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Abstract—Ultra-dense Internet of Things (IoT) mesh networks
and machine-to-machine communications herald an enormous
opportunity for new computing paradigms and are serving as a
catalyst for profound change in the evolution of the Internet. The
collective computation capability of these IoT devices is typically
neglected in favor of cloud or edge processing. We propose
a framework to tap into this resource pool by coupling data
communication and processing. Raw data captured by sensing
devices can be aggregated and transformed into appropriate
actions as it travels along the network towards actuating nodes.

This paper presents an element of this vision, whereby we map
the operations of an artificial neural network onto the communi-
cation of a multi-hop IoT network for simultaneous data transfer
and processing. By exploiting the principle of locality inherent
to many IoT applications, the proposed approach can reduce
the latency in delivering processed information. Furthermore,
it improves the distribution of energy consumption across the
IoT network compared to a centralized processing scenario, thus
mitigating the “energy hole” effect and extending the overall
lifetime of the system.

Index Terms—Internet of Things, Artificial Neural Networks,
Wireless Sensor Networks, Wireless Mesh Networks, Distributed
Computing

I. INTRODUCTION

THE Internet of Things (IoT) is rapidly progressing due
to manufacturing advancements with respect to size,

weight, power, and cost of next-generation low-power radio
frequency transceivers and micro-controllers. As a result, IoT
networks have significantly grown across a wide variety of
domains and the number of IoT devices is forecasted to
grow to about 20 billion by 2020 [1]. IoT mesh networks in
particular are witnessing a resurgence both in the industry and
in academia; for example, Qualcomm has recently announced
a mesh networking platform for home IoT devices [2].

While most of the early IoT applications focused on passive
data gathering and monitoring, actuation has been receiving
more and more attention [3]. By coupling sensing devices
with actuators capable of directly interacting with their envi-
ronment, it is possible to design systems that can dynamically
react to events and perform complex automated control tasks.
As an example, in a factory setting we might want to use IoT
to automatically detect faults and take appropriate recovery
measures; in a smart city, to dynamically control lights at a
set of junctions in response to the incoming traffic; in a smart
home, to coordinate electric appliances so that their combined
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power usage stays below a set of thresholds based on the time
of day.

Naturally, in all such applications some sort of data ag-
gregation and processing is required to transform the input
measurements into an appropriate output for the actuators;
typically this computation is offloaded to a cloud platform.
In the cloud-based model, data from the input sensors is
routed through a local gateway to remote servers, where it
is aggregated and processed; once an appropriate course of
action has been determined, the required output signal is sent
back to the IoT gateway and, from there, it is relayed to the
actuator nodes.

In many application domains, however, the response time
of the IoT system to external events must satisfy strict timing
constraints, either due to the mission-critical nature of the
process being supervised or simply to minimize the costs
incurred by unnecessarily delaying the appropriate control
measures [4]. Hence, it is paramount to limit the latency
of these applications, i.e. the amount of time it takes to
go from the raw input readings of the sensors to the final
output signal at the actuating nodes. While the cloud-based
processing model presents many advantages, e.g. in terms of
cost-efficiency and ease of development, it also introduces a
significant amount of latency by virtue of the round-trip to
the remote servers and back that data has to take. For some
classes of time-sensitive applications this can represent an
unacceptable trade-off.

For this reason, many authors have proposed to move data
processing from the cloud to the edge of the network [5], i.e.,
performing aggregation and computation at the local gateway
and avoiding the cloud for all but the most resource-intensive
operations. Even in the edge processing model, however,
data still needs to reach a centralized collection point; in
mesh networks this can be sub-optimal in terms of latency,
as the source and destination devices might be located at
the periphery of the network. More importantly, nodes that
are directly connected to the gateway will be necessarily
involved in the relaying of all the messages directed to the
gateway itself; this causes an uneven distribution of the energy
consumption among the nodes in the network, in what is called
the energy hole effect [6]. As the first of these nodes runs out
of power, the remaining 1-hop neighbors of the gateway will
face an even greater load, thus creating an avalanche effect
that can quickly disable the network. It is worth noting that
this is an inherent problem of centralized data processing in
mesh networks, regardless of whether the actual computation
is performed locally at the edge or remotely in the cloud.

The next logical step then is in-network computation [7],
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an even more extreme form of edge computing whereby data
processing is distributed among the nodes of the network.
However, most of the works on in-network computation are
limited in scope, focusing on simple functions (e.g. averaging
of the readings from multiple sources) and typically assuming
the existence of a single output sink for the processed data.

In this paper, we propose a generalized framework for
in-network computation, in which the data aggregation and
processing steps are implemented through an Artificial Neural
Network (ANN) distributed across the IoT mesh network.
More specifically, we map a neural network onto the IoT de-
vices by designating a number of ”hidden neuron” nodes that
will collectively perform the required operations on the input
data. Because in our framework computation is performed in
parallel with communication as data travels towards its final
destination, we call this approach Network as a Computer
(NaC).

The theoretical foundation for this concept is provided by
the Universal Approximation Theorem [8], which roughly
states that a feed-forward neural network with a single layer
of hidden neurons can approximate any continuous function
of interest arbitrarily well. This theorem assures us that a wide
range of functions of interest for IoT computation will be
implementable with a single intermediate hidden neuron layer
between the input and output nodes. Hence, we can extend
in-network computations to use cases with more complex
functions or a larger set of sink nodes than those typically
considered in literature.

The underlying assumption is that, in many applications,
sensing and actuating nodes are typically located close to each
other, even when they are part of a larger IoT mesh network.
Intuitively, in most control applications the actuators will need
to interact with the environment in close proximity of the
locations where the readings were taken; this idea is often
referred to as the locality of information processing principle.
The advantage of our approach is then twofold. Firstly, by
appropriately placing hidden neurons near the input and output
nodes we can reduce the length of the path that messages
need to traverse, and hence decrease the latency experienced
by the system. Secondly, by avoiding the central gateway and
its surrounding nodes altogether we can better distribute the
energy consumption across the IoT network and mitigate the
energy hole problem. Combined, these two factors make for
more responsive applications that can run for longer. These
claims are investigated and backed by numerical results and
simulations in sections V and VI.

