Irina R Arkhipova

Irina R Arkhipova
Verified
Irina verified their affiliation via an institutional email.
Verified
Irina verified their affiliation via an institutional email.
Marine Biological Laboratory | MBL · Josephine Bay Paul Center for Comparative Molecular Biology and Evolution

Ph.D.

About

114
Publications
19,452
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,607
Citations
Additional affiliations
June 1983 - March 1990
Russian Academy of Sciences
Position
  • Researcher
April 1991 - February 2007
Harvard University
Position
  • Researcher
March 1990 - March 1991
University of Edinburgh
Position
  • PostDoc Position

Publications

Publications (114)
Article
Full-text available
Coevolutionary antagonism generates relentless selection that can favour genetic exchange, including transfer of antibiotic synthesis and resistance genes among bacteria, and sexual recombination of disease resistance alleles in eukaryotes. We report an unusual link between biological conflict and DNA transfer in bdelloid rotifers, microscopic anim...
Article
Full-text available
Eukaryotic retroelements are generally divided into two classes: long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. A third class of eukaryotic retroelement, the Penelope-like elements (PLEs), has been well-characterized bioinformatically, but relatively little is known about the transposition mechanism of these elements. PLE...
Article
Reverse transcriptases (RT), or RNA-dependent DNA polymerases, are unorthodox enzymes that originally added a new angle to the conventional view of the unidirectional flow of genetic information in the cell from DNA to RNA to protein. First discovered in vertebrate retroviruses, RTs were since re-discovered in most eukaryotes, bacteria, and archaea...
Article
Full-text available
Reverse transcriptases (RT), or RNA-dependent DNA polymerases, are unorthodox enzymes that originally added a new angle to the conventional view of the unidirectional flow of genetic information in the cell from DNA to RNA to protein. First discovered in vertebrate retroviruses, RTs were since re-discovered in most eukaryotes, bacteria, and archaea...
Article
Full-text available
The conference “Transposable Elements at the Crossroads of Evolution, Health and Disease” was hosted by Keystone Symposia in Whistler, British Columbia, Canada, on September 3–6, 2023, and was organized by Kathleen Burns, Harmit Malik and Irina Arkhipova. The central theme of the meeting was the incredible diversity of ways in which transposable el...
Article
DNA methylation constitutes one of the pillars of epigenetics, relying on covalent bonds for addition and/or removal of chemically distinct marks within the major groove of the double helix. DNA methyltransferases, enzymes which introduce methyl marks, initially evolved in prokaryotes as components of restriction-modification systems protecting hos...
Article
Full-text available
The common non-marine ostracod Cypridopsis vidua (O.F. Müller, 1776) is used as a proxy in various biological disciplines, such as (palaeo-)ecology, evolutionary biology, ecotoxicology and parasitology. This morphospecies was considered to be an obligate parthenogen. We report on the discovery of the first population of C. vidua with males from Woo...
Chapter
Transposable elements (TEs) exert an increasingly diverse spectrum of influences on eukaryotic genome structure, function, and evolution. A deluge of genomic, transcriptomic, and proteomic data provides the foundation for turning essentially any non-model eukaryotic species into an emerging model to study any and all aspects of organismal biology,...
Article
Full-text available
Cataglyphis are thermophilic ants that forage during the day when temperatures are highest and sometimes close to their critical thermal limit. Several Cataglyphis species have evolved unusual reproductive systems such as facultative queen parthenogenesis or social hybridogenesis, which have not yet been investigated in detail at the molecular leve...
Article
Full-text available
DNA modifications are used to regulate gene expression and defend against invading genetic elements. In eukaryotes, modifications predominantly involve C5-methylcytosine (5mC) and occasionally N6-methyladenine (6mA), while bacteria frequently use N4-methylcytosine (4mC) in addition to 5mC and 6mA. Here we report that 4mC can serve as an epigenetic...
Article
Full-text available
Penelope-like elements (PLEs) are an enigmatic clade of retrotransposons whose reverse transcriptases (RTs) share a most recent common ancestor with telomerase RTs. The single ORF of canonical EN+ PLEs encodes RT and a C-terminal GIY-YIG endonuclease (EN) that enables intrachromosomal integration, while EN-PLEs lack endonuclease and are generally r...
Preprint
Full-text available
Penelope-like elements (PLEs) are an enigmatic clade of retroelements whose reverse transcriptases (RTs) share a most recent common ancestor with telomerase RTs. The single ORF of canonical EN+ PLEs encodes RT and a C-terminal GIY-YIG endonuclease (EN) that enables intrachromosomal integration, while EN– PLEs lack endonuclease and are generally res...
