot. The performance of the proposed IF scheme is
quite close to that of multivariate compression combined with
dirty paper coding, and has an advantage over multivariate
compression with single-user decoding as well as single-
user compression and channel coding. Figure 3 shows the
average sum-rate against the SNR for fixed total backhaul
rate Ctot = 20 for the same 4 × 4 channel. Again, we
observe that our integer-forcing scheme is competitive with
multivariate compression combined with dirty paper coding,
and outperforms schemes that rely on single-user source
coding and/or channel coding.

We also note that, rather than a “one-shot” algorithm, we
can iterate between the uplink and downlink to optimize
the parameters. However, our simulations did not show
any significant performance improvement for this iterative
algorithm.
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APPENDIX

A. Proof of Lemma 4

We start by multiplying (8) by P ul
k /(σul

k )
2 to get

P ul
k

= βul
k

(
∑

ℓ

(bul†
k hul

ℓ v
ul
ℓ − aul

c,k,ℓ)
2P ul

ℓ + ∥bul
k ∥

2 +
∑

i

(bul
k,i)

2dul
i

)





= βul
k

⎛

⎝
∑

ℓ

(bul†
k hul

ℓ v
ul
ℓ − aul

c,k,ℓ)
2P ul

ℓ +
∑

i

∑

j

(bul
k,i)

2Cul
i,j∥a

ul
s,j∥

2

+∥bul
k ∥

2 +
∑

i

∑

j

(bul
k,i)

2Cul
i,ja

ul†
s,j(H

ulVulPulVul†Hul†)aul
s,j

⎞

⎠

= βul
k

(
∑

ℓ

(bul†
k hul

ℓ v
ul
ℓ − aul

c,k,ℓ)
2P ul

ℓ + Jul
k,k

+
∑

i

∑

j

(bul
k,i)

2Cul
i,ja

ul†
s,j

(
∑

ℓ

hul
ℓ h

ul†
ℓ (vul

ℓ )
2P ul

ℓ

)

aul
s,j

⎞

⎠

= βul
k

∑

ℓ

M ul
k,ℓP

ul
ℓ + βul

k J
ul
k,k (35)

Finally, (13) follows from the previous equation by taking
k = 1, . . . ,K .

B. Proof of Lemma 5

Similar to Appendix A, multiplying (22) by P dl
k /(σdl

k )
2,

we get

P dl
k = βdl

k

∑

ℓ

(bdl†
ℓ hdl

k v
dl
k − adl

c,k,ℓ)
2P dl

ℓ + βdl
k (v

dl
k )

2

+ βdl
k (v

dl
k )

2
∑

j

(hdl†
k ãdl

s,j)
2ddl

j

= βdl
k

∑

ℓ

(bdl†
ℓ hdl

k v
dl
k − adl

c,k,ℓ)
2P dl

ℓ + βdl
k (v

dl
k )

2

+ βdl
k

∑

j

(hdl†
k ãdl

s,j)
2c

dl†
j edl

= βdl
k

∑

ℓ

(bdl†
ℓ hdl

k v
dl
k − adl

c,k,ℓ)
2P dl

ℓ + βdl
k (v

dl
k )

2

+ βdl
k

∑

j

∑

i

(hdl†
k ãdl

s,j)
2Cdl

j,ib
dl†
i Pdlbdl

i

= βdl
k

∑

ℓ

(bdl†
ℓ hdl

k v
dl
k − adl

c,k,ℓ)
2P dl

ℓ + βdl
k (v

dl
k )

2

+ βdl
k

∑

ℓ

∑

j

∑

i

(hdl†
k ãdl

s,j)
2Cdl

j,i(b
dl
i,ℓ)

2P dl
ℓ

= βdl
k

∑

ℓ

M dl
k,ℓP

dl
ℓ + βdl

k J
dl
k,k. (36)

Finally, (27) follows from the previous equation by taking
k = 1, . . . ,K .

C. Proof of Lemma 7

We start by computing ddl
1 , . . . , d

dl
L such that

1

2
log

(
b

dl†
ℓ Pdlbdl

ℓ + a
dl†
s,ℓD

dladl
s,ℓ

ddl
ℓ

)

= Cul
ℓ , ℓ = 1, . . . , L

(37)

where (Cul
1 , . . . , C

ul
L ) is the compression rate allocation

achieved in the uplink. Without loss of generality4, let ddl
L <

4If not, we can re-index the BSs, such that the distortion levels are
monotonically decreasing

· · · < ddl
1 . Now, we argue that the distortion levels ddl

1 , . . . , d
dl
L

are achievable under some compression rate allocation for the
backhaul network. This follows from

L∑

ℓ=1

1

2
log

(
b

dl†
ℓ Pdlbdl

ℓ + a
dl†
s,ℓD

dladl
s,ℓ

ddl
πdl(ℓ)

)

=
1

2
log

⎛

⎜⎜⎜⎝

L∏
ℓ=1

b
dl†
ℓ Pdlbdl

ℓ + a
dl†
s,ℓD

dladl
s,ℓ

L∏

ℓ=1
ddl
πdl(ℓ)

⎞

⎟⎟⎟⎠

=
1

2
log

⎛

⎜⎜⎜⎝

L∏

ℓ=1
b

dl†
ℓ Pdlbdl

ℓ + a
dl†
s,ℓD

dladl
s,ℓ

L∏
ℓ=1

ddl
ℓ

⎞

⎟⎟⎟⎠

=
L∑

ℓ=1

1

2
log

(
b

dl†
ℓ Pdlbdl

ℓ + a
dl†
s,ℓD

dladl
s,ℓ

ddl
ℓ

)

(38)

=
L∑

ℓ=1

Cul
ℓ ≤ Ctot, ℓ = 1, . . . , L. (39)

where the permutation πdl is chosen such that ddl
πdl(L) < · · · <

ddl
πdl(1).