The remainder of the paper is structured in the following
way: firstly we discuss related work in section II. In section
III we further clarify the NaC concept by defining the target
scenarios referenced throughout the paper. Section IV formally
defines the optimization framework for the placement of
hidden neuron nodes in the network of IoT devices. Section
V presents numerical results on the energy consumption of
the nodes in the network, which show how our approach is
able to improve the lifetime of the network compared to a
centralized solution. In section VI we describe the simulation
experiments carried out to validate our approach in terms of
latency reduction. Finally, we present our conclusions.

II. RELATED WORK

While we believe that the framework presented here is
fundamentally novel, there are some previous related works
targeting specific aspects of the problem at hand, or sharing
the same aim but with a different approach. In this section we
present a summary of the related literature.

A. In-Network Computation in Wireless Sensor Networks

(WSNs)

Many works address the more general problem of in-
network computation in WSNs. Most of the approaches in
literature focus on determining the maximum achievable com-
putation rate of specific functions [7], [9], [10]. Typically
these works consider symmetric functions and assume a
single collector node for the processed data. More recently,
approaches considering the distributed implementation of a
generic function have been considered [11], [12]. The function
of interest is described as a weighted directed acyclic graph
in [11] and as a directed tree in [12]. Both works, unlike ours,
do not consider the resource availability in each node, which
shapes the search space of the optimal mapping.

B. Distributed ANNs in WSNs or IoT Networks

Some existing research works report implementing dis-
tributed neural network architectures overlaying a sensor net-
work or IoT networks similar to our proposal. For example,
in [13] the authors develop neural network architectures that
can be used to report information from a sensor network in a
more “cognitive” manner. While there are certain similarities
to the work we are presenting here, their proposal largely
comes down to a method for data aggregation and filtering
without any specific mention of resource-optimal mapping of
neurons on sensor network nodes as we do.

The authors in [14] and [15] propose to distribute the
different layers of a deep neural network between the low
power IoT nodes and the cloud. Similarly, in [16] Preferred
Networks Inc. propose to distribute different layers of a deep
neural network into different edge devices. The authors in
[17] define a sparse Neural Network (NN) architecture, where
multiple subsets of a distributed data-set are placed into edge
machines; the parameters of the NN are trained from the
dataset and communicated to the cloud in order to complete
the NN function. Our proposal is different from all these cited
works in that we keep the neural network completely localized
to the IoT nodes, bypassing cloud and edge processing entirely.

Again in [18], the authors investigate the placement of
artificial neural networks in wireless sensor nodes to detect
forest fires. However in their work each node implements
a full neural network, while we propose to distribute the
different components of the neural network over the IoT
network optimally subject to resource constraints.

In [19] the authors propose a middleware layer to distribute
neural network building blocks over multiple heterogeneous
devices, not unlike what can be achieved by TensorFlow when
multiple processing resources are available. Most importantly,
their reference “IoT network” is composed of powerful ma-
chines that have little in common with the constrained IoT
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devices we consider here. Finally, the authors did not develop
optimization algorithms to distribute these functionalities over
the available devices, although this is mentioned as possible
future work.

In [20] the authors present a similar vision with a more
specialized focus on self-adapting WSNs. They propose using
a Hopfield neural network to solve a heuristic algorithm for
determining the minimum weakly-connected dominating set
of nodes in the network – a problem which is of relevance in
many wireless communication protocols. Since every node is
mapped to a neuron, they do not introduce an optimization
framework in their proposal. General-purpose computation
over a WSN through neural networks is mentioned as a
possibility but not further investigated.

Lastly, the patent described in [21] describes a method to
map a neural network to a network of embedded devices. How-
ever, their solution also lacks the mapping optimization aspect
of our approach – nodes are instead uniformly mapped to
available embedded devices. Their work also rigidly requires a
full mesh network between the embedded devices, which can
be a very restrictive assumption in many sparse deployment
scenarios. Our solution does not require full mesh connectivity,
using intermediate node relays instead whenever necessary.

C. Distributed Intelligence (non-NN-based) in WSNs or IoT

Networks

A few other works in the literature also aim to put some
form of distributed intelligence in sensor networks/IoT net-
works but not specifically point to a NN-based solution. The
authors in [22] argue that it is not enough to connect everyday
objects through the IoT infrastructure but that we also need to
enable them with some level of intelligence to understand their
environment. Among several approaches of establishing some
form of cognition in the IoT infrastructure, the authors in [22],
present an approach of non-cloud-based decentralized data
processing using the Alternate Direction Method of Multipliers
(ADMM). While ADMM is a good candidate to solve a
distributed optimization problem using a massive dataset or
even a large-scale machine learning algorithm [23], the authors
in [22] do not explicitly discuss applications of ADMM to
implement cognitive intelligence for IoT sensor nodes.

In [24], a strong case for developing distributed intelligence
in IoT network nodes is presented. The authors share our
belief in the importance of exploiting locality of information
in WSNs, but they do not propose anything similar to our
approach. In fact, none of the works discussed in this section
account for resource-availability-aware optimal mapping of
artificial intelligence (whether through a neural network or
not) on IoT nodes.

III. REFERENCE SCENARIOS

The high-level description of the concept presented in the
introduction necessarily abstracts many implementation details
that would depend on the specific context of application.
Naturally, we must be able to map the concept to a specific
IoT network instance for the purpose of experimentation and
analysis. In this section we will formally introduce our two

reference scenarios, explicitly detailing the assumptions made
and defining key parameters of interest. In doing so, we have
an opportunity to discuss how the NaC concept can be applied
in practice on a given IoT network. The scenarios described
here will be used both for the energy consumption analysis
presented in section V and for the latency simulations detailed
in section VI.

For our reference experiments we use a lattice of IoT
devices. A grid topology was chosen both for its simplicity
and because it matches many real-world deployments, such
as a grid of parking sensors, or evenly spaced devices in
a factory plant. However, our framework is applicable to
any mesh network topology: to showcase this, we briefly
present some results obtained on randomly generated graphs
at the end of section V. With that exception, all the other
experiments presented in the paper implement our reference
lattice scenario.

