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SUMMARY

An infectious disease typically spreads via contact between infected and susceptible individuals. Since
the small-scale movements and contacts between people are generally not recorded, available data
regarding infectious disease are often aggregations in space and time, yielding small-area counts of
the number infected during successive, regular time intervals. In this paper, we develop a spatially
descriptive, temporally dynamic hierarchical model to be �tted to such data. Disease counts are viewed as
a realization from an underlying multivariate autoregressive process, where the relative risk of infection
incorporates the space–time dynamic. We take a Bayesian approach, using Markov chain Monte Carlo
to compute posterior estimates of all parameters of interest. We apply the methodology to an in�uenza
epidemic in Scotland during the years 1989–1990. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: small-area counts; multivariate autoregression; Markov chain Monte Carlo;
Markov random �eld; infectious disease

1. INTRODUCTION

For reasons of con�dentiality or practicality, disease-incidence data are often reported as
small-area counts or rates over a series of time periods. When the disease is non-infectious,
the time period is typically on the order of one or more years. Here, interest centres on
covariates as explanatory variables, so that the disease aetiology might be understood and
public policy might be altered to ameliorate the e�ects of the disease. The part of the model
that incorporates spatial and temporal statistical dependence often serves the secondary role
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of absorbing deviations from the explanatory part. When the disease is infectious, however,
the time period is typically of much smaller duration, often daily or weekly. Here, interest
focuses on the space–time spread of the disease, and covariates can simply serve to stratify
the expected incidence or prevalence.
The most common models used in analysing infectious diseases are the so-called SEIR

(susceptible=exposed=infectious=removed) models, which have been extensively studied in the
mathematical biology literature (for example, Anderson and May [1]). These are a type of
compartmental model (Jacquez [2]) where individuals move from one compartment or state
to another. The local behaviour of individuals leads to a set of mean-�eld partial di�erential
equations. Until recently, most models for the behaviour of infectious diseases and epidemic
spread focused on theoretical stochastic models, usually con�ned to temporal dynamics and
demographic heterogeneities. In recent years, there have been some e�orts to extend these
models to include correlation of rates of change between neighbouring sites or individuals;
see, for example, Bolker and Grenfell [3] or Keeling et al. [4]. Others have focused their
interest on the detection of potential epidemics from early warning signs using cumulative
sum techniques (for example, O’Brien and Christie [5]).
Our goal in this paper is to take a ‘�eld’ view rather than a ‘particle’ view of the space–

time spread of an epidemic, incorporating in our model much of the sophisticated Bayesian
hierarchical technology used for modelling non-infectious diseases (for example, Waller et al.
[6], Knorr-Held and Besag [7], Cressie et al. [8] and Lawson and Leimich [9]). Our approach
is to capture di�usion as well as growth and recession of the disease through a spatially
descriptive, temporally dynamic hierarchical model. As we indicated above, covariates serve
as stratifying variables, but our main interest is in the space–time dynamics of the model.
As a proof of concept, Cressie and Mugglin [10] present a similar model that they �t to
simulated disease-count data, simulated from the very model they are �tting. They are able
to recover the true parameters, assess goodness-of-�t, and predict the underlying ‘hidden’
process successfully. In contrast to this hierarchical approach that attempts to model each
potential source of variability, Carrat and Valleron [11] present a geostatistical study of an
outbreak of an in�uenza-like illness. Their spatial model implicitly assumes that rates have
homogeneous variances, whereas our model recognizes that rates based on small populations
are more variable than those based on large populations.
The attractiveness of a Bayesian hierarchical approach is that an extremely complicated

model can be built out of a succession of relatively simple components. Variability is ac-
counted for in a straightforward way, and the resulting posterior distributions can be used
to answer many di�erent questions of statistical inference. Historically, computing the pos-
terior has been intractable except in certain special cases, but the advent of the numerical
technique known as Markov chain Monte Carlo (for example, Gilks et al. [12]) has made
simulation from the posterior possible and has opened wide the door for practical Bayesian
analyses.
The remainder of this paper is organized as follows. In Section 2, we develop a Bayesian

hierarchical statistical model for infectious-disease counts in space and time. Then, in Sec-
tion 3, we apply our model to a data set involving an in�uenza epidemic in Scotland in
the years 1989–1990. After �tting the model, we interpret the results through the posterior
distributions of model parameters, relative risks, and a number of derived quantities such as
velocity of disease growth. Finally, in Section 4, we discuss both the future potential for, and
the limitations of, our model.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:2703–2721
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2. DYNAMIC SPATIAL MODEL OF SMALL-AREA DISEASE COUNTS

