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A B S T R A C T   

Dementia has been faced with significant public health challenges and economic burdens that urges the need to 
develop safe and effective interventions. In recent years, an increasing number of studies have focused on the 
relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as 
diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible corre-
lation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 
metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the 
most common dementias: Alzheimer’s and vascular dementia. This current review highlights recent studies 
aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered 
hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.   

1. Introduction 

Dementia involves a set of symptoms that develops when the brain is 
damaged by injury or disease. These often include progressive deterio-
ration of memory, thinking and behavior and, ultimately, the ability to 
carry out everyday activities (World Health Organization, 2023). De-
mentia can be caused by many neurological disorders, including Alz-
heimer’s disease (AD), frontotemporal dementia, alcoholic dementia, 
dementia with Lewy bodies, and vascular dementia (VaD). 

The estimated global number of patients with dementia exceeds 50 
million. Every year, almost 10 million new cases occur, making de-
mentia the fifth leading cause of death worldwide, while AD is the fourth 
leading cause of disability-adjusted life years (DALYs) lost in people 
aged over 75 (Gustavsson et al., 2023; World Health Organization, 
2023). 

Most cases of late-onset dementia are sporadic and the development 
of dementia is likely influenced by the complex interplay between ge-
netic risk factors, medical comorbidities, as well as environmental and 
lifestyle factors (Garcia-Morales et al., 2021; Blaszczyk, 2023). The 
complexity of dementia goes beyond cognitive symptoms. It affects daily 
functionality and emotional well-being and burdens healthcare systems 
and patients’ families. As the population age increases, understanding 
the mechanisms underlying dementia has become crucial to develop 
effective prevention and treatment strategies (Grossman et al., 2023). 

It is believed that the pathophysiology of dementia is associated with 
the aggregation and accumulation of proteins in a disordered manner, 
which includes amyloid-beta (Aβ), Tau, alpha-synuclein (ɑ-Syn), and 
TAR DNA binding protein-43, however, it has also been associated with 
cerebrovascular disease (CVD), as depicted in Fig. 1 (Bortoletto and 
Parchem, 2023). On the other hand, changes in the metabolism of 
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glucose and other substances have been recently identified as important 
key factors in the pathogenesis of the most common dementias: AD and 
VaD (Garcia-Morales et al., 2021; Blaszczyk, 2023). 

There are two processes involved in the control of glucose meta-
bolism. The first is the insulin-dependent glucose storage in skeletal 
muscle, liver, and white adipose tissue. The liver is crucial for main-
taining normal glucose homeostasis, as it stores glucose after meals and 
produces glucose during fasting or starvation. In the fasting state, the 
liver provides glucose to maintain euglycemia and to fuel the brain. 
Hepatic glucose release is responsible for almost 90% of endogenous 
glucose production. The hepatic glucose metabolism is regulated by 
hormones such as insulin, glucagon, catecholamines, corticosteroids and 
growth hormone (Petersen et al., 2017; Jensen-Cody and Potthoff, 
2021). 

Glucose, phosphate and oxygen play an essential role in cognitive 
metabolism. At the cellular level, metabolic crises are usually caused by 
oxygen, glucose and phosphate deficiencies. The human body trans-
forms the equivalent of body weight into adenosine triphosphate (ATP) 
daily. The ATP-derived phosphate is then used in multiple phosphory-
lation cycles, including glucose phosphorylation, which contributes to 
the regulation of vital neuronal processes required for brain activity and 
metabolism. In fact, protein phosphorylation regulates interactions be-
tween components of neuron-neuron and neuron-glia synergies. In order 
to maintain the resting membrane potential and to fire an action po-
tential, each pyramidal neuron in cortical networks consumes almost 
three times more ATP than other neurons. Therefore, an optimum level 

of phosphate must be provided in order to maintain an adequate 
neuronal homeostasis (Nazarko, 2019; Blaszczyk, 2023). 

Phosphate supply to the brain is controlled by neuronal activity, 
which makes phosphate the brain’s main metabolic stimulator. Serum 
phosphate homeostasis is maintained through a complex interplay be-
tween intestinal phosphate absorption, renal phosphate handling, and 
cellular phosphate intake. Homeostasis is under hormonal influence of 
calcitriol, parathyroid hormone and phosphatonins, including fibroblast 
growth factor 23 (FGF-23). A transient phosphate transport towards 
active cells is stimulated by insulin or insulin growth factor 1 (IGF-1), 
glucose, and respiratory alkalosis. Due to limited access to phosphate, 
increased blood glucose levels can cause hypophosphatemia (Goyal and 
Jialal, 2023). 

Since glucose, insulin and IGF-1 metabolized in the liver and 
pancreas have important roles in the pathophysiology of dementia, this 
narrative literature review aims to update the evidence that supports 
that changes in hepatic and pancreatic metabolism have implications for 
the development of dementia, especially the vascular type and AD. 

2. Methods 

This is a narrative review of the literature on studies published be-
tween 2000 and 2023 in Science Direct, PubMed, Scientific Electronic 
Library Online (SciELO), and Latin American Literature in Health Sci-
ences (LILACS) databases, in which the hepatopancreatic metabolic 
disorders and their implications in the development of vascular and AD 

Fig. 1. Representation of neurological disorders due to cerebrovascular dysfunction (on the left) and due to neurodegenerative proteinopathies (on the right). 
Highlighted are the formation of atheromatous plaques causing carotid stenosis and multiple cerebral infarctions (on the right) and the formation and disarray of 
amyloid-beta (Aβ), TAU protein, alpha-synuclein (ɑ-Syn), and TAR DNA binding protein-43 (on the left). (Illustration: Francisco Irochima). 
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dementia were investigated. The search strategy was based on the 
combination of Medical Subject Headings (MeSH) with “Emtree Terms”: 
“Metabolic disorder and dementia”, “Liver disorder and dementia” and 
“Pancreatic disorder and dementia”. In order to further filter the studies 
in the databases, the Boolean operators “and” or “or” were used with 
terms to provide a good search strategy. 

3. Results 

3.1. Hepatic and pancreatic metabolism and its relationship with AD and 
vascular dementia 

Hepatic metabolism and its biochemical processes influence brain 
functions as much as the overall physical health. The interconnection 
between liver metabolism and mental health reveals surprising con-
nections between the liver and the brain. Recent studies, such as those 
by Wang et al. (2023), shed light on this relationship, highlighting the 
complexity and importance of such organic interactions. Therefore, the 
intersection between hepatic metabolism and dementia is an essential 
field of study. In fact, when analyzing the results of a series of studies, 
complex connections are observed in the mechanisms involving the 
onset of dementia, specially AD, and hepatic metabolism (Gao et al., 
2023, Wang et al., 2023). 

