
Time-E�cient Distributed Virtual Network Embedding For Round-Trip Delay
Minimization

Ioannis Dimolitsasa,⇤, Dimitrios Dechouniotisa, Symeon Papavassilioua

a
School of Electrical and Computer Engineering, National Technical University of Athens, 9, Iroon Polytechniou Street, Athnes, GR 15780, Greece

Abstract

Virtual Network Embedding (VNE) aims at determining the placement of virtual services both internally in the edge/cloud
infrastructure (EC) and distributed, among distinct ECs, under several resource and network constraints. With regard to Network
Function Virtualization technology, a virtual service is referred to as Virtual Network Function (VNF). Modern 5G applications
related to the Internet of Things (IoT) are deployed as interconnected VNFs with specific execution sequence in the form of a
Service Function Chain (SFC), composing a Virtual Network (VN), and the execution result has to be returned back to the original
end-device. Thus, the minimization of the round-trip delay is of major importance to guarantee the performance requirements of
IoT-based applications. Additionally, in such a dynamic environment, the re-optimization of VNE is often required to meet the
network delay requirements due to end-device mobility, and other orchestration constraints related to the limited edge resources.
In this paper, we propose a distributed VNE (DVNE) approach, which focuses on minimizing the round-trip delay. Initially, we
introduce an algorithm, namely sV-VNM, that associates every VNF of the VN with a set of candidate ECs that can be hosted
onto. Given this initial mapping, an e�cient path-based algorithm, namely kSP-DVNE, is proposed to provide the DVNE solution,
in polynomial time. Evaluation results show that the sV-VNM algorithm maps the VN onto the ECs, with decreased resource
utilization within the infrastructure, while the kSP-DVNE achieves optimal or near optimal solutions regarding the round-trip delay
minimization, with a significant reduction in the execution time, compared to existing relevant approaches in the literature.

Keywords: Virtual Network Embedding, Network Function Virtualization, Edge Computing, Service Function Chain, Delay
Minimization

1. Introduction

Modern 5G applications rely on various Internet of Things
(IoT) devices, often generating vast amount of data. Usually,
these IoT devices have limited computational resources and en-
ergy capacity, thus, they are not able to locally perform com-
plex processing. On the other hand, Edge Computing promises
to mitigate the above restriction by providing computing in-
frastructure in the proximity of the end-users. Furthermore,
processing at the network edge results in reduced network la-
tency comparing with processing on traditional cloud resources.
However, contrary to the coarse cloud case, the edge resource
management must be fine-grained due to the limited edge re-
sources and the strict time constraints of IoT applications [1]. In
this context, many resource orchestration platforms have been
developed that rely on either virtual machines (VM) or contain-
ers, such as OpenStack [2] and Kubernetes [3], and they pro-
vide several functionalities about service embedding, resource
allocation and networking.

Network Function Virtualization (NFV) architecture enabled
the running of network services as VMs on common hardware

⇤Corresponding author
Email addresses: jdimol@netmode.ntua.gr (Ioannis Dimolitsas),

ddechou@netmode.ntua.gr (Dimitrios Dechouniotis),
papavass@mail.ntua.gr (Symeon Papavassiliou)

and therefore replaced any proprietary middle-box. An ap-
plication consists of individual services, namely Virtual Net-
work Functions (VNFs). A Service Chain Function (SFC) in-
cludes several VNFs with predefined execution order and spe-
cific computing and network requirements. SFCs can either
be unidirectional or bidirectional. Unidirectional SFCs require
tra�c to go through the ordered VNFs in one direction, while
bidirectional SFCs need a symmetric path, where the VNF in-
stances are the same in both directions. [4] The typical Virtual
Network Embedding (VNE) problem focuses on embedding the
SFC on the substrate network. Under this setting, the network
tra�c is directed from an ingress VNF to the egress one, while
the response traverses the same path in the opposite direction.
ETSI NFV [5] and ETSI Multi-Access Edge Computing (MEC)
[6] are the two dominant reference architectures that are used
for the realization of the VNE in cloud and edge infrastructure.