The IoT sensors in the grid form a mesh network and use
message relaying to send measurements to a central gateway
node for cloud storage and processing. We refer to these
messages as IoT background traffic in the remainder of the
paper. The sensors are characterized by ηiot, which represents
the daily number of measurements collected by each device.
Furthermore, a subset of the nodes in the grid act respectively
as the input nodes and actuators of our target application.
These nodes operate at a regular interval in what we define
as messaging rounds. There are ηnn such messaging rounds
each day; note that this parameter is uncorrelated with ηiot.
During each of these rounds, each of the input nodes produces
a measurement; these measurements need to be aggregated
and processed in order to produce the required output at the
actuators. The way in which this aggregation and processing is
performed is what differentiates our two reference scenarios.

In the Network as a Computer (NaC) scenario, computation
is performed in a distributed fashion through a feed-forward
neural network [8]. As described in section IV, a predefined
number of IoT nodes are selected by our optimization frame-
work to behave as hidden neurons. During each round, the
measurements from the input sensors also represent the input
to our neural network. As such, they are directed to the IoT
devices acting as hidden neurons, through what we call NN
messages. Once all the required inputs have been collected
at a hidden neuron node, the computed output signal can be
forwarded to the actuators. Similarly, each actuator needs to
collect the messages from all the hidden neuron nodes to
extract the final output. In other words, the IoT network will
implement the data flow model of Fig 1a. The resulting data
traffic over the IoT network is referred to as NaC traffic in the
rest of the paper.

On the other hand, in the centralized Gateway (GW) sce-
nario input messages from the sensing nodes have to reach
the gateway for aggregation and processing purposes. Once
that is done, the desired output is forwarded back from the
gateway to the actuators. This is exemplified by the data flow
model shown in Fig. 1b. This represents our reference baseline
scenario, which is used to evaluate the performance of our
proposed approach.

An example of how the data flow models described above
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would map to an actual instance of the scenarios with a single
actuator node is shown in Fig. 2.
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Fig. 1: Data flow model for the NaC scenario (a) and for the
centralized GW scenario (b). Here and throughout the paper
figures will adopt the following coloring convention: input
nodes are depicted in green, hidden neuron nodes in purple,
output nodes in red, and gateway nodes in orange. Messages
originating from one of these node types will be represented
with arrows of the same color.
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Fig. 2: Implementation of the data flow models of Fig. 1
for a particular deployment instance, respectively for the NaC
scenario (a) and for the centralized GW scenario (b).

IV. NAC OPTIMIZATION FRAMEWORK

The optimal placement of hidden neuron nodes over the
available IoT devices is intuitively crucial for the success of
the NaC concept. On one hand, we must pay attention not
to compromise the network by overloading devices beyond
their capabilities, potentially exhausting their power budget
or simply impacting on the performance of the application.
At the same time, a sub-optimal placement could generate
longer routing paths than those we would have with central-
ized processing; this could introduce additional latency and
generate unnecessary traffic, potentially creating congestion
in the network. Clearly, the choice must be performed in an
optimal way, taking into account the constraints of the network
and the cost of data transmission.

For this purpose, in [25] we introduced an optimization
framework for hidden neuron placement. Specifically, the
framework takes a topology of IoT devices with some input
nodes and some actuators, and maps a given number of hidden
neuron nodes on a subset of the available devices to optimize
an objective function of interest (e.g. one that minimizes the
transmission power used for messaging), subject to constraints
on resource availability.

TABLE I: Optimization Framework Symbols

Symbol Definition

dk,j Cost of the optimal path between nodes k and j.

EB Energy available at each node daily.

Er Energy consumed by one node for receiving one message.

Es Energy consumed for sensing by one node.

Et Energy consumed by one node for transmitting one
message.

H Set of hidden nodes for the neural network.

N Set of nodes in the IoT network.

O Set of output nodes for the neural network.

Pk,j Optimal path between nodes k and j.

S Set of source nodes for the neural network.

T (i) Upper bound on the number of hidden neurons that can
be mapped on node i.

xi Binary variable that takes value ‘1’ if node i is selected
as one or more hidden nodes.

yi Integer variable representing how many hidden nodes are
deployed in node i.

ηiot Number of background IoT messages generated by each
node daily.

ηnn Daily number of neural network rounds.

It is important to clarify a few assumptions underlying
the framework. Firstly, it should be noted that the same
IoT network can implement multiple applications, for each
of which a separate instance of this framework can be run.
Secondly, it is assumed that the structure of the neural network,
namely the input and output nodes and the appropriate number
of hidden neurons to perform the computation of interest, are
available as an input to the optimization framework. These are
parameters that depend on the specific application and are not
discussed in this work. Finally, the optimal mapping requires a
representation of the IoT topology. In particular, it is assumed
that the routing tables used in the IoT network and relevant
network-state information (e.g the cost associated with the use
of a link in terms of delay) are made available to the optimal
mapping. Moreover, the optimal mapping must be updated
anytime a change in the topology occurs, e.g. when a new
device joins the network or a link breakage is detected. It is
worth noting that routing protocols for IoT networks typically
include mechanisms for recovery in case of link or node failure
and the gateway could easily be informed of changes in the
network.

In this paper, we introduce two extensions to the opti-
mization framework originally proposed in [25]. Firstly, our
original model assumed that Dijkstra-like shortest path routing
was available between any pair of nodes in the network. In
practice, however, this is typically not the case in the low-
complexity, low-power IoT networks that we are considering.
For this reason, we modified our original model to take
into account more realistic routing protocols for constrained
networks. This first extension is detailed in subsection IV-A
below.

The second extension is related to the energy constraints of
the available devices. As briefly explained above, the choice
of IoT devices and wireless paths that implement the neural
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Fig. 3: The proposed optimization framework

network is constrained by the resource usage on each IoT
device, which shapes the search space of the optimal mapping
problem. In the optimization framework proposed in [25], we
assumed that those constraints were known in advance, so
that each IoT node n could at most operate as T (n) hidden
neurons. Here we extend the original model to take into
account the energy availability at each node and the energy
consumed in transmitting/receiving the NN messages as well
as the background IoT messages. We will first formalize the
problem in the case the neural network is trained offline,
and then extend it to account for the exchange of training
messages. While the process of training the neural network
is not trivial, and performing it on a network of constrained
devices would neither be an efficient choice nor bring sig-
nificant benefits compared to an offline training, the online
weights adaptation might be useful for certain applications,
e.g. process monitoring or fault diagnosis in which the data
distribution changes over time. The extended framework is
detailed in subsection IV-B below. Table I details the symbols
used in the remainder of the paper. The updated optimization
framework is depicted in Fig. 3.