To illustrate our approach to modelling epidemics, we begin with a simple, univariate process
that attempts to model growth and decline after a period of stability. Consider the univariate
�rst-order autoregressive (AR(1)) Gaussian time series {st: t=1; 2; : : :} that behaves according
to the equation

st = �st−1 + �t (1)

where � is a �xed constant, {�t} is a sequence of independent and identically distributed
Gaussian(�; �2) random variables, and �t and st−1 are independent of each other. Stationarity
implies that |�|¡1, and {st} has a mean value of �=(1 − �), with variance �2=(1 − �2) and
corr(st ; st−h)= �h.
In modelling an infectious-disease epidemic, we think of a time series that, for a while,

exhibits non-stationary growth before declining again to vary around some stationary mean.
However, choosing |�|¿1 does not allow us to turn on the epidemic’s growth in a controlled
way. For example, if we choose �¿1, then var(st)= �2var(st−1)+var(�t), which implies that
the variance is growing. Furthermore, corr(st ; st−1)= {1−var(�t)=var(st)}1=2, which approaches
unity as time progresses. Additionally, a moderate positive value of �st−1 could be dominated
by a negative realization �t , and the series could then assume a negative trajectory that, once
started, would be di�cult to stop. The instability is even worse if �¡−1.
We seek a method of turning an epidemic ‘on’ and ‘o�’ in a more controlled way. Consider

instead the autoregressive time series (1), where the mean of {�t} now varies. Suppose �=�0
for t¡t0 and �=�1¿�0 for t¿t0; for t¿t0, the series will tend to grow until a new stationary
mean E(st)=�1=(1−�) is reached. A decline back to �0=(1−�) can be achieved by specifying
�=�0 again for t¿t1¿t0. In this manner, we can build a piecewise constant sequence of
�’s that allows {st} to change into a growth phase and a subsequent recession phase, with
possible intermediate ‘stopping points’ along the way. For instance, we might select t2¿t1¿t0
and �1¿�2¿�0, and set the mean of {�t} in (1) to be

��(t)≡




�0 if t¡t0; for stability

�1 if t06t¡t1; for growth

�2 if t16t¡t2; for intermediate decline

�0 if t¿t2; for �nal decline to stability

(2)

Now we return to the spatio–temporal model for infectious-disease counts and general-
ize (1) to a multivariate (spatial) model, ‘hidden’ behind Poisson counts. Consider disease
counts yit in region i (i=1; : : : ; I) during time period t (t=1; : : : ; T ), where conditionally and
independently

yit | zit ∼ Poisson(Eiezit) (3)

In other words, the counts are Poisson-distributed with mean parameter Eiezit . Here Ei is the
number of cases expected to occur in region i in a unit time interval under non-epidemic
conditions (see Section 3 for discussion of its estimation), and zit is the logarithm of the

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:2703–2721
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relative risk that accounts for a departure from the expected number of cases. It is on this
scale that we model spatial and temporal dependence through a generalization of (1).
If we have spatially or temporally varying explanatory variables, we can include them in

the model by combining them into a vector xit and writing

zit =x′itQ+ sit (4)

where Q is a vector of regression coe�cients. We do not include an intercept term in x′itQ
because we choose to associate an intercept with sit and use it as in (2) to turn the epidemic
on and o�. Writing (s1t ; s2t ; : : : ; sIt)′ as st , de�ne the multivariate Gaussian AR(1) process
through

st =H st−1 + Ut (5)

where H is an I × I autoregressive coe�cient matrix, and Ut (independent of st−1) is the
epidemic-forcing term that we assume to be a realization from a Gaussian Markov random
�eld. Speci�cally, we assume

Ut ∼MVN(��(t)1;�) (6)

where MVN(:; :) denotes the multivariate normal distribution, 1 is a vector of ones, �(t)=0; 1;
or 2, indicating the stage of the disease at time t (0= stable, no epidemic; 1= growth; 2=
recession to some intermediate level prior to receding to stability) as given by (2), and �
is the variance–covariance matrix for a Markov random �eld. The model assumes that the
mean forcing is global, without spatial heterogeneity. Spatial dependence is included in the
structures of the matrices H and �, leading to the interaction between temporal and spatial
components given by the autoregression (5). The general form of � is

�=�2(I − �C)−1M (7)

where M is a diagonal matrix of conditional variances, C is a matrix of partial-regression
coe�cients with zeros down the diagonal, and � is a spatial dependence parameter such that �
is positive de�nite. This family of models is contained in the class of conditional autoregressive
(CAR) models; see Cressie, reference [13], Section 6.4. Following Cressie and Chan [14],
M has entries E−1

i on the diagonal; cij=(Ej=Ei)1=2 for site j in Ni, the set of neighbouring
sites of site i, and 0 elsewhere, and �∈ (�min; �max), where �min and �max are determined
from the eigenvalues of C such that M−1(I−�C) is positive de�nite (Cressie, reference [13],
p. 559). For this particular construction, �min and �max (and, indeed, all the eigenvalues of
I − �C) are una�ected by a change in the set of expected counts {Ei}. To see this, let A
represent a generic neighbour matrix with aij=1 for site j in Ni, the set of neighbouring sites
of site i, and 0 elsewhere. For any (non-zero) choice of {Ei}; A=M−1=2CM 1=2, a similarity
transformation; thus the set of eigenvalues of A equals the set of eigenvalues of C, from
which the eigenvalues of (I −�C) are uniquely determined. Stern and Cressie [15] show that
the intrinsic autoregressive (IAR) models of Besag et al. [16] are obtained from (7) in the
limit, as � ↑�max.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:2703–2721
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Modelling spatial structure involves a trade-o� between the richness of H and �. We take
the autoregressive coe�cient matrix H to be parameterized by �0; �1 and �2, such that

hij=




�0 if j= i
�1 if j∈Ni; that is; site j is a neighbour of site i
�2 if j∈N (2)i ; that is; site j is a second-order neighbour of site i
0 otherwise

(8)