Preprint
Full-text available
In eukaryotes, 5-methylcytosine is the predominant DNA base modification, followed by N6-methyladenine. However, N4-methylcytosine (4mC) is confined to bacteria. Here we report that 4mC can serve as an epigenetic mark in eukaryotes. Bdelloid rotifers, freshwater invertebrates with transposon-poor genomes that are rich in foreign genes, lack C5-meth...
Article
How asexual reproduction shapes transposable element (TE) content and diversity in eukaryotic genomes remains debated. We performed an initial survey of TE load and diversity in the putative ancient asexual ostracod Darwinula stevensoni. We examined long contiguous stretches of DNA in clones from a genomic fosmid library, totaling about 2.5 Mb, and...
Article
Full-text available
Transposable elements (TEs) are selfish genomic parasites whose ability to spread autonomously is facilitated by sexual reproduction in their hosts. If hosts become obligately asexual, TE frequencies and dynamics are predicted to change dramatically, but the long-term outcome is unclear. Here, we test current theory using whole-genome sequence data...
Article
Full-text available
Sexual reproduction is almost ubiquitous among extant eukaryotes. As most asexual lineages are short-lived, abandoning sex is commonly regarded as an evolutionary dead end. Still, putative anciently asexual lineages challenge this view. One of the most striking examples are bdelloid rotifers, microscopic freshwater invertebrates believed to have co...
Article
Full-text available
Continued influx of metagenome-derived proteins with misannotated taxonomy into conventional databases, including RefSeq, threatens to eliminate the value of taxonomy identifiers. To prevent this, urgent efforts should be undertaken by submitters of metagenomic data sets as well as by database managers.
Preprint
Full-text available
Transposable elements (TEs) are selfish genomic parasites whose ability to spread autonomously is facilitated by sexual reproduction in their hosts. If hosts become obligately asexual, TE frequencies and dynamics are predicted to change dramatically, but the long-term outcome is unclear. Here, we test current theory using whole-genome sequence data...
Article
Full-text available
Pericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silenc...
Article
Full-text available
Body size reduction, also known as miniaturization, is an important evolutionary process that affects a number of physiological and phenotypic traits and helps animals conquer new ecological niches. However, this process is poorly understood at the molecular level. Here, we report genomic and transcriptomic features of arguably the smallest known i...
Preprint
Full-text available
Pericentric heterochromatin in Drosophila is generally composed of repetitive DNA forming a transcriptionally repressive environment. Nevertheless, dozens of genes were embedded into pericentric genome regions during evolution of Drosophilidae lineage and retained functional activity. However, factors that contribute to “immunity” of these gene loc...
Preprint
Full-text available
Body size reduction, also known as miniaturization, is an important evolutionary process that affects a number of physiological and phenotypic traits and helps animals to conquer new ecological niches. However, this process is poorly understood at the molecular level. Here, we report genomic and transcriptomic features of arguably the smallest know...
Article
Full-text available
Transposable elements (TEs) are ubiquitous in both prokaryotes and eukaryotes, and the dynamic character of their interaction with host genomes brings about numerous evolutionary innovations and shapes genome structure and function in a multitude of ways. In traditional classification systems, TEs are often being depicted in simplistic ways, based...
Preprint
Full-text available
Sexual reproduction which involves alternation of meiosis and syngamy is the ancestral condition of extant eukaryotes. Transitions to asexual reproduction were numerous, but most of the resulting eukaryotic lineages are rather short-lived. Still, there are several exceptions to this rule including darwinulid ostracods and timema stick insects. The...
Article
Full-text available
Cellular reverse transcriptase-related (rvt) genes represent a novel class of reverse transcriptases (RTs), which are only distantly related to RTs of retrotransposons and retroviruses, but, similarly to telomerase RTs, are immobilized in the genome as single-copy genes. They have been preserved by natural selection throughout the evolutionary hist...
Article
Full-text available
The Mobile Genetic Elements and Genome Plasticity conference was hosted by Keystone Symposia in Santa Fe, NM USA, February 11–15, 2018. The organizers were Marlene Belfort, Evan Eichler, Henry Levin and Lynn Maquat. The goal of this conference was to bring together scientists from around the world to discuss the function of transposable elements an...
Article
Full-text available
Among the multitude of papers published yearly in scientific journals, precious few publications may be worth looking back in half a century to appreciate the significance of the discoveries that would later become common knowledge and get a chance to shape a field or several adjacent fields. Here, Kimura's fundamental concept of neutral mutation-r...