A. Constrained Routing in IoT Networks

IoT networks come in many shapes and flavors, depending
on the domain of interest and the requirements of the service to

be implemented. Arguably the applications that are gathering
the highest momentum are deployed on small and inexpensive
devices, typically battery-operated, which are tasked with
simple monitoring and control tasks. The limited capabilities
of these nodes is compensated by their low operational costs
and their consequent pervasiveness, allowing IoT business
opportunities to flourish in domains that would otherwise
be prohibitively expensive to automate. These devices also
represent an inherently more interesting target for distributed
computing, which offers a way to implement complex tasks
that would otherwise exceed the capabilities of the individual
nodes of the network. For these reasons, in this paper we focus
our attention on low-power IoT mesh networks.

For example, Low-Power and Lossy Networks (LLNs) [26]
are networks in which constrained nodes (i.e. with limited
processing power, memory or energy) are interconnected by
lossy links, often supporting low data rates. Multi-hop routing
in LLNs comes in either of two fundamental flavors: route-

over, where routing is implemented at layer 3 of the net-
work protocol stack (i.e. at the network layer) at each hop,
or mesh-under, where the multi-hop forwarding is handled
directly at layer 2 (i.e. at the data-link layer), presenting
the abstraction of a single layer 3 link between source and
destination. The most widespread approach is the route-over
one, in particular using the RPL protocol [27]. RPL is based
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on the use of Destination-Oriented DAGs (DODAGs), that is,
optimized Directed Acyclic Graphs (DAGs) connecting the
nodes of the network to a single destination root, such as
for example the network gateway. If a node wants to send
a message to a different destination from the root of the
DODAG, the message will still have to traverse the graph
structure, potentially reaching the root before being sent back
down again towards the destination; this is done to reduce
the workload at intermediate nodes, as many of them may
work in non-storing mode, i.e., may not keep a full view of
the network topology. The assumption of the protocol is that
most messages will go from a generic source to a single shared
sink - or a small subset of sinks, as in principle it is possible
to have multiple DODAGs rooted at different nodes. This is
highly inefficient in decentralized networks like the ones we
envision in this paper.

Another option is IEEE’s 802.15.5 standard [28], a mesh-
under protocol designed for low-power Wireless Personal
Area Networks (WPANs). At its core 802.15.5 is similar to
RPL, using tree structures that are nearly equivalent to RPL’s
DODAGs, but with some additional measures to limit the
inefficiencies of routing through a single-root structure. Specif-
ically, nodes can optionally keep track of the local link state by
exchanging periodic messages with other surrounding nodes.
Using this information, they can build a k-hop neighbors list
(with k ≥ 2), i.e. a list of nodes reachable within k hops
disregarding the constraints of the shared routing tree structure.
When forwarding multi-hop messages, a node first checks
whether it can reach the destination through some of its local
connections recorded in the k-hop neighbor lists, and only if
that is not possible it defaults to sending the message along
the shared tree.

Naturally, if the placement algorithm in our optimization
framework uses a routing mechanism not available in the
actual IoT network we are considering, the resulting hidden
neuron deployment might be inefficient or even counterpro-
ductive. For this reason, we have modified the optimization
problem presented in [25] to better match the nature of
the constrained routing environments we are dealing with.
Specifically, we assume an 802.15.5-like routing protocol, with
a tree structure rooted in the network gateway, and 2-hop
neighbor lists in each node to allow for local shortcuts. The
process that leads to the generation of the routing table is
exemplified in Fig. 4: from the physical grid topology of IoT
devices (Fig. 4a) we build a minimum spanning tree rooted
at the gateway in the middle to represent the single DODAG
structure (Fig. 4b). Then, for each node, we add routing entries
to allow for shortcuts through the 2-hop neighbors list - e.g.,
in node 5 we would add node 4 as the next hop for messages
directed to nodes 3 or 4 (Fig. 4c). Without the local neighbor
list, messages directed to node 3 would instead be routed to
node 10 along the minimum spanning tree, taking a much
longer path before reaching their destination.

B. Energy-Aware Optimal Mapping

The optimal mapping, which identifies the IoT nodes that
act as hidden neurons and the optimal paths from the inputs
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Fig. 4: Routing table generation for constrained routing: (a)
the physical topology of devices, (b) the minimum spanned
tree rooted at the gateway, (c) additional logical links for the
2-hop neighbors of node 5. See Fig. 1 for the color coding.

to the outputs via the hidden neurons, can be formulated as an
integer linear program that minimizes a cost function subject
to constraints on the resource availability of each node.

In this paper we consider two objective functions for the
optimal mapping of neurons into IoT nodes: i) minimizes
the overall cost of communication, while ii) minimizes the
maximum cost of communication. The optimal path Pi,j

between every two pair of nodes (i, j) is precomputed based
on the 802.15.5-like routing protocol explained above. In the
first case, the cost of Pi,j , denoted by di,j , is the sum of the
transmit power required to transmit a message between each
pair of adjacent nodes in Pi,j

1. The overall cost of commu-
nication corresponds to the total transmit power required to
deliver the processed information to the output nodes. The
corresponding objective function is given by:

min
xi

∑

i∈N

(
∑

s∈S

ds,i +
∑

o∈O

di,o)xi (1)

where xi is a binary variable that takes value 1 if node i is
selected as one or more hidden nodes.