In the same way, the relationship between pancreatic metabolism 
and AD/vascular dementia is a fascinating and expanding area of 
research. Several factors contribute to the increased risk of patients with 
pancreatic metabolism dysfunction to develop dementia. One important 
factor involves the toxic accumulation of amylin, or islet amyloid 
polypeptide (IAPP). Biologically active monomeric IAPP is co-secreted 
with insulin by pancreatic β-cells and it works as a hormone that as-
sists in regulating metabolism and signaling satiety (Bortoletto and 
Parchem, 2023). As insulin secretion increases with hyperglycemia in 
diabetic and prediabetic patients, there is also a simultaneous increase in 
IAPP secretion. IAPP is prone to aggregation and the increase in its levels 
can lead to the formation of toxic oligomers in the pancreas, which is 
similar to what occurs with other amyloidogenic peptides such as Aβ. 
Although amyloid fibrils and plaques can lead to cell death, recent data 
suggest that the most cytotoxic form of amyloid is the prefibrillar or 
protofibrillar. Because monomeric IAPP is soluble in serum and IAPP 
protofibrils can cross the blood-brain barrier, aggregation of IAPP in the 
brain seems to contribute to neurodegeneration (Camargo et al., 2018). 

One of the central aspects linked to cognitive decline is the meta-
bolism of tryptophan, a precursor to serotonin. Liu et al.(2019) and Chen 
et al.(2021) observed the direct influence of the liver on tryptophan 
metabolism. The liver is responsible for metabolizing tryptophan, 
affecting its availability in the brain. The kynurenine pathway has 
recently been identified as a promising target to increase healthy 
longevity. It originates from tryptophan and represents another link 
between liver and cognitive decline (Savitz, 2020; Castro-Portuguez and 
Sutphin, 2020). The metabolic processing of tryptophan through the 
kynurenine pathway produces a range of biologically active intermedi-
ate metabolites. One branch of the pathway ultimately leads to the 
synthesis of nicotinamide adenine dinucleotide (NAD+), which is an 
essential cofactor that plays a critical role in many enzymatic redox 
reactions and energy production by mitochondria. NAD levels decline 
with age in several tissues, including the brain. In fact, this decline has 
been considered as a risk factor in the pathophysiology of several cat-
egories of age-associated diseases, such as AD and vascular dementia 
(Castro-Portuguez and Sutphin, 2020; Fernandes et al., 2023). 

Therefore, increasing the NAD+ levels through its precursors has the 
potential to prevent or alleviate a wide range of diseases, such as 
metabolic disorders and dementia. Based on their ability to elevate 
NAD+ levels, nicotinamide riboside (NR) and nicotinamide mono-
nucleotide (NMN) are NAD+ precursors that have been shown to 
attenuate physiological decline, diabetes, protect against liver disease, 
decrease the risk of AD, protect neuronal cells from oxidative stress and 

preserve cognition (Nadeeshani et al., 2021; Alegre and Pastore, 2023). 
When administered to mouse models of AD, NR increased NAD+ levels 
which resulted in beneficial effects on both oxidative stress and DNA 
repair (Gong et al., 2013). Furthermore, NR may improve other aspects 
of AD neuropathology, including pTau, Aβ, neurogenesis, neuro-
inflammation, hippocampal synaptic plasticity and cognition (Hou 
et al., 2018; Mehmel, Jovanovic and Spitz, 2020). 

In addition to hepatic metabolism, the intestinal microbiota is a 
relevant element in mental health (Evrensel et al., 2020; Collier et al., 
2021). Although microorganisms that inhabit the intestine play a role in 
the metabolism of NAD+ and its metabolites, it has been reported that 
NMN and NR also affect the composition of the intestinal microbiota, 
therefore reversing dysbiosis and promoting beneficial effects at both 
intestinal and extraintestinal levels (Huang et al., 2021; Alegre and 
Pastore, 2023). It is well known that intestinal dysbiosis negatively af-
fects hepatic metabolism as well as the intestine-brain axis, therefore it 
can affect the production of neurotransmitters and inflammatory mod-
ulation, which may alter mood and cognition (Gheorghe et al., 2019; 
Hyland et al., 2022). Fig. 2 depicts the relationship between intestinal 
dysbiosis and liver dysfunction, leading to changes in the gut-brain axis 
with the potential to trigger mental disorders such as dementia (Grif-
ka-Walk et al., 2021; Więdłocha et al., 2021). 

Many of the important functions of insulin in the brain are disrupted 
under conditions of insulin resistance, which can occur in people with 
liver and pancreas disorders. Prolonged peripheral hyperinsulinemia 
associated with insulin resistance reduces insulin transport across the 
blood-brain barrier (BBB), subsequently decreasing insulin levels and 
activity in the brain. This effect may be associated with the reduced 
cerebrospinal fluid insulin levels and brain markers of insulin signaling 
that are commonly observed in patients with AD (Craft, 2009). Insulin 
resistance and hyperinsulinemia are observed in several pathophysio-
logical processes related to AD. Reduced insulin signaling in the brain is 
associated with increased tau protein phosphorylation and Aβ levels in a 
streptozotocin mouse model of diabetes (Craft, 2009). Insulin also 
induced the release of intracellular Aβ in neuronal cultures and accel-
erated the Aβ transport to the plasma membrane. In humans, increasing 
plasma insulin levels via intravenous infusion increases cerebrospinal 
fluid levels of the Aβ42 peptide (Craft, 2009; Minamisawa et al., 2022). 

Diabetes increases the risk of AD and vascular dementia regardless of 
the age at which diabetes occurs (Craft, 2009). The mechanisms that 
justify this increased risk are associated with the effects of insulin 
resistance, which includes the increased levels of advanced glycation 
end products related to hyperglycemia as well as oxidative stress, 
inflammation and macrovascular/microvascular injury (Craft, 2009; 
Hughes and Craft, 2016). 

3.2. Hepatic metabolism and Alzheimer’s disease 

Recently, the role of hepatic metabolism in dementia has emerged as 
an innovative and promising area of research. Studies demonstrate that 
liver dysfunction triggers direct events in the central nervous system 
that play an active role in the pathogenesis of dementia (Barone, 2019; 
Evrensel et al., 2020; Więdłocha et al., 2021). 

Several studies address the role of changes in the intestinal micro-
biota, hepatitis, tryptophan pathway, and kynurenine, in the genesis of 
AD. Such studies corroborate the participation of inflammatory cyto-
kines in the pathophysiology of neurological diseases and emphasize the 
role of hepatic metabolism in the search for new therapeutic approaches, 
including nutritional treatments, lifestyle changes, and even electro-
convulsive therapy in the most severe cases (Garcez et al., 2019; Gostner 
et al., 2020; Mithaiwala et al., 2021; Aarsland et al., 2022; Hyland et al., 
2022; Sharma et al., 2022). 