Site j is a neighbour of site i if some proximity criterion is satis�ed (for example, they share
a common boundary), and we de�ne site j to be a second-order neighbour of site i if j =∈Ni
but there exists a k such that k ∈Ni and j∈Nk . With this construction, we can interpret �0 as
a global measure of how much any site is a�ected by itself at one previous time lag, while �1
and �2 are global measures of the impact of �rst- and second-order neighbours, respectively,
again at one previous time lag. The term {Ut} in (5) captures instantaneous spatial correlation
as well as the piecewise changes in mean given by (2).
We can assign prior distributions directly to the �‘ (‘=0; 1; 2), but it may be more sensible

�rst to transform them as �‘=f(�‘), and then to assign a prior to �‘. In the one-dimensional
case, the time series (1) is stationary if |�|¡1. With this restriction, we see that �= log[(1+
�)=(1 − �)] is de�ned on (−∞;∞), and a Gaussian prior on � is reasonable if one expects
unimodal variability in the autoregresive parameter. Otherwise, Gaussian mixture priors could
be used. For the matrix H , we make an analogous transformation on its entries, choosing
�‘= log[(1 + �‘)=(1 − �‘)]; ‘=0; 1; 2. We note, however, that this transformation from the
�-scale to the �-scale does not guarantee that the variances and covariances of the AR(1)
process (5) are stationary. Since we are modelling a highly dynamic phenomenon through the
non-constant function ��(t), stationarity is less of a concern. We could guarantee stationary
variances and covariances by reparameterizing H through its eigenvalues, but that would
destroy the natural interpretation present in our model, and we choose not to do so.
Using the model speci�ed by equations (3)–(7), we can write the joint posterior of all

parameters as proportional to the product of the likelihood and the priors. We note, however,
that (5) is not valid for t=1, since s0 is unde�ned, so we must explicitly de�ne the distribution
of s1. In most applications, the starting point t=1 will be selected at a point where the disease
stage is stable (that is, in stage 0, where there is no epidemic). If the process is stationary in
this stage, the mean and variance of st are (I − H)−11�0 and

∑∞
k=0H

k�(H ′)k , respectively.
There is considerable computational overhead in calculating these quantities, so we avoid this
problem and specify the distribution of s1 to be MVN(0; �2�), where �2¿1 is chosen to
re�ect our additional uncertainty about s1. In the analysis of Section 3, we choose �2 = 4, and
we note that the results are not particularly sensitive to this choice.
Using [Y ] as generic notation for the density of Y , the joint posterior distribution becomes

[Q; �0; �1; �2; �2; �; �0; �1; �2; {sit}|{yit}]

∝
(

T∏
t=1

I∏
i=1
[yit | Q; sit]

)
× [s1|�2; �]

× [s2 |H s1; ��(2); �2; �] · · · [sT |H sT−1; ��(T ); �2; �]
× [Q][�0][�1][�2][�2][�][�0][�1][�2] (9)

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:2703–2721
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Notice that our notation suppresses dependence of the posterior distribution on the explanatory
variables {xit}, although it is understood that these make up part of the conditioning variables.
We complete the Bayesian hierarchical model by specifying priors

Q ∼MVN(0; 	2I)
�‘ ∼Gaussian(
‘; �2‘); ‘=0; 1; 2

�‘ ∼Gaussian(0; �2‘); ‘=0; 1; 2

�2 ∼ Inverse gamma(a; b)
� ∼Uniform(�min; �max)

(10)

For a particular application, the parameter values of these prior distributions are speci�ed; see
Section 3 for the case of the in�uenza epidemic.
Fitting this model to any data set requires sophisticated numerical techniques. In the analysis

of Section 3, we will employ Markov chain Monte Carlo. Cressie and Mugglin [10] lay out
the necessary full conditional distributions for a similar model, and they also describe several
computational issues related to its MCMC implementation.

3. AN INFLUENZA EPIDEMIC IN SCOTLAND AND ITS STATISTICAL ANALYSIS

During the winter of 1989–1990, Scotland experienced a large in�uenza epidemic. It is di�-
cult to know how many people were infected, since most do not even visit their physicians,
and records for those who do are generally not available. One estimate is that approximately
600 000 people (about one-tenth of the population of Scotland) were infected during this
period, with perhaps only one in �ve visiting a physician (Christie P, 2000, personal commu-
nication). However, a fraction of the infecteds had severe enough complications that they had
to be admitted to a hospital, and these cases are recorded and tabulated. During the winter
of 1989–1990, there were approximately 500 emergency admissions where the primary cause
was recorded as ‘in�uenza’ (ICD9 code 487). Henceforth, we shall focus on these emergency
admissions, terming them ‘cases,’ while ‘infecteds’ will refer to those in the population who
are ill with in�uenza but not necessarily hospitalized.
The smallest level of spatial aggregation available to us is the postcode sector. Each sector,

of which there are 895 in Scotland, averages a population of about 5600 people. Temporally,
we have available each case’s date of admission. With only about 500 cases in all of Scotland
in the winter of 1989–1990, this results in a data set with many zero counts. Thus we must
aggregate in both space and time to some level where we can both deal with the sparseness
of cases and yet not lose local spatial or temporal information. We chose to use as our spatial
level of aggregation the 56 local government districts as used in the 1991 census; they are
de�ned for the purposes of local government and not necessarily according to any natural
or geographical features. The median population of a district is approximately 65 000, with
a minimum of about 10 000 (in Nairn) and a maximum of about 650 000 (in Glasgow). For
the neighbourhood structure {Ni} in (8), we use the same neighbour de�nitions as those of
Clayton and Kaldor [17] and given explicitly by, for example, Stern and Cressie [15]. We
use weeks as our temporal level of aggregation. To align with covariates, as we shall discuss
below, we allow the last week of December to have eight days, so that there are exactly 52