However, with the advent of 5G and IoT technologies, the
formulation of the VNE requires two key modifications. At
first, the early definition of VNF strictly referred to network
services (routing, firewall, and load balancing, etc.). Nowa-
days, the VNF definition should be more application-oriented
and include any type of service. Secondly, for IoT applications,
which usually include online machine learning processing [7],
the forward tra�c consists of raw data, while the backward traf-
fic includes results and models that must be sent back to the end
devices that generate the network tra�c. Additional time- or

Preprint submitted to Journal of Network and Computer Applications May 3, 2023

mission-critical applications, in which IoT devices send and re-
ceive data to/from the edge/cloud, are related to Healthcare (Re-
mote Healthcare Monitoring, Remote Surgery, Connected Am-
bulances) [8, 9, 10], vehicular communication and autonomous
driving [9], and online gaming [8, 11]. This possibly requires
di↵erent forward and backward paths for the SFC. This type of
SFC, where the result is required to be transmitted back to the
end-devices, is defined as a hybrid-SFC [4, 12] (h-SFC).

Edge Computing provides geographically spread small-scale
resources that create a distributed cloud environment with mul-
tiple stakeholders [13]. This enables the creation of Network
Service Marketplaces, which allows subscribers to act both as
service providers and consumers [14]. In this complex scenario,
an already deployed VNF can be shared among di↵erent ten-
ants in order to reduce the allocated resources in an Edge Cloud
(EC) and optimize the exchanging tra�c between them. Un-
der this setting, a SFC includes pre-installed VNFs that must be
taking into consideration in the VNE solution. Furthermore,
the minimization of network delay is the dominant architec-
tural goal of Edge Computing to cope with the IoT prolifera-
tion [11]. The limited computing capabilities of IoT devices
require a lot of tasks to be performed fully on edge computing
infrastructures or partially via computational o✏oading. In par-
allel, the reduction of round-trip delay is crucial for ensuring of
the strict quality of service (QoS) requirements of such applica-
tions [8]. Furthermore, to deal with the dynamic conditions of
IoT and Edge Computing, the multi-objective approaches are
usually computationally expensive [15] and may not always re-
sult in near-optimal solutions with respect to all objectives. On
the contrary, computational-light and e↵ective distributed em-
bedding mechanisms, which prioritize the reduction of round-
trip delay, can compute near-optimal solutions in a real-time
fashion. Focusing on IoT applications deployed on distributed
edge infrastructure, this work proposes a distributed virtual net-
work embedding mechanism that takes into account the above
characteristics of the SFC and the distributed multi-stakeholder
edge environment. More specifically the scientific key contri-
butions of this article are the following,

- A heuristic that undertakes the optimal initial mapping of
parts (VNFs) of a Virtual Network (VN) within an EC
infrastructure considering the pre-deployed shared-VNFs,
focusing on minimizing the infrastructure’s resource uti-
lization.

- Assuming that the forward and the backward paths of a
VN are di↵erent, the proposed shortest-path-based algo-
rithm finds the Distributed Virtual Network Embedding
(DVNE) solution that minimizes the round-trip delay.

- The numerical results illustrate that the proposed dis-
tributed virtual network embedding algorithm computes
the optimal or near optimal solution, especially combined
with the initial VN mapping heuristic, in limited time com-
pared to relevant existing state of the art studies.

The rest of the article is structured as follows. Section 2
presents the related work, while Section 2 provides the fun-

damental definitions of the DVNE problem. Section 4 formu-
lates the Intra-EC VN mapping problem and the delay-aware
DVNE problem and the next section presents the proposed al-
gorithms for solving both problems. Section 6 presents the per-
formance evaluation of the proposed DVNE solution and com-
pares it against other related studies demonstrating its benefits
and tradeo↵s. Finally, Section 7 draws the conclusions and
highlights possible future work directions.

2. Related Work

This section presents a comprehensive overview of the most
relative studies in literature. For presentation purposes these
studies are classified in three main categories, (i) shared VNF-
based VNE approaches, (ii) distributed VNE approaches, and
(iii) shortest path-based VNE approaches.