It is crucial to mention the growing research into the role of hepatic 
metabolism in neurodegenerative disorders, such as AD. Garcez et al. 
(2019) and Tsuji et al.(2023) explore the complex connections between 
tryptophan metabolism and the pathogenesis of these diseases, offering 
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valuable insights for future therapeutic interventions. These studies 
suggest that the liver plays a key role in mental health by preventing the 
progression of neuropsychiatric disorders, including dementia (Garcez 
et al., 2019a; Tsuji et al., 2023). 

The conversion of tryptophan (TRP) to kynurenine (KYN) is 
responsible for more than 95% of all TRP catabolism. The first and 
limiting step in this pathway is the conversion of TRP to KYN by the 
enzymes IDO and TDO (Badawy, 2017). TDO is mainly produced in the 
liver and is responsible for the majority of KYN production, while IDO 
exists in two subtypes, IDO-1 and IDO-2. IDO-1 is produced in different 
tissues as an anti-inflammatory signaling pathway of negative immune 
regulation, while IDO-2 is less common. This makes the kynurenic 
pathway (KP) of particular interest for the study of neurodegenerative 
diseases such as AD (Savonije and Weaver, 2023). Tryptophan and its 
associated metabolites are capable of inhibiting several enzymes that 
participate in Aβ biosynthesis, but one metabolite, 3-hydroxyanthrani-
late, is capable of directly inhibiting Aβ oligomerization. Although 
certain tryptophan metabolites are neuroprotective, other metabolites, 
such as quinolinic acid, are neurotoxic and may contribute to the pro-
gression of AD (Huang et al., 2023). 

In this context, the gut-brain axis emerges as an area of scientific 
interest. Changes in the microbiome’s composition, influenced by he-
patic metabolism, modulate inflammation in the brain and contribute to 
the pathogenesis of dementia (Wiedlocha et al., 2021). Mahmoudian 
Dehkordi et al.(2019) analyzed the complexity of the intestinal micro-
biome and its influence on AD. An association was observed between 
changes in bile acids and cognitive decline, which corroborates the 
intestine-brain interaction (Mahmoudian Dehkordi et al., 2019). Intes-
tinal dysbiosis is able to alter intestinal permeability and potentially 
increase BBB permeability through altered secretion of short-chain fatty 
acids (SCFA), which may lead to secretion of harmful compounds that 
result in systemic inflammation and cognitive impairment (Westfall 
et al., 2017). In fact, systemic inflammation has been linked to reduced 
cognitive function, especially short-term memory and verbal learning 
(Escobar et al., 2022). 

Several foods can alter the composition and quantity of numerous 
species of intestinal bacteria, which contributes to maintaining intesti-
nal homeostasis. Long recognized as a healthy eating plan, the Medi-
terranean diet (MD) includes considerable amounts of vegetables, 
legumes, fruits and grains (Long-Smith et al., 2020). One study 
confirmed that greater adherence to MD can protect against brain aging 
and AD for up to 3.5 years, besides reducing the progression of dementia 
(Berti et al., 2018). Human-based studies indicate that a diet rich in 
fruits, vegetables and legumes, consistent with MD, can modify intesti-
nal flora, increase fecal SCFA levels and reduce urine Trimethylamine 
N-oxide (TMAO) levels, which prevent systemic inflammation and 
reduce the release of harmful compounds that increase the risk of AD 
development (Filippis et al., 2016). 

Furthermore, recent studies have revealed that insulin resistance, 
associated with some metabolic conditions, plays a crucial role in the 
development of dementia, thus directly linking liver function and brain 
health (Pelle et al., 2023). By exploring the molecular reasons for brain 
insulin resistance, Cetinkalp et al. (2014) identified the underlying 
mechanisms involved and the potential therapeutic strategies. This 
study made the direct relationship between insulin regulation and 
cognitive decline even more evident (Cetinkalp et al., 2014). 

Talbot et al. (2012) showed that insulin receptor resistance in the 
brain occurred in most of the individuals with AD, even though diabetes 
mellitus was absent in the majority of them, which indicates that CNS 
insulin resistance was present even in the absence of peripheral insulin 
resistance (Talbot et al., 2012). Deficient insulin activity in the CNS can 
be due to insufficient amounts of insulin as a result of its reduced ability 
to enter the CNS, which could originate from an incapacity of the BBB to 
efficiently transport insulin to the brain. Evidence for this phenomenon 
includes a lower CSF/serum insulin ratio in individuals with AD when 
compared with individuals without AD (Rhea et al., 2022). 

Kochkina et al. linked age and diabetes to insulin degradation in 
specific tissues, highlighting the mechanisms underlying metabolic 
changes associated with age-related dementia. This study provided a 
critical understanding of how changes in insulin metabolism are 

Fig. 2. Diagram demonstrating that intestinal dysbiosis can lead to liver dysfunction and both can result in brain dysfunction such as proteinopathies, which is 
proven to be linked to the pathogenesis of dementia. (Illustration: Francisco Irochima). 
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intrinsically linked to Alzheimer’s progression (Kochkina et al., 2015). 
In summary, insulin resistance and its metabolic disorders are 

directly associated with the pathogenesis of AD. Insulin is crucial in 
normal brain function, maintaining synaptic plasticity, energy meta-
bolism, tau homeostasis, and protection against oxidative stress and 
neuroinflammation (Parfenov et al., 2019). Elevated peripheral insulin 
levels are associated with worsening cognitive function. However, there 
are many conditions associated with insulin resistance that are also 
linked to AD, including hyperlipidemia, hyperthyroidism, and hyper-
glycemia. Many features of peripheral insulin resistance can have indi-
rect effects on the CNS and they are usually linked to a BBB disruption. 
For instance, as peripheral insulin resistance is often associated with 
hyperglycemia, hyperinsulinemia, and increased lipolysis that leads to 
an increase in serum free fatty acids (FFAs), such alterations affect the 
transport of critical metabolic hormones, potentially increasing the risk 
of AD (Banks, 2019; Rhea et al., 2022). 

Insulin resistance and hyperinsulinemia promote tau hyper-
phosphorylation, contributing to the pathogenesis of AD. Insulin resis-
tance is also associated with oxidative stress, neuroinflammation, 
endothelial dysfunction, dyslipidemia, and increased blood-brain bar-
rier permeability (Vishnu et al., 2017; Anjum et al., 2018). 

3.3. Hepatic metabolism and vascular dementia 

VaD affects cognition as a result of a reduced cerebral blood flow. It 
has been associated with slow thinking, forgetfulness, depression, anx-
iety, and disorientation, all of which interferes with reasoning, judg-
ment, planning, and execution of normal tasks (Garcia and Brown, 1992; 
Luoma, 2011). 