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:2703–2721
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Figure 1. Number of cases (hospitalizations) in all of Scotland at each time point of the study period.
Squares indicate a rising epidemic, while triangles indicate its decline. The vertical line segment on the
horizontal axis at week 33 denotes the week of 1 January 1990; it is included as a reference point.

weeks in a year. The model can incorporate this through a slightly more complicated ��(t) in
(2), though we view the extra generality as unnecessary in this setting.
For the purposes of this analysis, we focus on an 80-week period that occurs in the years

1989 and 1990. This period captures the largest epidemic seen in the ten-year period, 1986–
1995. Somewhat arbitrarily, we select week 1 of our study period to be the 21st week of 1989
(corresponding to the week beginning 21 May 1989), so that the epidemic occurs between
weeks 23 and 35, a period beginning the week of 22 October 1989 and continuing until the
week of 15 January 1990. The last week of the study period ends on 2 December 1990, a
choice that intentionally includes only one winter.
Figure 1 shows the total number of cases in all of Scotland at each time point (that is,

during each week). We note again the many zeros in the data set, since when the epidemic
is in stage 0 (that is, no epidemic), there are many weeks in which there is a total of 0 or 1
cases in all of the 56 districts of Scotland. Even at the peak during week 31, there are only
86 cases in the whole country.
The squares in Figure 1 indicate the weeks when the epidemic is rising, and we take

these time points to be those in which the epidemic is in stage 1 (that is, a growing stage).
The triangles represent the recession of the epidemic, and we take these points to belong to
stage 2. In the notation of Section 2, we choose t0 = 24; t1 = 32 and t2 = 36. At t2, the stage
returns to 0, and the epidemic recedes to vary about a mean that is stable. The dots indicate
stage 0. The epidemic is potentially turned on at t0 for all of Scotland, but of course not
each district is a�ected immediately. How quickly the relative risk appreciably increases in
any particular district depends on the matrix (I −H)−11, which gives di�erent behaviour for
di�erent districts. It also depends on the variability of st (since st is a random process), which
depends on the matrix (I − �C)−1M .
In calculating the expected number of cases Ei per week in each district, we adjust for

demographic e�ects due to age and gender as follows. Our data set contains information on

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:2703–2721
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gender as well as age (divided into 19 quinquennial age brackets: 0–4, 5–9, : : :, 85–89, 90+),
yielding 38 demographic strata. We de�ne Ei=

∑38
k=1 Rikqk , where Rik is the population in

district i and stratum k at risk of becoming a case, and qk is the proportion in stratum k
expected to become a case in any given week. To calculate Ei, we estimate qk with

q̂k =

∑
t

∑56
j=1 yjkt∑

t

∑56
j=1 Rjkt

; k=1; : : : ; 38

where yjkt is the number of observed cases in district j in the kth stratum during week t.
To obtain yjkt , we observe cases in Scotland during the years 1986–1995, much longer than
the study period in question, so that the summation over t in the formula above covers
52× 10=520 weeks. In these years, we assume that the population at risk is constant and
equal to the value recorded in the 1991 census; hence Rjkt does not in fact depend on t. The
resulting age- and sex-adjusted weekly expected cases per district {Ei} are quite small, with
a median value of 0.066, a minimum of 0.0104 (in Badenoch=Strathspey), and a maximum
of 0.63 (in Glasgow).
In�uenza outbreaks almost always occur in late autumn and winter. The most common

explanations given are that in colder temperatures the virus is able to live longer and that
the virus spreads more easily because people tend to stay indoors and are in closer contact
with each other. Temperature is not the cause of an epidemic, but it may be a contributing
factor, so we include it as a covariate in our model. Temperature data are only available
by weekly averages from the cities of Edinburgh, Glasgow and Aberdeen. We imputed these
temperature data to each of the remaining districts using inverse-distance-squared weighted
averages (for example, Cressie, reference [13], p. 371), where distances are computed between
district centroids. Exploratory data analysis does not reveal any strong suggestions as to when
temperature has its e�ect (if any); intuition suggests that, given the incubation period of
in�uenza, the number of infecteds might rise about a week after a drop in temperature, and a
rise in the number of cases (emergency admissions) might lag the rise in infecteds by several
more days. To capture this intuition, we include temperature at time lags of 0, 1 and 2 weeks
as covariates in our model.
In addition, we account for districts that seem to be sicker in general than others. We have

available to us the all-cause standardized mortality ratio for the years 1989 and 1990, by
district. We average the two years’ values by district and include them as a spatially varying
covariate.
With these covariates, we now expand equation (4) to read

zit =x′itQ+ sit = 0�i; t + 1�i; t−1 + 2�i; t−2 + 3 SMRi + sit (11)

where �i; t denotes the temperature in district i at week t, and SMRi denotes the all-cause
standardized mortality ratio in district i.