Article
Polyploidy in animals is much less common than in plants, where it is thought to be pervasive in all higher plant lineages. Recent studies have highlighted the impact of polyploidization and the associated process of diploidy restoration on the evolution and speciation of selected taxonomic groups in the animal kingdom: from vertebrates represented...
Article
Full-text available
In recent years, much attention has been paid to comparative genomic studies of transposable elements (TEs) and the ensuing problems of their identification, classification, and annotation. Different approaches and diverse automated pipelines are being used to catalogue and categorize mobile genetic elements in the ever-increasing number of prokary...
Article
Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcript...
Article
Full-text available
Rotifers of the class Bdelloidea, microscopic freshwater invertebrates, possess a highly-diversified repertoire of transposon families, which, however, occupy less than 4% of genomic DNA in the sequenced representative Adineta vaga. We performed a comprehensive analysis of A. vaga retroelements, and found that bdelloid long terminal repeat (LTR)-re...
Article
Full-text available
RNA-mediated silencing processes play a key role in silencing of transposable elements, especially in the germ line, where piRNAs are responsible for suppressing transposon mobility and maintaining genome integrity. We previously reported that the genome ofAdineta vaga, the first sequenced representative of the phylum Rotifera (class Bdelloidea), i...
Article
Full-text available
Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function, and evolution. However, there is currently a gap between fast-paced TE discovery in silico, stimulated by exponential growth of comparative genomi...
Article
Full-text available
Penelope-like elements (PLEs) are an enigmatic group of retroelements sharing a common ancestor with telomerase reverse transcriptases. In our previous studies, we identified endonuclease-deficient PLEs that are associated with telomeres in bdelloid rotifers, small freshwater invertebrates best known for their long-term asexuality and high foreign...
Article
Full-text available
Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chr...
Article
Full-text available
Transposable elements (TEs) are discrete genetic units that have the ability to change their location within chromosomal DNA, and constitute a major and rapidly evolving component of eukaryotic genomes. They can be subdivided into 2 distinct types: retrotransposons, which use an RNA intermediate for transposition, and DNA transposons, which move on...
Article
Full-text available
The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world...
Data
This is a live image of the of Filamentous gliding bacterium Herpetosiphon aurantiacus (Chloroflexi) under 40x magnification. Herpetosiphon aurantiacus is a filamentous non-phototrophic bacterium that exhibits gliding motility and is capable of predation on other bacteria. We used newly developed quantitative orientation-independent differential in...
Article
Full-text available
Heat shock protein 70 (Hsp70) is a molecular chaperone providing tolerance to heat and other challenges at the cellular and organismal levels. We sequenced a genomic cluster containing three hsp70 family genes linked with major histocompatibility complex (MHC) class III region from an extremely heat tolerant animal, camel (Camelus dromedarius). Two...
Data
This is a live image of the bdelloid rotifer Philodina roseola under 20x magnification. Bdelloid rotifers are microscopic freshwater invertebrates best known for their capacity to undergo frequent cycles of desiccation and rehydration, their long-term asexuality, which is manifested in the absence of males and meiosis, and the ability to capture fo...
Article
Full-text available
Reverse transcriptases (RTs) polymerize DNA on RNA templates. They fall into several structurally related but distinct classes and form an assemblage of RT-like enzymes that, in addition to RTs, also includes certain viral RNA-dependent RNA polymerases (RdRP) synthesizing RNA on RNA templates. It is generally believed that most RT-like enzymes orig...
Data
This is a live image of the bdelloid rotifer Philodina roseola (20x magnification). Bdelloid rotifers are microscopic freshwater invertebrates best known for their capacity to undergo frequent cycles of desiccation and rehydration, their long-term asexuality, which is manifested in the absence of males and meiosis, and the ability to capture foreig...
Data
Full-text available
BoxShade alignment of amino acid sequences from the most conserved regions of open reading frame (ORF) 1 (p.1), endonuclease (p.2), and reverse transcriptase (p.3) domains from selected non-long terminal repeat retrotransposons analysed in Figure 4.
Data
Analysis of non-synonymous to synonymous substitution ratios in open reading frame (ORF) 1 and ORF2 of Hebe.
Data
Full-text available
Nucleotide sequences of Hebe elements obtained in this study.
Article
Full-text available
Rotifers of the class Bdelloidea are microscopic freshwater invertebrates best known for: their capacity for anhydrobiosis; the lack of males and meiosis; and for the ability to capture genes from other non-metazoan species. Although genetic exchange between these animals might take place by non-canonical means, the overall lack of meiosis and syng...