VaD affects 17–20% of all patients, being the second form of de-
mentia after AD. VaD includes small vessel strokes (SVD) and cytokine- 
mediated vasculitis. Hypertension, diabetes, and metabolic syndrome 
are pathologies associated with VaD (Pedersen and Febbraio, 2005; 
Silva et al., 2022). As the population ages, the prevalence of vascular 
dementia increases. Regarding etiology, the accumulation of Aβ pro-
motes the hyperphosphorylation of Tau, which is associated with 
cellular damage, oxidative stress, mitochondrial dysfunction, inflam-
mation, and neuronal apoptosis (Alemi et al., 2016; Giannisis et al., 
2022). 

Among the risk factors, diabetes doubles the risk of VaD, especially in 
patients >65 years old. Diabetes and peripheral arterial disease are in-
dependent risk factors for vascular dementia, mediated by microvas-
cular infarcts and neuroinflammation (Jensen et al., 2020; Shang et al., 
2022). 

Metabolic syndrome (MS) is another risk factor, which includes 
abdominal obesity, hypertension, and dyslipidemia with low HDL 
associated with insulin resistance. It is inferred that high triglyceride 
levels and diabetes increase the risk of VaD over time, especially in 
patients aged > 65. Vascular dementia induced by MS results from 
reduced cerebral blood flow (CBF), which is responsible for short-term 
memory loss in patients with an average age of 60.4 years, obese, and 
with hypertriglyceridemia. Therefore, there is a progression from mild 
cognitive impairment to dementia that is intrinsically linked to neuronal 
damage (Bassendine et al., 2020; Panyard et al., 2023). 

VaD derives from severe cerebral vascular impairment in thalamic, 
frontal, and temporal lobe regions. It can also derive from thrombo-
embolic phenomena, which, even if minor, cause severe vascular in-
juries. The main etiological factor of VaD is small vessel disease (SVD). 
SVD induces isolated lacunar infarcts and ischemic lesions in cognitive 
brain areas. Multiple-infarct dementia derives from cerebral micro-
infarctions, which promote cognitive deficits when they affect 
reasoning-related areas (Gehrke and Schattenberg, 2020; Weng et al., 
2022). 

Current evidence infers that hepatic metabolism disorders play a key 
role in the etiology of dementia and cognitive impairment as a result 
from changes in glycemic metabolism, peripheral insulin resistance, and 

mitochondrial function. Such phenomena interfere with the clearance of 
Aβ bodies and inflammatory cytokines, which are essential in the 
metabolic control from the interaction between the glucose/insulin and 
macronutrients (glucose, lipids, and proteins) (Chen and Zhong, 2014; 
Smith et al., 2020). 

The liver transforms macronutrients into usable or storable com-
pounds, maintaining the balance of energy metabolism and interacting 
with the pancreas and adipose tissue. The liver, pancreas, muscles, and 
adipose tissue act upon hyperglycemia, preventing this phenomenon 
from compromising cerebrovascular function in the long term (Li et al., 
2017; Kheirbakhsh et al., 2018). 

Alterations in tryptophan metabolism in the aged population 
contribute to the occurrence of vascular complications, progressive 
neurodegeneration and cognitive impairment. In the liver, tryptophan 
catabolism by indoleamine 2,3-dioxygenases (IDO1/2) through the 
kynurenine pathway (KP) leads to the generation of multiple bioactive 
metabolites called kynurenines. Activation of IDO-1 and KP could 
possibly result in vascular dementia directly through vasoactive me-
tabolites and/or indirectly by stimulating iNOS through multiple path-
ways. Several KP metabolites can have a direct effect on blood vessels, 
causing arterial stiffness mediated by vascular inflammation and 
atherosclerosis through binding to aryl hydrocarbon receptors (Maha-
lakshmi et al., 2022). 

Glucose is crucial for the brain as it supports optimal neuronal, 
microglia, and astrocyte functions. The scarcity of glucose in the brain 
results in ketogenesis. In addition, the insulin stimulation in the brain 
helps vagal nerve activity in the liver, accelerating glycogen synthesis, 
therefore, controlling glucose production in the liver and removing 
glucose from circulation. The afferent innervation from the liver to the 
brain is fundamental in releasing epinephrine and cortisol in response to 
insulin-induced hypoglycemia (Mahmoudian Dehkordi et al., 2019; 
Nunes et al., 2022). 

The discovery of the liver-brain complex demonstrates the role of the 
liver in the genesis of vascular dementia. This phenomenon is observed 
in the presence of liver pathologies, whether in non-alcoholic fatty liver 
disease (NAFLD), viruses, post-transplants and alcoholic cirrhosis, as 
such pathologies significantly affect cognitive function and predispose 
to vascular dementia (Bosoi et al., 2020; Sweetat et al., 2023). 

In addition to glucose metabolism resulting from the interaction of 
the liver, pancreas, muscles, and adipose tissue, it is worth mentioning 
the biochemical processes linked to fatty acids, ketones, pyruvate, and 
oxidative reactions that culminate in the production of acetyl CoA. This 
latter interferes in the supply of neuronal glucose, metabolism of 
essential amino acids, triglycerides and deposits of Aβ compounds in the 
brain, considering that 50% of the Aβ produced in the brain is eliminated 
peripherally, with the liver being the leading site of clearance (Shali-
mova et al., 2019; Ortiz et al., 2022). In this sense, it is no coincidence 
that reduced levels of alanine transaminase and an increased proportion 
of aspartate aminotransferase are considered as risk factors for the onset 
of VaD (Ortiz et al., 2022). 

In the liver-brain context, mitochondrial function is modulated by 
mitophagy, mitochondrial fission and fusion, oxidative stress, and pro-
teins through nutrient detection pathways. Mitochondrial function and 
insulin are closely related as insulin resistance contributes to mito-
chondrial dysfunction and, through a feedback mechanism, systemic 
insulin resistance promotes mitochondrial neuronal dysfunction, which 
is another factor linked to dementia (Wang et al., 2022). 

This process is explained by the deposition of Aβ/Tau. Additionally, 
mitochondrial dysfunction leads to a cascade of neurotransmitter 
release, oxidative stress, lipid peroxidation of plasma membranes, 
oxidation of structural enzymes, and irreversible changes in calcium 
homeostasis, all of which are observed in VaD. The entire process is 
mediated by inflammatory factors, which is no different regarding liver 
metabolic dysfunction and its association with AD or VaD (Sun, 2018). 

Brain inflammation in people with dementia is characterized by an 
increase in circulating cytokines IL-6, IL-1β IL-18, TGF-β, TNF-α, α-1 
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antichymotrypsin, and C-reactive protein. Therefore, there is a direct 
correlation between peripheral inflammation and cognitive dysfunction. 
The inflammatory process activates brain macrophages (microglia) and 
other immune cells, exacerbating Aβ/Tau-related pathologies (Angelo-
poulos et al., 2008). 