In the second case, di,j corresponds to the sum of the
expected transmit time between each pair of adjacent nodes
in Pi,j . The objective function, which corresponds to the
maximum transmit time to deliver the processed information
to the output nodes, is given by:

min
xi

∑

i∈N

(max
s∈S

(ds,i) + max
o∈O

(di,o))xi (2)

The choice of IoT devices and wireless paths that implement
the neural network is constrained by the resource usage on
each device. The constraints, which shape the search space of
the optimal mapping problem, are given in (3), (4), (5), and
(6). Constraint (3) ensures the integrity of the mapping model
by guaranteeing that exactly |H| hidden nodes are allocated.
Constraints (4) and (5) ensure that: i) if node n is not selected
to implement hidden neurons (xn = 0), the number of hidden
neurons deployed in node n is 0 (yn = 0); ii) if node n
is selected to implement hidden neurons (xn = 1), then 1 ≤
yn ≤ T (n). Constraint (6) ensures that choice of hidden nodes

1In the context of the optimal mapping discussed in this section we assume
an ideal MAC layer, with no collisions and retransmissions. The impact of
imperfect MAC in the presence of interference is evaluated using Cooja, as
detailed in section VI.
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∑

i∈N

yi = |H| (3)

xn − yn ≤ 0 ∀n ∈ N (4)

− T (n)xn + yn ≤ 0 ∀n ∈ N (5)

S(n)Es +
∑

s∈S

∑

i∈N

( P
−s,i

(n)Er + Ps,−i
(n)Et)xi+

∑

o∈O

∑

i∈N

( P
−i,o

(n)Er + P
−i,−o

(n)Et)xi + ynEt|O| ≤ Eu(n) ∀n ∈ N (6)

xn ∈ {0, 1}, yn ∈ {0, 1, . . . , |H|} ∀n ∈ N (7)

and wireless paths satisfies the daily energy availability of each
node. The right-hand side of (6), Eu(n), represents the energy
available at node n for each neural network computation and
it is computed as

EB − ηiotEiot(n)

ηnn
,

where Eiot(n) is the energy consumed by node n for each
IoT round. In other words, the energy available for each
neural network round is obtained by subtracting the energy
consumed by the node for all the IoT-related operations in
a day (ηiotEiot(n)) from the overall daily energy budget
(EB) and then dividing the result by the number of neural
network computations in a day (ηnn). Eiot(n) is computed
based on the model presented in [29]. In addition to sensing
and transmitting its own IoT data, a device may also have to
relay the IoT data of other nodes towards the gateway.

For each IoT round, Eiot(n) can be computed as follows:

Eiot(n) = Es + in(n)Er + out(n)Es (8)

where in(n) and out(n) are the number of incoming and
outgoing paths to node n towards the gateway, and are
precomputed based on the 802.15.5-like routing protocol. In
the left-hand side of (6) S(n) is equal to 1 if node n ∈ S, and
0 otherwise; P

−s,i
(n) is equal to 1 if node n ̸= s belongs to

the path from source s to node i , and 0 otherwise; Ps,−i
(n)

is equal to 1 if node n ̸= i belongs to the path from source
s to node i , and 0 otherwise; P

−i,o
(n) is equal to 1 if

node n ̸= i belongs to the path from node i to output o;

P
−i,−o

(n) is equal to 1 if node n ̸= o and n ̸= i belongs
to the path from node i to output o, and 0 otherwise. The
first term in (6) is equal to energy consumed by node n
to sense, if node n is one of the input nodes of the neural
network, and 0 otherwise. The last term (ynEt|O|) is 0 if
no hidden neurons are allocated to node n; otherwise it is
the energy consumed to transmit the messages processed by
each hidden neuron allocated to node n to each output node.
The assumption here is that messages cannot be compressed.
Hence, node n has to send to each output node a number of
messages equal to the assigned number of hidden neurons (yn).
The first summation in (6) represents the energy consumed by
node n to relay messages from the input nodes to the hidden
nodes. The second summation represents the energy consumed
by node n to relay messages from the hidden nodes to the
output nodes.

The optimal mapping formulated above takes into account
the flow of data from the input to the output nodes. In other
words, it is assumed that the neural network is trained offline
and is used by the IoT network to perform the required
operations on the input data. It is possible to extend the
optimal mapping so as to account for the messages exchanges
required to update the neural network weights when using
the backpropagation algorithm [30]. Backpropagation is the
most commonly used algorithm for training neural networks.
The algorithm works by first forward-propagating the inputs
to compute the corresponding output of the neural network,
and then back-propagating the error from the outputs to the
hidden nodes. Hence, the objective function and the energy
availability constraint (6) have to be modified by adding
the contribution of the back-propagation step. For example,
denoting by ρ the fraction of daily NN rounds that are also
used to update the network weights2, the objective function
corresponding to the total transmit power can be expressed as
follows:

min
xi

∑

i∈N

(

∑

s∈S

ds,i +
∑

o∈O

(di,o + do,iρ)
)

xi. (9)

When including the contribution of the back-propagation
messages, the energy availability constraint is given in (10),
where P

−o,i
(n) is equal to 1 if node n ̸= o belongs to the

path from output o to node i; P
−o,−i

(n) is equal to 1 if node
n ̸= o and n ̸= i belongs to the path from output o to node i,
and 0 otherwise; O(n) is equal to 1 if node n is one of the
output nodes, and 0 otherwise.

In terms of complexity, the problem of embedding a neural
network in a network of IoT devices belongs to a class
of network embedding problems which, in the absence of
constraints on resources availability, are shown in [11] to
be NP-complete. In the optimization problem formulated in
the paper there are |N | binary variables (xi) and |N | integer
variables (yi), each upper bounded by the number of hidden
nodes in the neural network (|H|). Each integer variable can
be expressed as |H|+ 1 binary variables. Therefore, the total
number of binary variables in the problem is |N |× (|H|+2).
As expected, the problem size grows with the size of the
IoT network determined by |N | and the size of the neural

2If the neural network is first trained offline, only a subset of the new
measurements, for which the target outputs are known, is used for online
training.
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S(n)Es +
∑

s∈S

∑

i∈N

( P
−s,i

(n)Er + Ps,−i
(n)Et)xi+

∑

o∈O

∑

i∈N

( P
−i,o

(n)Er + P
−i,−o

(n)Et)xi + ynEt|O|+

ρ
(

∑

o∈O

∑

i∈N

( P
−o,i

(n)Er + P
−o,−i

(n)Et)xi + O(n)Et|H|
)

≤ Eu(n) ∀n ∈ N (10)

TABLE II: Recap of the simulation parameters for energy
consumption evaluation

Parameter Name Parameter Value(s)
Et 195.6e− 9 Joules per bit
Er 220.8e− 9 Joules per bit
Gateway nodes 1 (middle of the grid)
Grid size 7x7
Hidden neuron nodes 3
Input nodes 3
Network lifetime 6 months
Output nodes 2
Packet size 103 bits
ηiot 12 (every hour)
ηnn 1 (every day)

network determined by |H|. Despite this, our tests show that
the optimization problem remains tractable when the network
size increases; as an example, it takes less than a minute to
complete on a standard laptop for a neural network with 15
hidden nodes over a 25×25 grid, that is to say, for a network
of the order of magnitude of 625 nodes.