Article
Full-text available
Ribosomal DNA genes in many eukaryotes contain insertions of non-LTR retrotransposable elements belonging to the R2 clade. These elements persist in the host genomes by inserting site-specifically into multicopy target sites, thereby avoiding random disruption of single-copy host genes. Here we describe R9 retrotransposons from the R2 clade in the...
Article
Full-text available
Reverse transcriptases (RT) are central to retrovirology (as the key enzymes encoded by retroviruses) as well as to evolutionary genomics (as the only unifying component for numerous types of retroelements inhabiting genomic DNA in both prokaryotes and eukaryotes). A great deal of effort has been put into understanding the evolutionary relationship...
Article
Full-text available
In the course of sequencing telomeric chromosomal regions of the bdelloid rotifer Adineta vaga, we encountered an unusual DNA transposon. Unlike other bdelloid and, more generally, eukaryotic transposable elements (TEs), it exhibits similarity to prokaryotic insertion sequences (ISs). Phylogenetic analysis indicates that this transposon, named IS5_...
Article
Full-text available
Horizontal gene transfer in metazoans has been documented in only a few species and is usually associated with endosymbiosis or parasitism. By contrast, in bdelloid rotifers we found many genes that appear to have originated in bacteria, fungi, and plants, concentrated in telomeric regions along with diverse mobile genetic elements. Bdelloid proxim...
Article
Full-text available
Penelope-like elements (PLEs) represent a new class of retroelements identified in more than 80 species belonging to at least 10 animal phyla. Penelope isolated from Drosophila virilis is the only known transpositionally active representative of this class. Although the size and structure of the Penelope major transcript has been previously describ...
Article
Full-text available
The evolutionary origin of telomerases, enzymes that maintain the ends of linear chromosomes in most eukaryotes, is a subject of debate. Penelope-like elements (PLEs) are a recently described class of eukaryotic retroelements characterized by a GIY-YIG endonuclease domain and by a reverse transcriptase domain with similarity to telomerases and grou...
Article
Full-text available
Rotifers of class Bdelloidea, a group of aquatic invertebrates in which males and meiosis have never been documented, are also unusual in their lack of multicopy LINE-like and gypsy-like retrotransposons, groups inhabiting the genomes of nearly all other metazoans. Bdelloids do contain numerous DNA transposons, both intact and decayed, and domestic...
Article
Full-text available
Penelope-like elements (PLEs) are a relatively little studied class of eukaryotic retroelements, distinguished by the presence of the GIY-YIG endonuclease domain, the ability of some representatives to retain introns, and the similarity of PLE-encoded reverse transcriptases to telomerases. Although these retrotransposons are abundant in many animal...
Article
Full-text available
Two novel families of non-LTR retrotransposons, named Syrinx and Daphne, were cloned and characterized in a putative ancient asexual ostracod Darwinula stevensoni. Phylogenetic analysis reveals that Daphne is the founding member of a novel clade of non-LTR retroelements, which also contains retrotransposon families from the sea urchin and the silkw...
Article
We surveyed the diversity, structural organization, and patterns of evolution of DNA transposons in rotifers of the class Bdelloidea, a group of basal triploblast animals that appears to have evolved for millions of years without sexual reproduction. Representatives of five superfamilies were identified: ITm (IS630/Tc/mariner), hAT, piggyBac, helit...
Article
Full-text available
Transposable elements (TE) are prominent components of most eukaryotic genomes. In addition to their possible participation in the origin of sexual reproduction in eukaryotes, they may be also involved in its maintenance as important contributors to the deleterious mutation load. Comparative analyses of transposon content in the genomes of sexually...
Article
Full-text available
Here we describe a new class of retroelements termed PLE (Penelope-like elements). The only transpositionally active representative of this lineage found so far has been isolated from Drosophila virilis. This element, Penelope, is responsible for the hybrid dysgenesis syndrome in this species, characterized by simultaneous mobilization of several u...
Article
Full-text available
The genomes of virtually all sexually reproducing species contain transposable elements. Although active elements generally transpose more rapidly than they are inactivated by mutation or excision, their number can be kept in check by purifying selection if its effectiveness becomes disproportionately greater as their copy number increases. In sexu...
Article
Full-text available
Penelope-like elements are a class of retroelement that have now been identified in >50 species belonging to at least 10 animal phyla. The Penelope element isolated from Drosophila virilis is the only transpositionally active representative of this class isolated so far. The single ORF of Penelope and its relatives contains regions homologous to a...
Article
We report that two structurally similar transposable elements containing reverse transcriptase (RT), Penelope in Drosophila virilis and Athena in bdelloid rotifers, have proliferated as copies containing introns. The ability of Penelope-like elements (PLEs) to retain introns, their separate phylogenetic placement and their peculiar structural featu...