In summary, insulin resistance is an essential link between metabolic 
disorders and the pathogenesis of vascular dementia. Insulin is crucial in 
normal brain function, maintaining synaptic plasticity, energy meta-
bolism, Tau homeostasis, and protection against oxidative stress and 
neuroinflammation (Parfenov et al., 2019). 

Insulin resistance and hyperinsulinemia result in dysfunctional ves-
sels of the central nervous system, contributing to the pathogenesis of 
VaD. Insulin resistance is associated with vascular infarction, oxidative 
stress, neuroinflammation, endothelial dysfunction, dyslipidemia, and 
increased blood-brain barrier permeability (Vishnu et al., 2017; Anjum 
et al., 2018). 

Finally, the liver acts upon inflammation through the release of cy-
tokines and inflammatory secretions, especially over time during the 
aging process, which is amplified by the presence of diabetes, hepatic 
steatosis, and other metabolic and mitochondrial dysfunctions that ul-
timately culminate in oxidative stress, in the release of oxygen free 
radicals, as well as in the activation of microglia and recruitment of 
brain monocytes (Custodero et al., 2022). 

3.4. Pancreatic metabolism and Alzheimer’s type dementia 

As the main source of energy for the brain, glucose is metabolized 
into ATP, an unstable high-energy compound. Thus, the glucose meta-
bolism in the brain involves several steps, in which the initial phase 
comprises the receiving of signals by the brain to trigger glucose uptake 
via insulin signaling. Next, the physiological process of glucose uptake 
occurs, which is dependent on the dissemination of glucose transporters 
(GLUTs) throughout the brain, allowing glucose to cross the blood-brain 
barrier and reach neurons through astrocytes (Molofsky et al., 2012; 
Arnold et al., 2018). 

The presence of insulin in the brain activates insulin receptors 
located on the membrane of neurons and astrocytes, which are highly 
concentrated in the olfactory bulb, cerebral cortex, hippocampus, hy-
pothalamus, amygdala and septal area. The interaction of insulin with 
its respective receptors in the hippocampus and medial temporal cortex 
directly influences memory. One of the memory-related mechanisms 
includes the modulation of synaptic structure and function, which plays 
an essential role in neuronal growth and differentiation (Zhao and 
Townsend, 2008; Sedzikowska and Szablewski, 2021). 

Reduced glucose signals result in impaired glucose uptake in the 
brain with AD due to reduced expression of GLUT1 and GLUT3 at the 
blood-brain barrier (Huang et al., 2020). Thus, decreased expression of 
insulin-sensitive GLUTs is strongly associated with a decline in glucose 
uptake, as insulin and insulin receptors are essential factors in regulating 
glucose utilization and energy homeostasis between CNS and peripheral 
circulation (Taguchi et al., 2007). 

The human brain uses about 20–25% of the body’s total glucose 
consumption to carry out synaptic activity. Primarily, changes in 
glucose utilization hinder natural cellular functions, including synaptic 
functions in the brain. Typically, insulin receptors in the brain cells 
control the process of glucose consumption and metabolism. Since 
neurons require excess energy to maintain their normal activities, a 
metabolic decline in the brain contributes to the development of 
cognitive complications. Thus, changes in the cerebral metabolic rate of 
glucose and glucose consumption are reflected in synaptic excitability 
and neuronal activity (Boveris and Navarro, 2008; Mosconi et al., 2008). 

The development of insulin resistance significantly increases the risk 
of AD, in addition, type 2 diabetes (T2D) increases the risk of AD by 50% 
(Li et al., 2015; Ferreira et al., 2018; Hayden, 2019; Yu et al., 2020). In 
fact, a reduction in glucose consumption in the hippocampus and pos-
terior cingulate has been observed in the early stages of AD (Protas et al., 

2013; Ferrari et al., 2019; Chen et al., 2021). 
In the advanced stages of dementia, glucose consumption is reduced 

in several brain lobes. Furthermore, the decline in glucose metabolism 
affects synaptic density and function, suggesting that functional 
impairment has a connection to brain glucose consumption (Sana-
bria-Diaz et al., 2013; Shivamurthy et al., 2015). 

Oxygen and glucose metabolic rates are drastically altered in many 
neurodegenerative diseases, including AD due to marked changes in the 
glycolytic pathway and tricarboxylic acid cycle (Hoyer, 1982; Arias 
et al., 2002; Van Gijsel-Bonnello et al., 2017). 

In T2D, the body becomes resistant to insulin, forcing the pancreas to 
produce increasing amounts of insulin to induce the uptake of glucose by 
cells. Thus, systemic insulin resistance attenuates the procognitive ef-
fects of insulin in the brain and, as a result, insulin resistance is associ-
ated with decreased verbal fluency, low gray matter volume in the 
temporal lobes, and declarative memory deficiencies (Kim and Feldman, 
2015; Walker and Harrison, 2015; Neth and Craft, 2017). 

T2D has been associated with the induction and amplification of 
neuroinflammation in the AD’s brain (Van Dyken and Lacoste, 2018; 
Rom et al., 2019; Hsieh et al., 2019). One of the mechanisms is due to the 
fact that T2D slows down the glucose catabolic process and reduces the 
levels of the antioxidant pyruvate (Rodic and Vincent, 2018; Bishayee 
et al., 2022). Furthermore, the accumulation of Aβ plaques induces 
oxidative stress and protein misfolding-related stress (ER stress) through 
impairment of mitochondrial redox potential. Alternatively, ROS accu-
mulation increases abnormal phosphorylation of Tau protein via 
glycogen synthase kinase 3 (GSK3) and increases apoptosis 
signal-regulating kinase Axis 1 (ASK1)–p38 MAPK in aging brain with 
AD (Kadowaki et al., 2005; Song et al., 2014; Hasegawa et al., 2018; 
Llanos-Gonzalez et al., 2019). 

Accumulation of unused glucose due to unresponsive insulin re-
ceptors in T2D contributes to hyperglycemia and might result in several 
cytotoxic complications. Hyperglycemic protein misfolding is a common 
problem related to T2D, where misfolded protein deposits, composed of 
Aβ and Tau protein, are able to trigger proteinopathies in AD (Mukherjee 
et al., 2015; Hetz and Saxena, 2017). 

A crucial feature of AD includes impaired insulin signaling in the 
brain, classifying this dementia as type 3 diabetes due to the conse-
quences of insulin resistance on memory decline and impaired cognitive 
function (Craft et al., 1998; Kandimalla et al., 2017; Rorbach-Dolata and 
Piwowar, 2019). Therefore, disorders directly related to changes in 
pancreatic metabolism, such as T2D, hyperlipidemia and obesity, lead to 
an increased risk of developing AD (Neth and Craft, 2017; Zhang and 
Liu, 2018). 