3.1. Fitting the spatio–temporal hierarchical model

We now discuss the choice of priors in (10) and the practical di�culties encountered in
obtaining the posterior distributions. Based on both exploratory data analysis and our desire
to choose vague priors, we select values for the hyperparameters as in Table I. To obtain the
posteriors, there are a number of technical challenges related to the implementation of the

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:2703–2721
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Table I. Table of selected parameters, showing prior distributions and
prior and posterior summaries.

Parameter Distribution Prior quantiles Posterior quantiles

0.025 0.5 0.975 0.025 0.5 0.975

0 Gaussian(0,4) −3:92 0.0 3.92 −0:0692 −0:0032 0.0628
1 Gaussian(0,4) −3:92 0.0 3.92 −0:0864 −0:0143 0.0518
2 Gaussian(0,4) −3:92 0.0 3.92 −0:1185 −0:0508 0.0193
3 Gaussian(0,4) −3:92 0.0 3.92 −0:0075 −0:0018 0.0031
�0 Gaussian(0,4) −3:92 0.0 3.92 −0:9945 −0:2618 0.0204
�1 Gaussian(0,4) −3:92 0.0 3.92 0.7073 1.4505 2.9803
�2 Gaussian(0,4) −3:92 0.0 3.92 −0:3022 0.6874 3.2501
�0 Gaussian(0,4) −3:92 0.0 3.92 0.0988 0.5122 0.9271
�1 Gaussian(0,4) −3:92 0.0 3.92 −0:7222 0.1008 0.4575
�2 Gaussian(0,4) −3:92 0.0 3.92 −0:1043 0.0045 0.0983
�2 Inverse gamma(0.25,0.4) 1.457 57.2 9:5× 106 0.0579 0.081 0.1065
� Uniform(−0:325; 0:1752) −0:3125 −0:075 0.1627 0.1022 0.1514 0.1663

MCMC algorithm. We note the large number of parameters (there are 4480 {sit} variables)
and, due to high autocorrelations, the need to run the sampler for many iterations. Running �ve
parallel independent chains for approximately 10 000 iterations each required more memory
than we had available in our workstation, so we had to access the disk as virtual memory, a
process that further (and dramatically!) slowed down the computation. Implemented in the C
programming language, this algorithm required about 20 hours to run on a Sun Ultra Enterprise
250 workstation. Convergence was monitored via the Gelman and Rubin [18] convergence
diagnostic and visual inspection of trace plots. Convergence was obtained within the �rst
2000 iterations, and these were then discarded, leaving approximately 8000 iterations of �ve
chains each, for a total of just over 40 000 observations from the posterior distribution of each
parameter. Of course, the autocorrelation in the Markov chains leads to a smaller e�ective
sample size; see, for example, the comment by Neal in Kass et al. [19]. For the 4492
parameters considered, the e�ective sample sizes ranged from 200 to 7000, leaving us con�dent
that our MCMC inferences are valid. Cressie and Mugglin [10] gave an independent check
of this when they recovered, from MCMC inference, known parameter values used in their
simulation.
Posterior medians and 95 per cent Bayes credible intervals are shown in Table I. We note

in particular that the posteriors for all parameters are much tighter than the priors, so despite
the many zeros in the data set there is substantial information to infer about these parameters.
The posterior medians of �0; �1 and �2 are −0:26; 1:45 and 0.69, respectively, agreeing with
our intuition that the highest value for the mean of the epidemic-forcing term will occur when
the epidemic is in stage 1, the second highest will be in stage 2, and the lowest will be in
stage 0. Furthermore, we note that the only appreciable (in the sense that 0 is not in the 95 per
cent posterior credible interval) autoregression parameter in (8) is �0 = log[(1+�0)=(1−�0)],
the term corresponding to lag-1 in�uence of a district on itself, and it is positive. Of the
regression parameters {‘} in (11), none is appreciable, though 2 suggests a negative value,
as seen in both Table I and Figure 2. This indicates that a drop in temperature at a two-week
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-0.15 -0.10 -0.05 0.0 0.05

Figure 2. Histogram of posterior samples for regression parameter 2, suggesting a negative value
for the parameter.

lag correlates somewhat with an increased relative risk of cases, agreeing with our intuition
given earlier in this section that cases may lag infecteds, which may in turn lag a temperature
drop. Figure 2 also exempli�es the well known advantage of the Bayesian approach in that
we obtain the entire (sampled) posterior distribution of all parameters and not just a point or
interval estimate.
To assess the performance of our method, we apply a goodness-of-�t measure as proposed

in Cressie and Mugglin [10], who simulate from the model they are attempting to �t. Thus
they know the true values of the parameters they are attempting to estimate, and they consider
the quantity

Gi≡
∑
t
| s∗it − s̃it |=

∑
t
1

where s∗it is the true value, and s̃it is the median of (the samples from) the posterior distribution
of sit . A measure of uncertainty that does not depend on knowing the true values {s∗it } is given
by