V. ENERGY CONSUMPTION EVALUATION

In this section we analyze the properties of the NaC solution
with respect to the energy consumption of the IoT devices. We
consider a grid of nodes, where each node can communicate
with its closest neighbors (Von Neumann neighborhood) and
the center node of the grid is the gateway used by both the IoT
background traffic and the centralized GW traffic. Input and
output nodes of the NN are selected randomly from a single
quadrant of the grid (south-east of the gateway) to ensure that
the locality of information processing principle can be applied.
We focus on the core of the NaC formulation, i.e without the
backpropagation elements.

The results presented in Figures 5 , 6, 7 and 8 refer to a
scenario with a grid of 7×7 IoT nodes, 3 input nodes, 3 hidden
neurons and 2 output nodes for the NN. We also conducted
experiments with larger networks (up to 11× 11 IoT nodes),
and the results show similar trends. It is important to note that
the number of nodes in multi-hop networks is typically in the
order of tens per gateway for a wide range of applications,
from networked control systems in industrial environments
[31] to smart city deployments [32]. The results shown in
Figures 5 , 6, 7 and 8 are averaged over 102 independent
selections of input and output nodes, and the corresponding
optimal hidden nodes in the case of NaC. Moreover, we
consider ηnn = 12 NN daily rounds and ηiot = 1 IoT daily
rounds. Finally, we assume Et = 195.6e − 9 Joules per bit
[33], Er = 220.8e − 9 Joules per bit [33], a packet size of

103 bits, and a battery of 5 Joules [33]. Assuming a network
lifetime of 6 months, EB = 5/(0.5 ∗ 365) = 0.0274 (Joules
per day) is the daily energy budget available to each node.
The parameters of interest for the simulations are summarized
in Table II.

Figures 5 and 6 show the percentage of the daily energy
budget (EB) used by each node in the grid for the different
types of traffic. In particular, Figure 5a shows the percentage
of energy used by IoT messages (Eiot), i.e. to collect IoT
measurements at the gateway (node (3, 3) in the grid). Obvi-
ously, the energy consumption is higher for nodes responsible
to relay messages, as it can be observed by the cross-like
pattern in figure. Figure 5b shows the percentage of energy
used by the centralized GW messages (Egw). Since input
and output nodes are localized in the south-east quadrant,
only those nodes consume energy. Since the data has to be
collected at the gateway to be processed before being sent to
the output nodes, the gateway and the nodes responsible to
relay messages show a higher energy usage. Figure 5c shows
the combined energy used by IoT messages and the centralized
GW messages (Eiot +Egw). Figures 6a, 6b, and 6c show the
combined energy used by IoT messages and the NaC messages
corresponding to the objective function in (1) (Eiot+ENaC,p)
for T (n) = 1, T (n) = 2, and T (n) = 3 respectively, i.e. when
each IoT node can implement at most 1, 2, and 3 hidden
neurons. We denote by ENaC,p the energy consumed by the
distributed NaC in correspondence to the objective function
in (1). Results corresponding to the objective function in (2)
- for which the energy consumption is denoted by ENaC,t -
show a similar trend. Regardless of the value of T (n), the
comparison between NaC (Figures 6a, 6b, and 6c) and the
centralized GW solution (Figure 5c) highlights a key feature
of the NaC solution: by processing information locally we
mitigate the so-called ”energy-hole” problem. In other words,
the NaC solution avoids overloading those nodes that already
have a higher traffic load due to the background IoT traffic. By
comparing results Figures 6a, 6b, and 6c, we can observe that
distributing the information processing among more nodes, i.e.
considering a lower value of T (n), results in a higher energy
usage. This is expected, in that the lower is T (n), i.e. the
higher the number of IoT devices selected as hidden neurons,
the higher is the required number of messages. However, the
increase in energy usage is localized in nodes that are less
critical for the network.

In order to assess the impact of the optimal hidden nodes
placement on the energy usage, we evaluated the energy
consumption in the network in case hidden nodes are randomly
selected in the same quadrant of the input and output nodes.
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(a) (b) (c)

Fig. 5: Percentage of the daily energy budget used by IoT traffic (a), centralized GW (b), combined IoT traffic and centralized
GW (c).

(a) (b) (c)

Fig. 6: Percentage of the daily energy budget used by the combined IoT traffic and NaC with T (n) = 1 (a), T (n) = 2 (b),
and T (n) = 3 (c).

Fig. 7: Percentage of the daily energy budget used by the
combined IoT traffic and NaC with random hidden nodes.

Figure 7 shows the combined energy used by IoT messages
and the NaC messages for randomly selected hidden nodes,
assuming each IoT device can implement at most 1 hidden
neuron. By comparing results in Figures 7 and 6a we can
observe that the optimal placement of hidden neuron nodes
plays a key role in decreasing the energy usage in the
network when implementing the NaC scenario. On average,
the network energy consumption in case of optimally placed

Fig. 8: Ratio of the energy used in the centralized GW solution
to the distributed NaC solution for the two objective functions.
The curves with triangular markers refer to objective function
(1), while the curves with the square markers refer to objective
function (2)

hidden nodes is 65% of the energy used in case of randomly
selected hidden nodes.

Figure 8 shows the ratio of the average energy used by the
combined IoT/NaC solution (for the two objective functions)
to the energy used by the combined IoT/centralized GW
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Fig. 9: Normalized energy consumption of nodes in a random
mesh IoT network.

solution as a function of T (n). The figure also shows the ratio
of the maximum energy usage in the network for both cases. It
can be observed that both NaC solutions result in a decrease
of the average energy used when T (n) ≥ 2. In the case of
T (n) = 1, the slight increase in the average consumed energy
is compensated by the decrease in the maximum energy usage.
In other words, even when more energy is used on average, the
energy consumption is distributed among nodes with a higher
reserve of energy.