Insulin transport to the brain can be negatively regulated by pe-
ripheral insulin resistance, which can affect glucose metabolism in the 
CNS, contributing to oxidative stress and inhibiting the neurotrophic 
effects of insulin. At the same time, as absolute levels of insulin are 
increasingly higher (although the effect is diminished), hyper-
insulinemia leads to the formation of peripheral and central Aβ plaques, 
similar to those observed in the neuropathology of AD and other 
neurodegenerative diseases. These Aβ plaques can activate inflamma-
tion in the CNS, leading to more neuronal death (Blazquez et al., 2014; 
de Nazareth, 2017). 

Amyloid plaques formed by Aβ polypeptides also play an important 
role in AD-induced insulin signaling disorder by binding to the insulin 
receptor in the brain (Bosco et al., 2011; Ahmed et al., 2015). Insulin and 
insulin growth factor 1 (IGF-1) signaling help maintain and control 
metabolism and cognition in the CNS, with insulin resistance being one 
of the main risk factors for AD (de la Monte and Wands, 2005; Diehl 
et al., 2017). 

It is well known that homeostatic glucose metabolism in the brain is 
highly associated with cognitive resilience. Therefore, a reduction in 
glucose uptake in important areas of the brain hinders the necessary 
glucose support for neuronal activity, leading to reduced cognitive 
function. In this sense, reduced glucose metabolism in the brain is 
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associated with insulin resistance, which has been linked to exacerba-
tion of Aβ deposition (Ahmed et al., 2015; Bharadwaj et al., 2017; de 
Nazareth, Hammond et al., 2020). 

Glucose is the main source of energy for the brain and peripheral 
changes in blood glucose concentration can affect cognitive perfor-
mance in healthy individuals (García et al., 2021). Keeping high levels of 
glucose in the blood for a long time, for example, through the con-
sumption of large quantities of foods containing high amounts of glucose 
or other types of sugar (fructose, sucrose), may be implicated in 
neuropathological mechanisms typically found in individuals with in-
sanity. Some of these processes may include, but are not limited to, 
microvascular damage, impaired glucose metabolism, and increased Aβ 
deposition, each of which may independently exacerbate cognitive 
decline or elevate the risk of dementia (García et al., 2021; Kirvalidze 
et al., 2022). 

In elderly subjects without cognitive impairment, glucose uptake in 
the bilateral anterior cingulate cortex and anterior temporal pole has 
shown to be highly correlated with global cognition, despite the Aβ 
deposits that were observed in these subjects along with their positive 
APOE ε4 status (Arenaza-Urquijo et al., 2019). Dysregulation of meta-
bolism is also related to inflammatory responses, particularly in micro-
glia. Thus, increased levels of Aβ protein can directly activate microglia 
to produce inflammatory factors, changing the metabolism of OXPHOS 
to aerobic glycolysis (Baik et al., 2019). 

Another factor that is worth mentioning is the dysregulation of 
amylin (or islet amyloid polypeptide; IAPP), which is a hormone pro-
duced by the pancreas that plays an important role in regulating energy 
metabolism. Fig. 3 shows how increased insulin resistance and hyper-
glycemia generated in the liver causes hyperphosphorylation of the TAU 
protein, as well as an increase in free radicals and neuroinflammation, 
all of which can lead to AD. Therefore, the occurrence of amylin 
imbalance (or islet amyloid polypeptide; IAPP), as observed in obesity 
and diabetes, may contribute to the accumulation of Aβ plaques in the 
CNS. 

Since this hormone competes with pathological Aβ proteins for re-
ceptor binding sites and even helps eliminate amyloid from the CNS, it 
has a direct implication in inflammatory regulation and neuronal death 
(Lutz and Meyer, 2015; Bharadwaj et al., 2017; Reiner et al., 2017). 

Previous studies have reported that decreased glucose uptake in the 
brain is a better marker for classifying AD than the deposition of Aβ or 
phosphorylated Tau. Aβ and Tau are better predictors of early dementia, 
which is often defined as mild cognitive impairment, while low glucose 
uptake is a better predictor of later dementia or clinical AD. Thus, Aβ 
may be an appropriate target for early AD treatment, whereas glucose 
metabolism should be investigated as a target for late AD treatment 
(Oboudiyat et al., 2013; Blennow and Zetterberg, 2018; Jack et al., 
2018; Hammond et al., 2020). 

Therapies involving the regulation of glucose metabolism and insulin 

Fig. 3. Insulin resistance leads to hyperglycemia due to increased glucose production in the liver, which also results in higher levels of free radicals, neuro-
inflammation with an increase in interleukins and hyperphosphorylation of the TAU protein. These processes ultimately result in varying degrees of neuro-
degeneration. (P- phosphorus). Furthermore, the decrease in amylin (or islet amyloid polypeptide; IAPP) produced by pancreatic beta cells in obese and type 2 
diabetic patients contributes to Aβ plaque deposition in the central nervous system (CNS). This occurs because insulin competes with Aβ proteins for binding sites on 
specific receptors, helping to eliminate amyloid material from the CNS, in addition to having a direct implication in inflammatory regulation and neuronal death 
(Illustration: Francisco Irochima). 
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resistance may be an important step in regulating mitochondrial 
dysfunction as well as changes in cholesterol metabolism as a result of 
aging and other AD risk factors (Liu et al., 2013). 

3.5. Pancreatic metabolism and vascular dementia 

Vascular cognitive impairment is a syndrome with evidence of 
clinical or subclinical stroke in which vascular brain injury and cognitive 
impairment affect at least one cognitive domain, such as executive/ 
attention, memory, language and visuospatial function (Hachinski et al., 
2006; Gorelick et al., 2011; Sachdev et al., 2014). 

Insulin resistance has many negative effects on vascular function that 
are directly related to impaired insulin activity as this hormone plays an 
important role on the vasoreactivity and hemodynamic functions, such 
as capillary recruitment, vasodilation and regional blood flow (Cerso-
simo and DeFronzo, 2006; Iadecola and Davisson, 2008; Viswanathan 
and Greenberg, 2011). 

Since insulin increases nitric oxide-mediated vasodilation and reg-
ulates vasoconstriction via endothelin-1, insulin resistance decreases 
nitric oxide and increases endothelin-1 activity, favoring vasoconstric-
tion and reducing capillary recruitment. On the other hand, endothelial 
dysfunction reduces insulin transport, thus reducing capillary recruit-
ment and microvascular blood flow, which exacerbates glucose and lipid 
abnormalities, establishing a negative feedback loop between progres-
sive endothelial dysfunction and increased insulin resistance. In the 
brain, vasoconstriction and reduced capillary recruitment can interfere 
with the functions of the neurovascular unit, as well as with the coor-
dinated interaction between astrocytes, neurons and endothelium 
(Cersosimo and DeFronzo, 2006; Iadecola and Davisson, 2008). 