Wi≡
∑
t
wit=

∑
t
1

where wit is the width of the 95 per cent Bayesian credible interval from the posterior
distribution of sit , a quantity that is roughly proportional to the posterior standard devia-
tion. The authors demonstrated a strong linear relationship between {Gi} and {Wi}, so that
Wi serves as a proxy for goodness-of-�t as well as a measure of variability.
Intuitively, when there are many cases in a district, the available information is high, and

the posterior distributions of parameters for these districts will exhibit small variances. When
there are few cases, the opposite will occur. Thus, in a model that �ts well, we expect an
inverse relationship between Ei and Gi. Moreover, we expect the variance of the ratio of
observed to expected cases in district i to be proportional to 1=Ei, and we further expect the
posterior variance of sit to be proportional to the same quantity. Thus, with an expected linear
relation between {Gi} and {Wi}, we expect a linear relationship between Wi and the quantity
Ai≡ 1=√Ei. Departures from linearity may indicate districts that do not behave according to
some aspect of the model.
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Plate 1. Comparison of velocity of log relative risk change at weeks 28 (left map) and 32 (right map).
Red indicates a positive value, while blue indicates a negative value.
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Figure 3. Goodness-of-�t measure Wi plotted against Ai ≡ 1=√Ei.

Figure 3 plots Wi against Ai. The leftmost two points (where there are many cases) come
from the cities of Glasgow and Edinburgh, while the rightmost two (where there are few
cases and few expected cases) come from Nairn and Badenoch=Strathspey. We note the clear
linearity in the plot, indicating a good overall �t. The outlier represents the Shetland Islands,
which experienced an inordinately high number of cases (7 cases). Four of the cases appeared
in the epidemic window, but the other 3 cases appeared in weeks 1, 50 and 54; there were no
other cases in the rest of Scotland in weeks 1 and 54, and only one other case in week 50.
Furthermore, since the Shetland Islands only had one neighbour, there is substantial spatial
smoothing resulting from relatively small prior variability. The end result is a W -value for
the Shetland Islands that is unusually small.

3.2. Interpretation of derived quantities

As was pointed out in Section 1, in the infectious-diseases setting, we are very interested in the
spatio–temporal dynamics and their implications. With samples from the posterior distributions
of all parameters, we can examine almost any derived quantity of interest.
We illustrate �rst a well known feature of Bayesian spatial modelling, namely that the

posterior relative risks represent smoothed values of the raw standardized morbidity ratios
(SMRs) {yit=Ei}. Consider Figure 4, which indicates in Figure 4(a) the raw SMRs and in
Figure 4(b) the relative risks across Scotland for week 27. Week 27 is in the middle of the
growth of the epidemic (stage 1), and yet there are only 35 cases in all of Scotland during
this week; 36 of the 56 districts report no cases, giving them an observed SMR of zero. This
is re�ected in the white regions of Figure 4(a). Twelve districts report one case each, while
the other eight report the remaining 23 cases. Despite the many zero counts, there is obviously
an epidemic in progress, and no one should really believe that there is no risk of disease in
these zero-count districts. It is much more sensible to imagine an underlying smooth relative
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Figure 4. (a) Standardized morbidity ratio, yi; 27=Ei, during week 27. (b) Relative risk ezi; 27
during week 27.

risk, from which the observed cases represent one possible realization of what might occur.
Such a relative risk structure is indicated in Figure 4(b), where we map the posterior medians
of the relative risk for week 27. We note that the map is generally smoother, with obvious
spatial similarity between neighbouring districts, and yet the overall essence of the spatial
distribution of the SMRs {yi;27=Ei} is well captured.
Our Bayesian model is dynamically spatial, so we can examine posterior quantities that

represent the temporal progression of the disease. We illustrate this by examining a series of
histograms of log relative risks for one particular district (Glasgow, which in our enumeration
corresponds to i=41). Glasgow is the largest city in Scotland, and its expected count, E41,
is the largest. Figure 5 shows a series of histograms of log relative risk during various weeks
of the epidemic. We observe the log relative risk {z41; t: t=26; : : : ; 33} growing from a value
near zero up to the range of two to four, then receding again as the epidemic abates. In
addition, we note that the widths of the histograms are smallest during the height of the
epidemic. This re�ects the higher level of certainty derived from observing more cases, and
the lower level of certainty when the number of cases is small.
While Figure 4 displays spatial smoothing and Figure 5 displays dynamics, we can also

analyse and display the spatial and temporal progression of the underlying relative risks. To
do this, we introduce ‘bubble’ maps in Figure 6. In each map, we draw a circle centred at
the centroid of each district, where the area represents the value of the relative risk in the
district. To mitigate perception bias, we choose the areas of the circles to be proportional
to the relative risk raised to the power of 3=2; Stevens’ Law (Stevens [20]) states roughly
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Figure 5. Histograms of log relative risk for Glasgow during weeks 26–33 of the epidemic.

Week 26 Week 27 Week 28 Week 29

Week 30 Week 31 Week 32 Week 33

Figure 6. ‘Bubble’ map of relative risks (posterior medians) during the height of the epidemic. Circles
are centred at district centroids, with areas indicating value of relative risk.
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that people perceive the relative areas of shapes as the ratio of the areas raised to a power
approximately equal to 2=3.
While perhaps not as aesthetically pleasing as choropleth maps, these maps have several

advantages: they remove extraneous information, such as boundaries; they avoid the misper-
ception that a large district area implies a large value or importance; they can display a
continuous variable via circle areas, rather than being restricted to a few colour ranges; they
are easy to generate and do not consume as much computer disk space.
Figure 6 shows the progression of the disease in both time and space. In week 26, there