We also evaluated the NaC solution in the more general
case of random mesh IoT topologies. Figure 9 shows the
normalized energy consumption averaged over 103 random
topologies with 49 nodes. Each topology is generated by
uniformly distributing the devices over a target square area,
and then interconnecting devices that are located at a distance
lower than the transmission range. As in the case of the grid
deployment, the optimal path between every two pair of nodes
is precomputed based on the 802.15.5-like routing protocol.
The gateway in each topology is randomly selected from the
center of the graph, i.e. the set of nodes that minimize the
maximal distance from other nodes in the graph. In order
to preserve the locality of information principle, for each
topology, input and output nodes are randomly selected so that
the maximum distance between nodes is less than 5 hops, i.e.,
within a 2-hop neighborhood of a randomly selected origin
node. The remaining parameters are the same as those used
for the previous simulations, as summarized in Table II. For
each random topology, nodes are ranked according to the
combined energy consumed by the centralized GW and IoT
messages, and according to the combined energy consumed by
the NaC solutions (with T (n) ∈ {1, 2, 3}) and IoT messages.
The ranked energy profiles are averaged over the 103 samples
and normalized with respect to the energy used by the node
with the highest consumption. As shown in figure, the energy
consumption corresponding to NaC, for each value of T (n), is
more evenly distributed than in the case of the centralized GW
approach. Among the different NaC solutions, higher values

of T (n) result in more evenly distributed energy consumption
profiles. As we showed for the regular lattice deployment, by
processing information locally once again the NaC approach
avoids overloading the nodes already carrying a higher traffic
load due the background IoT traffic, even in the case of random
mesh topologies.

VI. LATENCY EVALUATION

A. Choosing a Simulation Framework

One of the benefits that we claim for our distributed
processing approach is the reduction of latency in all those
cases where input and actuating nodes are physically located
close to each other – or, in other words, when the principle
of locality of information processing applies. Short of a full
implementation of the concept, to verify this claim we needed
a simulation framework capable of providing an estimation
of the performance of the system under reasonably realistic
assumptions. The main constraint that dictated our choice was
the availability of multi-hop routing models, preferably in a
low-power setting.

The best fit turned out to be Cooja [34], the simulation/
emulation environment that comes with Contiki. Contiki is an
Operating System for constrained IoT devices which is widely
adopted both in industry and academia. Each node in the Cooja
simulation environment is an actual compiled and executed
Contiki instance, running the same code that would run on a
physical mote; this results in accurate and realistic simulations.
It also boasts an extensive community of active developers and
support for a large set of Internet standards.

Specifically, Contiki provides two separate networking
stacks: uIP and Rime. The former is an implementation
of the TCP/IP stack for constrained devices; focusing our
attention on mesh networking, uIP implements natively RPL,
the multi-hop protocol briefly described in subsection IV-A.
However, support for multiple instances of DODAGs is not
fully implemented nor well documented, and simulations using
a single DODAG would not perform well in our decentralized
scenario; furthermore, there is no implementation of mesh-
under protocols in uIP. For these reasons, we decided to look
elsewhere.

The Rime communication stack [35] provides a set of
lightweight communication primitives ranging from best-effort
local area broadcast to reliable network flooding. Specific
“transformation modules” are then provided to map those
communication primitives to existing protocols that physical
devices can understand. The main advantage of using Rime
lies in its simplicity, as we can combine and build upon its
bare-metal primitives to mimic mesh protocols that better fit
our requirements. Specifically, we were able to emulate the
behavior of 802.15.5 by implementing neighboring lists at
the routing table of each node. Furthermore, the fine-grained
control offered by Rime over the forwarding logic used by
the multi-hop primitive at run time ensures that the routing
decisions taken by the IoT devices match the model used in
the optimization framework.
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B. Implementation Details

The simulations implement the reference scenarios de-
scribed in section III. The objective is to compare the mes-
saging latency respectively using our distributed NaC concept
or with a more traditional cloud-based approach. In all cases,
input and actuator nodes are selected randomly from a single
quadrant of the grid to ensure that locality of information
processing applies.

Rime offers two multi-hop transmission primitives: best-
effort multi-hop (mh) and reliable multi-hop (rmh). The former
simply attempts to forward a message to a final destination
through intermediate hops that need to be provided through a
custom-defined routing function. The latter, on the other hand,
requires each intermediate hop to acknowledge the reception
of the message to the previous hop; the maximum number of
re-transmissions (5) and the ACK timeout (1s) are modifiable
parameters of the protocol, as is the maximum number of hops
that the primitive will support before dropping the packet.

No matter what ACK timeout was chosen, the usage of
reliable multi-hop primitives also created the problem of
duplicate messages, which had to be properly dealt with at
the receiver to avoid byzantine behaviors. This was done by
keeping track at each node of the expected sequence number,
identifying the current “round” of NN operations, as well as
the packets already received from each of the involved actors
(e.g. each of the input nodes, in the case of a hidden node).
Furthermore, there is no notification of the source node in case
of a message loss somewhere down the forwarding chain. In
Rime, only the last successful intermediate hop is aware of
the packet loss, and there is no mechanism in place to back-
propagate negative acknowledgements. For this reason, losses
are detected only posthumously at the reception of an NN
message with a unexpected sequence number.

Routing tables for this multi-hop forwarding are saved to
file by the optimization framework algorithm and loaded in
each node at run time; this is done to make sure that the
routes computed by the optimal node placement algorithm
correspond to the paths taken by messages in the actual
simulation. These routes are shared by both NN messages (to
whatever destination) and background IoT messages to the
gateway. The process used to compute these routing tables is
described at the end of subsection IV-A

Interference between nodes is simulated using Coojas built-
in Unit Disk Graph Radio Medium (UDGM) model: transmis-
sion range is modeled as a circular range, with interference
reaching a larger circular range. These ranges are set so that
nodes can only communicate with adjacent nodes in the lattice
(i.e. the 4 nodes next to it on the vertical and horizontal axis),
while interfering also with their diagonal neighbors, as shown
in Fig. 10. By taking into account data loss due to interference,
these simulations can help us better understand the impact of
a non-perfect MAC on the performance of our framework.