An adequate blood supply to the brain parenchyma is necessary for 
essential functions such as neuronal activity, blood-brain barrier func-
tion, and immune cell surveillance. Therefore, interruption of blood 
flow to this tissue is associated with a series of neurovascular dysfunc-
tions, which includes endothelial dysfunction, glial activation, demye-
lination and breakdown of the blood-brain barrier, as observed in the 
vascular cognitive impairment of patients with dementia (Gorelick et al., 
2011; Wallin et al., 2009; Bouhrara et al., 2018; Low et al., 2021). 

Fifty percent of hypertensive patients are insulin resistant and 
manifest endothelial dysfunction as a result of the direct activity of in-
sulin resistance on vasoreactivity and microvascular blood flow, as well 
as of its indirect activity on dyslipidemia and inflammation. Hyperten-
sion impairs functional hyperemia, the process by which brain activity 
and blood flow are coordinated. This impairment is induced by dysre-
gulation of vasoactive mediators such as NO and endothelin-1, as well as 
oxidative stress, structural changes in blood vessels and inadequate ce-
rebral autoregulation (Cersosimo and DeFronzo, 2006; Iadecola and 
Davisson, 2008). 

Previous reports suggest that chronic cerebral hypoperfusion, as a 
result of vascular disease, may directly influence on the pathophysiology 
of vascular cognitive impairment (Román, 2004; Hilal et al., 2017; 
O’Brien et al., 2003; Van Der Flier et al., 2018). Thus, chronic cerebral 
hypoperfusion is involved in the development of vascular cognitive 
impairment, as it is closely associated with a series of important physi-
ological vascular changes and cognitive decline (Duncombe et al., 2017; 
Wolters et al., 2017). It is well established that chronic cerebral hypo-
perfusion damages the structure of the brain’s white matter, which re-
sults in declining executive function and memory, therefore 
contributing to the development of dementia (Kawamura et al., 1991; 
APA et al., 2010). Changes in the metabolism of the pancreas may result 
in diseases that are associated with vasculopathy such as type 1 and type 
2 diabetes, whose studies show a high prevalence of dementia in dia-
betic patients (Garrett and Niccoli, 2022; Bortoletto and Parchem, 
2023). 

Inadequate blood supply due to chronic cerebral hypoperfusion re-
sults in bioenergetic deficiencies as neurons are unable to produce suf-
ficient ATP for normal cellular functions (Hertz, 2008; Li et al., 2017). 

The reduction in ATP production leads to impaired function of 
ATP-dependent ion channels, such as the Na+/K+ and Ca2+ pumps, 
generating an electrolyte imbalance. Consequently, this process in-
creases the resting membrane potential to threshold, leading to dysre-
gulated neuronal depolarization (Matute et al., 2002; Fann et al., 2013). 

Chronic cerebral hypoperfusion triggers mitochondrial dysfunction, 
which compromises enzymatic activity in mitochondria, resulting in 
energy deficiency and vascular cognitive impairment. Furthermore, 
deficiency in Na+/K+ homeostasis has also been observed in chronic 
cerebral hypoperfusion, whose reduced blood flow leads to increased 
intracellular Na+ concentration and decreased intracellular K+ con-
centration (Plaschke et al., 2000; Du et al., 2013; Li et al., 2017). 

Excitotoxicity is triggered in chronic cerebral hypoperfusion, 
resulting in damage or death of neurons by uncontrolled stimulation via 
excitatory glutamate receptors. As neurons undergo anoxic depolariza-
tion during cerebral hypoperfusion, there is a resulting influx of Ca2+

ions into presynaptic neuronal terminals, culminating into a massive 
release of the excitatory neurotransmitter glutamate into the synaptic 
cleft (Li et al., 2017; Sheng et al., 2020). 

Oxidative stress is induced by cerebral hypoperfusion, causing DNA 
damage and inducing lipid and protein oxidation that eventually results 
in cell death (Yamagishi et al., 2008). Elevated levels of hydrogen 
peroxide have been observed in brain mitochondria of rodent models, 
leading to vascular cognitive impairment (Du et al., 2013). Several 
markers of oxidative stress are elevated in patients with vascular 
cognitive impairment, such as lipid peroxidation and DNA oxidation, 
along with reduced levels of plasma antioxidant (Ryglewicz et al., 2002; 
Gackowski et al., 2008; Gustaw-Rothenberg et al., 2010). 

Chronic inflammation has been observed in patients with vascular 
cognitive impairment during preclinical, clinical, and severe stages of 
VaD. These studies reported elevated levels of classical inflammatory 
mediators such as interleukin-1 beta, interleukin-6, tumor necrosis fac-
tor α and C-reactive protein. Such inflammatory mediators lead to tissue 
matrix degradation and peripheral immune cell infiltration, which ul-
timately result in various forms of cell death (Engelhart et al., 2004; 
Zuliani et al., 2007; Schmitz et al., 2015; Belkhelfa et al., 2018). 

Studies involving brains with vascular cognitive impairment have 
shown the presence of reactive astrocytes and microglia in areas of 
surrounding lesions, along with markers of oxidation, stress, and 
inflammation (Tomimoto et al., 1996; Fernando et al., 2006; Simpson 
et al., 2007). These activated glial cells are certainly involved in the 
pathophysiology of vascular cognitive impairment through several 
mechanisms. First, they initiate and facilitate neuroinflammation, 
leading to cellular injury and leukocyte infiltration into the brain 
(Häußler et al., 2020; Marín-Teva et al., 2011). Second, inflammation 
suppresses the pro-survival activity of the endothelium, reducing neu-
rotrophic neuronal signaling and leading to endothelial cell atrophy and 
microvascular rarefaction (Grammas, 2011; Zegeye et al., 2020). 

For many patients, markers of vasculopathy coexist with the tradi-
tional features of AD, increasing the risk of dementia (Schneider et al., 
2004). The relationship between AD and VaD is also confusing. VaD is a 
heterogeneous condition whose pathology ranges from multiple micro-
infarcts to small vessel ischemic disease and microvascular injury. In 
some cases, the features of AD may come from a specific form of vascular 
injury, as a dysfunction in the blood-brain barrier that affects the 
transport of pAβ between the brain and the periphery and thus 
contribute to the deposition of parenchymal and neurovascular pAβ. 
Conversely, AD can cause vascular injury, such as when pAβ-induced 
inflammation damages the vascular endothelium. Some studies support 
that both hypertension and T2D increase the risk of dementia through 
cerebrovascular dysfunction (Sarwar et al., 2010; Gorelick et al., 2011; 
Cheng et al., 2012; González et al., 2022; Carvalho, Moreira, 2023). 