is some mild elevated relative risk visible in a few districts, notably one south of Glasgow
(Cumnock and Doon Valley) and another in Dundee. In week 27, the disease appears to be
present mostly in a southwest–northeast direction, in a corrider of high population density
that includes the cities of Glasgow, Edinburgh, Dundee and Aberdeen. Week 28 exhibits
the same general spatial trend, though there has been some growth in a few districts. By
week 29, the disease appears to be spreading outward, approximately perpendicular to the
above-mentioned corridor, while in the corridor itself there is some attenuation. By week 30,
the growth in the outer regions is pronounced, and at week 31, several districts that peaked
in week 30 are beginning to decrease, while others appear to be peaking. At week 32, the
disease is mostly along the perimeter of Scotland, and generally declining, especially so in
the geographical centre. Week 33 exhibits marked decline, with the remaining risk distributed
along the eastern coastline.
The dynamics revealed in Figure 6 lead us to ponder the question of how fast the disease is

spreading in space and growing in time. To assess temporal velocity, we examine a di�erence
of log relative risks. Consider the log relative risk vector zt at time t, and de�ne the velocity
vt as

vt ≡ zt − zt−1 = (xt − xt−1)′Q+ (st − st−1) (12)

We stress that this is a measure of change in log-relative risk in one time period, rather than a
measure of spread per unit distance. Using the existing MCMC simulations, we can compute
posterior samples from the distributions of the vt’s; the resulting posterior medians are mapped
in Plate 1. The �gure indicates maps of velocity in weeks 28 (when the epidemic is growing)
and 32 (when the epidemic is receding). Note from Figure 1 that the overall disease prevalence
is similar in these two weeks. In Plate 1, a red shade indicates a positive velocity (that is,
growth of log relative risk), while a blue shade indicates negative velocity. Thus, in week 28
there is generally positive velocity (red tints) in the higher population corridor, with a few
blue and white regions on the periphery. By week 32, when the epidemic is generally receding,
we observe some districts with markedly decreasing velocities, while others (especially on the
periphery) are still increasing. This agrees well with our observations regarding Figure 6.
We now consider the impact of the epidemic-forcing term Ut and its mean ��(t)1 when the

epidemic undergoes a stage transition. Given a �-change that uniformly a�ects all of Scotland
(as perhaps induced by climatic conditions or movement of many people during a holiday
period), what e�ect does a change �� have on the dynamic spatial process? We can quantify
this by computing the eventual change �\ in the mean of {st} caused by ��. Recall from
(5) that st =H st−1 + Ut . A stationary mean \ would satisfy \=H\ + �1, where E(Ut)=�1.
Solving for \, we obtain

\=(I −H)−11� (13)
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Figure 7. Eventual change �\ caused by a change ��=�1 − �0 in the mean forcing term.

and hence

�\=(I −H)−11�� (14)

Note that (I − H)−1 is not guaranteed to exist for every realization from the posterior of
(�0; �1; �2); in our case it did, though with a few realizations for which at least one eigenvalue
of I −H was close to 0, resulting in a posterior distribution of �\ with rather heavy tails.
Figure 7 shows a map of the posterior medians of �\ evaluated for ��=�1 − �0, which

occurs at t= t0 = 24. It is striking that a uniform �-change over Scotland results in such
a di�erential impact. We observe the spatial structure, with the regions of highest impact
occurring in two clusters, one each to the north and south of the high-population corridor.
These are the regions that, when the conditions suddenly turn to favour an epidemic, are the
most profoundly a�ected; if allowed to stay in stage 1, they would experience the biggest rise
in disease prevalence.

3.3. Assessing what might have happened

Since we view the data as one possible realization from a hidden process, we wonder then
what other scenarios might have occurred. Was this epidemic unusually bad? Might it have
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Figure 8. (a) Histogram of posterior predictive distribution for Glasgow at week 29.
The vertical line represents the observed data value. (b) Posterior predictive distribu-
tion for y∗ |y over weeks 21 to 40 of the epidemic. Lines indicate the 0.025, 0.25,

0.5, 0.75 and 0.975 quantiles, while dots indicate the data values (y).

been much worse? If so, what planning might have been wise for hospitals or other health
facilities?
A mathematical framework for exploring this question is the notion of a posterior predictive

distribution (for example, Rubin [21] and Gelman et al. [22]), in which we calculate the
distribution of (hypothetical) cases given the observed data, [{y∗it} | {yit}], integrating out all
other parameters. In a similar notation to that given in Section 2, we suppress dependence of
the posterior predictive distribution on the explanatory variables {xit}, although it is understood
that these make up part of the conditioning variables. Notice that this distribution is ‘predictive’
only in the sense of predicting other possible realizations from the spatio–temporal hierarchical
model; it does not predict how the epidemic is likely to evolve. An analytical derivation is
di�cult, but we can obtain samples from this distribution by generating observations from
[{y∗it} | {yit}; X], where X now represents all unknowns, and where we choose as our values
for X samples from the full posterior distribution [X | {yit}] given by (9). This we did for
Glasgow as a representative district, generating Poisson observations for the approximately
40000 posterior observations of [X | {yit}], and we summarize this sample with histograms
and sample quantiles in Figure 8.
Figure 8(a) shows this posterior predictive distribution of cases for Glasgow at week 29,