Latency is measured for each of the NN messaging rounds
described in subsection III. Specifically, we define it as the
interval of time between the instant the last of the input
measurements of that round is available to the instant the last
output node receives the processed data. We recall here that,

Fig. 10: Interference model in Cooja: the green and gray
circles represent respectively the transmission and interference
range of the middle node.

at each round, we need to aggregate data from each of the
input nodes in order to produce the desired output. Cooja
has internal tools to track networking metrics of interests,
including latency, but naturally it has no way to understand
this end-to-end definition of latency, spanning several source-
destination pairs. For this reason, we take these measurements
through specific log parsers that were developed in Python.

On the other hand, the remaining IoT nodes in the grid
behave in the same way in both the centralized and distributed
scenarios, and thus their latency measurements are not in-
cluded in the results; their main purpose is to enhance the
realism of the simulation by generating a sparse background
traffic which can interfere with the transmission of our mes-
sages of interest.

Various versions of both the NaC and GW based simulation
scenarios were implemented, using different combinations of
reliable and best-effort multi-hop forwarding. A lesson that
we learned early on is that the proximity of input nodes can
work against us by causing many collisions and hence loss of
messages. For this reason, the results shown here correspond
to scenarios in which the NN messages from input nodes are
forcibly spaced in time; in other words, if the length of a NN
messaging round is 60 seconds, we might have the first node
sending its messages to the hidden neuron nodes at t = 0s of a
round, the second input node sending its messages at t = 10s
of the same round, and so on.

Furthermore, we soon realized that using reliable multi-hop
for both NN and IoT messages led to many lost packets,
as both mechanisms attempt to recover from a collision
by re-transmitting their message, hence causing even more
congestion; better results were achieved using reliable trans-
mission primitives only for the neural network messages, while
background IoT messages use the best-effort primitive. All the
results presented in subsection VI-C follow this convention.
Other parameters of interest for the simulations are gathered
in Table III. Note that the messaging frequency is much higher
than what we would observe in most WSN deployments; this
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TABLE III: Recap of the parameters for the Cooja simulations

Parameter Name Parameter Value(s)
ACK timeout 1 second
Gateway nodes 1 (middle of the grid)
Grid size 7x7, 11x11
Hidden neuron nodes 3
Input nodes 3
Max. retransmissions 5
NN rounds per run 160
Output nodes 1
ηiot 144 (every 10 minutes)
ηnn 1440 (every minute)

is simply to reduce the length of the simulation runs, which
is quite significant.

C. Simulation Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

7x7 grid

11x11 grid

Average End-to-End Latency (s)

NaC GW

Fig. 11: Average latency of a NN messaging round.

Fig. 11 shows the averaged end-to-end latency for NN
messaging rounds, using either NaC or a centralized gateway
processing, for two simulation batches using respectively a
7x7 and an 11x11 grid of IoT devices, similarly to what was
detailed in section V. Thanks to the clustering of input and
output nodes, in the 7x7 results the latency of NN messages is
more than halved for NaC compared to the GW solution. These
averaged results include a ”worst case” scenario in which input
nodes were hand-picked at the extremities of the quadrant
of choice and the output node was placed adjacently to the
gateway; even in these conditions the NaC approach is able
to reduce the overall latency of NN messages from 0.67s to
0.44s on average.

On the larger 11x11 grid, latency results are even more
flattering for the NaC approach. This is intuitively explained
by the increased distance that a multi-hop message needs to
travel from the input node to the gateway and then finally to
the output node as the size of the grid increases; thanks to
locality of information and the optimal placement of hidden
neuron nodes in the network, our distributed solution scales
better than a centralized one.

Fig. 12 shows results on the percentage of failed messaging
rounds for the same batches of simulations, i.e. those where
some of the NN messages were lost due to collisions before
reaching the actuator. For the 7x7 grid batch using NaC, we
registered a 1.7% increase in the number of failed rounds
compared to the centralized case – that is, from 0.15% to

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

7x7 grid

11x11 grid

Failed Messaging Rounds (%)

NaC GW

Fig. 12: Average percentage of failed messaging rounds.

1.86% on average. In a relatively small network such as the
one considered, the additional traffic generated by messages
to the hidden neuron nodes seems indeed to have a negative
effect on the reliability of message delivery, albeit with values
that are still very reasonable for an LLN.

However, on the larger 11x11 grid topology this trend
is reversed, with NaC outperforming the centralized GW
approach even in terms of failed messaging rounds. Together
with the latency results detailed above, we see this as a further
proof of the inherent scalability advantage of NaC compared
to a non-distributed solution.

VII. CONCLUSIONS

This paper extends the work in [25], where we first in-
troduced a neural-network-based framework for in-network
computation, exploiting the communications between the de-
vices of an IoT mesh network to perform data processing and
aggregation.

Specifically, in this work we refined our optimization frame-
work to take into account the constraints of the routing
protocols typically implemented in a low-power context. Fur-
thermore, we enriched the system model to account for the
energy consumption of the messaging process, in order to
optimize the placement of the hidden neurons and improve
the lifetime of the network. Finally, we used Cooja simulations
to validate the feasibility of the concept and to measure the
latency gains that could be achieved compared to a centralized
gateway processing solution on a reference grid topology
scenario.

Our results show that NaC improves the distribution of
energy consumption among the devices of the network, thus
mitigating the energy hole effect and increasing the expected
lifetime of the network. Furthermore, it is able to exploit the
typical proximity of sensing and actuating devices to reduce
latency compared to a cloud or edge-based solution. Finally,
when running more realistic simulations in Cooja, our results
show that data loss due to interference affects the centralized
gateway approach just as much as (and in some cases more
than) our proposed distributed approach.

Future work will focus on increasing the scalability of
this approach, and to extend it to other forms of in-network
processing that do not require a pre-mapping step on top of



13

a static topology, as this is a problem in scenarios with high
mobility, such as for example smart vehicles.
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