Evidence suggests that diabetes increases the risk of AD and VaD, 
regardless of the age at which diabetes occurs. Thus, mechanisms of 
increased risk include the effects of insulin resistance, as well as 
increased advanced glycation end-products related to hyperglycemia 
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and oxidative stress, inflammation, and macro- and microvascular 
injury (Kloppenborg et al., 2008; Luchsinger, 2008; Strachan et al., 
2008; González et al., 2022; Leibold et al., 2023). 

Carotid artery occlusion results in loss of neurons in the hippocam-
pus, impairing spatial memory (Khoshnam et al., 2018; Lee et al., 2019), 
increasing the levels of tumor necrosis factor α and interleukin 6, as well 
as increasing apoptotic cell death in the hippocampus (Khoshnam et al., 
2018). One study demonstrated that two-vessel carotid artery occlusion 
(2-VO) reduced learning in a novel prefrontal-dependent test of object 
recognition, as well as it reduced the expression of synaptic markers in 
the prefrontal cortex of rats (Dong et al., 2018). Pathologies linked to 
pancreatic dysfunction, such as diabetes, lead to a greater risk of 
vascular occlusion, which is a necessary condition for the emergence of 
dementia caused by vasculopathy. 

4. Discussion 

This review gathered enough evidence to support our hypothesis that 
disorders in hepatic and pancreatic metabolism increase the risk of AD 
and VaD. Regardless of whether the study was in vivo, observational or 
experimental, the results showed that pathologies such as diabetes, 
chronic hepatitis, dyslipidemia, and others caused by changes in the 
liver and pancreas, predispose to the emergence of dementia in those 
affected by such diseases (Beeri and Bendlin, 2020; Dove et al., 2021; Su 
et al., 2023; Wee et al., 2023). 

There is increasing evidence that the liver plays a key role in the 
etiology of dementia and cognitive impairment given its effect in 
glucose, insulin and mitochondrial metabolism. Besides facilitating the 
clearance of Aβ protein and inflammatory cytokines, the liver is the 
metabolic center of the body and is fundamental for the regulation of 
glucose/insulin metabolism as well as macronutrient metabolism 
(glucose, lipids and proteins) (Bassendine et al., 2020; Hunt et al., 2022). 
The liver is also involved in the elimination of Aβ, which is the main 
protein associated with AD. Studies show that about 50% of Aβ pro-
duced in the brain is eliminated peripherally, with some studies 
concluding that the liver is the main site for Aβ clearance (Morales et al., 
2021; Hunt et al., 2022). 

VaD is associated with cerebrovascular diseases and vascular risk 
factors, including blood pressure variability, cardiac arrhythmia, renin- 
angiotensin system hyperactivity, endothelial dysfunction, dyslipide-
mia, and T2D. Disruption of insulin signaling and glucose metabolism 
are key factors for inducing cerebrovascular disease and VaD (Parfenov 
et al., 2019; Iwagami et al., 2021). 

Furthermore, a fundamental role of the liver is to convert dietary 
macronutrients into circulating glucose and ketone bodies, which are 
substrates for mitochondrial ATP production. Thus, there is a close 
relationship between mitochondrial function and insulin signaling. In 
fact, insulin resistance is known to contribute to mitochondrial 
dysfunction and therefore, the loss of systemic insulin sensitivity results 
in neuronal mitochondrial dysfunction (Schell et al., 2021). AD is 
associated with impaired mitochondrial oxidative phosphorylation in 
the brain and in many other tissues, as mitochondrial dysfunction is 
involved in a cascade of processes related to neurotransmitter release, 
oxidative stress, and dysregulated calcium homeostasis, which are all 
causative factors for AD (Quntanilla and Tapia-Monsalves, 2020; 
Abyadeh et al., 2021). 

The aforementioned relationship between insulin signaling and 
mitochondrial function, in addition to the proven vasculopathies present 
in diabetic patients, corroborates the role of dysfunctional pancreas 
metabolism as an important risk factor for the development of AD and 
VaD. During homeostasis, pancreatic β-cells detect increased blood 
glucose levels through GLUT2-mediated glucose uptake. In response to 
the higher levels of intracellular glucose, β cells secrete insulin and IAPP 
through the constitutive secretory pathway. Both β-cell hypertrophy and 
the increased insulin secretion contribute to the abnormally high levels 
of IAPP, which results in toxic aggregation. As insulin secretion 

increases with hyperglycemia in diabetic and prediabetic patients, there 
is also a simultaneous increase in IAPP secretion. IAPP is prone to ag-
gregation, which means that increasing IAPP levels can lead to the 
formation of toxic oligomers in the pancreas, similar to other amyloi-
dogenic peptides such as Aβ. Other previous reports have also demon-
strated that IAPP can negatively affect kidney, muscles and blood 
pressure (Neutzsky-Wulff et al., 2012; Mukherjee et al., 2017). IAPP can 
bind to receptors in the kidneys, and a small study in humans found that 
systemic infusion of IAPP led to increased plasma renin levels, sug-
gesting that IAPP may induce hypertension, which is a risk factor for 
VaD (Germanos et al., 2021; Bortoletto and Parchem, 2023). 

Therefore, this current review is important for alerting the scientific 
community that dysfunctions in the liver and pancreas have a high po-
tential to trigger pathologies that considerably increase the risk of 
developing AD and vascular dementia. The evidence found and pre-
sented in this review allows us to recommend that the metabolism of 
both organs needs to remain at a physiological standard as a way to 
prevent hyperglycemia, dyslipidemia, vasculopathies, and other risk 
factors for the main forms of dementia. However, as this is a narrative 
review of the literature, the main limitation is that there is no high level 
of evidence to support a causal relationship between disturbances in 
hepatopancreatic metabolism and dementia. 

5. Conclusion 

The homeostasis of glucose, insulin, lipid production, cortisol and 
other substances metabolized in the liver and pancreas is essential, due 
to the fact that disturbance in the metabolism of such substances may 
generate pathologies capable of causing brain changes that might result 
in Alzheimer’s disease and vascular dementia. The maintenance of a 
healthy glucose metabolism in the brain should be a priority focus of AD 
and VaD prevention, as it seems to be a viable strategy of preserving 
cognitive resilience and ameliorating dementia progression. 

Dietary energy and macronutrient intake have shown to influence 
the levels of hepatic proteins involved in protein, lipid, and carbohy-
drate metabolism. Nutrition has a profound impact on aging and age- 
related diseases, such as dementia, and new clinical trials are impor-
tant to prove the effectiveness of nutritional interventions in contrib-
uting to the physiological functioning of the liver and pancreas as well as 
in the prevention of dementia. 
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