Shared-VNFs host common services, that can be consumed
simultaneously by di↵erent tenants. A primary requirement of
shared-VNF is the isolation between di↵erent SFCs that share
such VNF. Aligned with ETSI NFV and ETSI MEC reference
architectures, the MESON platform provides a secure mecha-
nism for communication between slices of di↵erent tenants in
order to save computing resources within an EC and reduce out-
going network tra�c [16]. Shared-VNFs could be consumed by
multiple slices by leveraging the Open Source MANO (OSM)
[17] network slice orchestration capabilities [18]. Papadakis
et al. [19] proposed a blockchain-based mechanism for cross-
service communication that provides registration, searching,
leasing, and billing functionalities over multiple ECs in the con-
text of Network Service Marketplaces. Similarly, based on dis-
tributed ledger technology, the FENDE marketplace relies on
shared-VNFs and facilitates the subscribers to deploy tailor-
made SFCs over multi-cloud infrastructure [20]. Edge Comput-
ing enables the deployment of network services in small-scale
infrastructure close to the end-users. Contrary to the cloud case,
this infrastructure is geographically spread, and therefore, the
VNE problem has been transformed to the DVNE one. For
MEC/Cloud environment, Zheng et al. [12] proposed a hy-
brid form of SFC with dissimilar forward and backward paths.
This study focused on the latency minimization and it proposed
a backtracking-like method on an augmented graph to select
the shortest path. Considering a distributed cloud environment
with three types of stakeholders (i.e., subscribers, service pro-
vides, and infrastructure providers), the authors in [21] formu-
lated the DVNE problem as an Integer Linear Programming to
both maximize the number of accepted SFC requests and satisfy
the subscribers’ requirements. Towards this direction, a pre-
processing stage aims at rejecting those requests that are infea-
sible to be accomplished by the system, defining incompatibil-
ities between VNFs and data centers and defining subscriber’s
preferences that are used in the objective function of the opti-
mization model. Pei et al. [22] formulated the DVNE problem
as a Binary Integer Programming model. Subsequently, they
proposed two algorithms for minimizing the embedding costs.
Initially, the VNFs instances are placed by a shortest-path al-
gorithm in a multi-layer graph. Then, the placed VNFs are
released using their utilization rate and a threshold according

2

Table 1: Comparison of related studies.

Categorization
Related Studies

Proposed Study
[16] [19] [20] [12] [21] [22] [23] [24] [25] [26]

Shared VNF-based VNE X X X x x x x X x x X
Distributed VNE x x x X X X X x X X X
Intra-EC VNE X X X x X x x x x x X
Path-based VNE x x x X X X X X X x X
Round-Trip Delay x x x X x x x x x x X
Compute Resources X X X X X X X X X X X
Network Bandwidth x x X X X X X X X X X
Order Constraint x x x X X X X X X x X

to workload variation. Constraints that refer to delay, reliabil-
ity, mobility and battery requirements, of mobile end-devices
which act as an extension of the cloud and edge computing in-
frastructure are taken under consideration for the VNF place-
ment by the authors in [23]. The problem is formulated as
a cost-minimizing VNF placement optimization. A heuristic
based on the fractional optimal solution of a bin packing vari-
ant is proposed to obtain the near optimal VNF placement so-
lutions, while ensuring scalability in terms of reducing the con-
vergence time, as occurred from simulations under a mobile
robots scenario.

For either VNE or DVNE problem, many studies proposed
shortest path-based models that allow computing a near opti-
mal solution with low complexity. The authors in [24] focused
on the trust-aware VNE problem. For each VNF and network
edge, they assumed trustworthiness requirements and formu-
lated a path-based model to integrate network policies. In or-
der to enhance the scalability of the model, they included the
k-shortest paths of an augmented graph to find the optimal so-
lution. The authors in [25], proposed a constrained shortest
path algorithm to deal with the exponential nature of the VNE
problem. They introduced the Neighborhoods Method, which
utilizes dynamic programming and branch-and-bound exhaus-
tive search, while search space reduction techniques are, also,
considered. This method achieves a theoretical reduction of
computational complexity compared to alternative exhaustive
search solutions. Evaluation results certify the scalability and
flexibility of the proposed algorithm when compared to other
path finding-based algorithms. The VNE problem in SDN is
discussed in [26]. The authors provided a multi-objective op-
timization formulation of the VNE problem, towards, firstly,
the minimization of the network load and secondly, the maxi-
mization of the embedding reliability, under the constraints of
virtual network requirements and the resource characteristics
of the substrate network. The problem is separated into two
corresponding sub-problems. For solving these sub-problems,
a two-stage VNE algorithm is proposed using slight modifica-
tions for each case. The authors assigned performance met-
rics to both virtual nodes and substrate nodes to perform the
mapping greedily, while the virtual links are embedded by ap-
plying the Dijkstra’s algorithm in the weighted graph represen-

tation of the substrate network, to determine the shortest path
between the source and the destination substrate node of one
virtual link. Then, examining the distance between the feasi-
ble solutions and the locally optimal solutions, they formulated
a single-objective optimization problem and solved it to obtain
the global VNE strategy.