where the vertical line represents the ten observed cases. Figure 8(b) shows the dynamic
aspect of this process over the weeks 21 to 40, where the dots indicate the observed number
of cases and the lines indicate the median, quartiles and 2.5 and 97.5 percentiles of the
posterior predictive distributions. This indicates, �rst of all, that the model �ts quite well,
at least for Glasgow. It also indicates, on a weekly basis, what might have happened. For
instance, in weeks 29 or 31, there could easily have been about 20 cases, or fewer than 5.
The need for ten more hospital beds may be a minor problem, but considering the number
of infecteds in the population, planning for other health services might be improved with a
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knowledge about variability and worst-case scenarios. In particular, there is some evidence
that, during an in�uenza epidemic, emergency admissions for causes such as other respiratory
conditions and heart disease also increase substantially (Simonsen et al. [23]). This type of
analysis can easily be used for any district, and it can be extended to cover any aggregation
of districts or weeks, up to and including all cases in all of Scotland in the entire 80-week
period.

4. DISCUSSION

The Bayesian hierarchical model developed in this application attempts to capture both instan-
taneous spatial dependence as well as di�usion and growth in space and time by modelling
the (log) relative risks in terms of spatial proximities. Our model has its limitations, as we
have mentioned earlier. The most important one is that caused by both spatial and tempo-
ral aggregation, which prevents us from seeing how infected individuals interact with other
individuals in their communities to spread the disease. Thus, we cannot claim to have cap-
tured the aetiology of the in�uenza epidemic in Scotland in 1989–1990, but rather we have
a smoothed and interpretable description of what happened during the epidemic. One way to
modify the current approach would be to start with a simple di�usion equation of disease
spread, such as found in Diekmann and Heesterbeek (reference [24], p. 126), and look at
its properties under discretization and aggregation. If one were successful in establishing a
hierarchical model like that of (3)–(6), then the interpretable di�usion parameters would be
estimable from the aggregated data; Lawson and Leimich [9] make an analogous point for
their descriptive, individual-level, space–time models. We believe that the di�usion approach
will not be easy, although it is certainly worthy of further research.
One might also ask how the results from a model of data that have been aggregated di�er-

ently would compare to those given in Section 3 (for example, postcode sectors=months versus
districts=weeks). Unless the aggregated model is built from a point-level di�usion model, it is
very di�cult to say how the epidemic would behave at higher or lower levels of aggregation.
This problem is ubiquitous in small-area estimation and is known as ecological bias in the
epidemiology community (for example, Greenland and Robins [25]) and the modi�able areal
unit problem in the geography community (for example, Fotheringham and Wong [26]).
The analysis in Section 3 depends on certain modelling choices we made. In particular, the

choice of neighbourhood criteria that de�ne �rst- and second-order neighbour sets will a�ect
both instantaneous correlation and spatial spread of the epidemic. We used the neighbourhood
structure of Clayton and Kaldor [17], which is based on sharing district boundaries. (A listing
of the 56 neighbourhoods can be found in Stern and Cressie [15].) For an infectious disease it
might also be informative to use a neighbourhood structure that de�nes neighbours based on
population movement. For instance, it may be that residents of the Shetland Islands rarely go
to the Orkney Islands (their closest neighbours), but rather they may travel more frequently
by sea or air to Aberdeen. If this is the case, a neighbourhood structure that accounts for
e�ects of this type would be sensible.
There are two principal theories regarding what causes in�uenza outbreaks in Scotland.

One theory suggests that the virus enters the country from Norway or England as part of
a worldwide epidemic wave. Another posits that the virus is present all year in a dormant,
possibly mutating form, and some unknown trigger sets it o�. In either case, some unobserved
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mechanism determines whether and when the epidemic will occur. For our analysis, we chose
the change points t0; t1 and t2 based on exploratory analysis, as in Figure 1. The duration of
an outbreak is typically 10–12 weeks, regardless of the height of the peak (Christie P, 2000,
personal communication), though some epidemics appear somewhat more symmetrical than
this one. The object of the analysis in this paper is to smooth out the Poisson noise and look at
the evolution of the epidemic through the (log) relative risk. Our approach is Bayesian so that
the prior model that speci�es global behaviour on regime changes is always modi�ed by the
local behaviour determined by the data. We reiterate that our analysis is descriptive, taking into
account the whole of the data set to calculate the posterior distributions, rather than using only
past and present information at any given time point to predict the epidemic’s future evolution.
To be able to forecast, we would need to build a stochastic model for t0 (and possibly for
other change points t1; t2; : : :). In a climatological study of sea-surface temperatures, where
some physics is known, Berliner et al. [27] build such a stochastic model for regime changes
and use it in a hierarchical Bayesian statistical model that yields seven-month forecasts.
With the natural extension of spatial models to spatio–temporal models comes the need to

produce maps that evolve in time. While display of this added dimension remains a presenta-
tional challenge, the use of a geographic information system (GIS) can greatly facilitate the
quality and consistency of drawing maps. In addition, calculations regarding district centroids,
areas, perimeters and contiguous boundaries are easily made within a GIS. We used some
of these functionalities in the current study. Practitioners of spatial statistics are becoming
increasingly acquainted with the use of GIS, though the statistical capability of a GIS is still
generally limited to descriptive summaries rather than inference. Nevertheless, our Bayesian
hierarchical statistical analysis has produced optimal estimates, and the GIS has proved to be
a powerful tool for presenting our results.
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