D. Proof of (19).

For tractability, we drop dl in the superscript and s in the
subscript. Let us assume full-rank submatrices A[1:m]. The
compression (18) can be written as

λm =

[
m∑

k=1

am,kQΛF,k
(vk + uk + gk)− tF,m

]

mod ΛC,m.

(40)

It is worth noting that choosing tF,m ∈ ΛF,m results in
λm ∈ ΛF,m ∩ V(ΛC,m). Now it remains to show that there
is a choice for g1, . . . ,gm and tF,m ∈ ΛF,m such that at the
mth BS we recover (19).

The mth BS removes the dithers and recovers
[

λm −
L∑

k=1

am,kuk

]

mod ΛC,m
(a)
=

[
m∑

k=1

am,k (vk + gk + qk)− tF,m −
L∑

k=m+1

am,kuk

]

mod ΛC,m

(b)
=

[
L∑

k=1

am,k (vk + qk)

]

mod ΛC,m (41)

where qk = −[vk + uk + gk] mod ΛF,k, (a) holds from
the distributive law and the Crypto lemma, (b) holds if we
choose g1, . . . ,gm such that

m∑

k=1

am,kgk − tF,m =
L∑

k=m+1

am,k (vk + qk + uk) . (42)



which can be written as

L∑

k=1

am,kgk − tF,m =
L∑

k=m+1

am,kQF,k (vk + gk + uk) .

(43)

In matrix form, for m = 1, . . . , L − 1 we can write (43)
as
⎡

⎢⎣
a1,1 . . . a1,L

...
. . .

...
aL−1,1 . . . aL−1,L

⎤

⎥⎦

⎡

⎢⎣
g1
...
gL

⎤

⎥⎦−

⎡

⎢⎣
tF,1

...
tF,L−1

⎤

⎥⎦ (44)

=

⎡

⎢⎢⎢⎣

a1,2 a1,3 . . . a1,L
0 a2,3 a2,L
...

. . .
...

0 . . . aL−1,L

⎤

⎥⎥⎥⎦

⎡

⎢⎣
QF,2(v2 + u2 + g2)

...
QF,L(vL + uL + gL)

⎤

⎥⎦

(45)

To solve (44), we write gm in terms of L−m components

gm !

L−m∑

k=1

g(k)
m (46)

where g
(k)
m = zm,kQF,m+k (vm+k + gm+k + um+k) is its

kth component and zm,k ∈ Z is going to be chosen later.
Using (46), we can write (44) as

⎡

⎢⎢⎢⎣

a1,1
0
...
0

⎤

⎥⎥⎥⎦
g
(1)
1

︸ ︷︷ ︸
desired

+

⎡

⎢⎢⎢⎣

0
a2,1

...
aL−1,1

⎤

⎥⎥⎥⎦
g
(1)
1

︸ ︷︷ ︸
interference

+

⎛

⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎣

a1,1
a2,1
0
...
0

⎤

⎥⎥⎥⎥⎥⎦
g
(2)
1 +

⎡

⎢⎢⎢⎢⎢⎣

a1,2
a2,2
0
...
0

⎤

⎥⎥⎥⎥⎥⎦
g
(2)
2

⎞

⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
desired

+

⎛

⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎣

0
0

a3,1
...

aL−1,1

⎤

⎥⎥⎥⎥⎥⎦
g
(2)
1 +

⎡

⎢⎢⎢⎢⎢⎣

0
0

a3,2
...

aL−1,2

⎤

⎥⎥⎥⎥⎥⎦
g
(2)
2

⎞

⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
interference

+ . . .−

⎡

⎢⎣
tF,1

...
tF,L−1

⎤

⎥⎦

=

⎡

⎢⎢⎢⎣

a1,2
0
...
0

⎤

⎥⎥⎥⎦
QF,2(v2 + u2 + g2) + · · ·+

⎡

⎢⎣
a1,L

...
aL−1,L

⎤

⎥⎦QF,L(vL + uL).

(47)

Then it can be shown that for m = 1, . . . , L − 1 by
choosing
⎡

⎢⎢⎣

g
(m)
1
...

g
(m)
m

⎤

⎥⎥⎦ = inv(A[1:m])A[1:m],m+1QΛF,m+1
(vm+1 + gm+1 + um+1)

(48)

tF,m+1 =
m∑

k=1

am+1,kg
(m)
k ∈ ΛF,m+1 (49)

we get our result at the mth BS. The idea behind this choice

is to choose the mth components g
(m)
1 , . . . ,g(m)

m to match the
mth term on the RHS in (47), however, this will introduce
the mth interference term on the LHS which can be cancelled
out by the terms tF,m+1, . . . , tF,L−1 for each decompression
step m = 1, . . . , L− 1. Note that tF,1 = 0 since there is no
interference on the first decompression step and gL = 0 since
there are no missing terms in λL and it is sufficient to choose

tF,L =
L∑

k=1

aL,kgk. (50)

for (19) to hold for m = L.
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