Table 1 summarizes the achieved goals of the aforementioned
studies and highlights the di↵erences with the proposed so-
lution. Contrary to our work, the shared VNF-based studies
[16, 19] focused mainly on the service discovery and the estab-
lishment of cross-slice communication in a single EC, while the
Intra-EC VNE is performed by default component of the VM
orchestrator (i.e., OpenStack). On the other hand, FENDE mar-
ketplace [20] focused on the synthesis of the customized SFC,
and the VNE solution is handled by a local Virtualized Infras-
tructure Manager. Regarding the distributed VNE approaches,
Cappanera et al. [21] proposed an optimization model with
high execution time that increases rapidly as the number of EC
increases. Furthermore, the proposed Intra-EC VNE solution
is performed in an aggregated fashion and does not consider
any co-location criterion. In addition, the intra-EC part of the
VNE problem is only considered as a constrained variable in the
respective formulations in [22, 23], while the models contem-
plate the end-to-end SFC path embedding, which is not directly
apply for hybrid-SFCs towards round-trip delay minimization.
The same stands for the path-based solutions in [24, 25], where
search-space reduction techniques are applied, but mainly links
capacity constraints are taken into account, while in [26] the
VNE is performed based on link and network switch modeling,
with abstractly described computing constraints, in the absence
of the execution order constraints, in accordance with the SFC
specifications [4]. Zheng et al. [12] deals with the hybrid-SFC
nature of VNE, with round-trip delay minimization. However,
the described solution focuses on constructing the DVNE path,
regardless of how the service functions are placed within the
ECs. Aspiring to overcome all aforementioned limitations, our
article focuses on providing distributed VNE solutions with the
objective of minimizing the round-trip delay, in a time e�cient
manner that will be able to run online, and deal with the dy-
namic nature of modern 5G virtualized applications. The latter
is motivated by the fact that reconfiguration of the embedding

3

Figure 1: Edge Network Topology.

is frequently required due to end-device mobility or workload
management and resource allocation constraints from the edge
infrastructure perspective.

3. System Modelling

As described earlier, most of the works in the literature focus
on the standard unidirectional SFC, where the tra�c follows a
path from source to destination, through the specified VNFs in
accordance with their execution order [4]. However, in particu-
lar IoT scenarios, the application execution outcome is required
to be returned to the end-device. Following the definition in
[4, 12] for a h-SFC, a forward path to a specific destination
point, which could be on the Cloud, for processing the forward
tra�c, and a backward path, through which the processing re-
sult is returned back to the end-device, are defined. These paths
are not necessarily identical [12]. Also, the destination VNF
of an h-SFC could not be specific or fixed, and so the forward
and backward path compose a continuous data stream among
the defined sequence of the VNFs [4]. Due to our focus on the
deployment of virtualized applications at the edge, we extend
the h-SFC concept to a more holistically defined schema and
we refer to that as Virtual Network (VN).

Definition 1. A Virtual Network (VN) is a set of VNFs and vir-

tual links, which is determined by a specific execution sequence,

and the corresponding computing and network resource de-

mands. The execution outcome is required to be returned to

the source of the network tra�c (end-device).

The rest of this section describes the system modeling and
the parameters of the DVNE problem in detail. Figure 1 illus-
trates the Edge Network topology, which consists of geographi-
cally distributed EC infrastructures. End-users can submit their
VNE requests in any approximate EC. As mentioned above, in
the context of Edge Computing, we assume that the services of
a Virtual Network are deployed as VNFs in the form of SFC.
A VNE request dictates the placement of the individual VNFs
and includes both (i) new VNFs for deployment and (ii) shared
VNFs that are already deployed in specific ECs.

Figure 2: Edge Network’s Graph Representation.

3.1. Substrate Network Model

We illustrate the Edge Network as an undirected Graph G =
(V, E). The graph representation of the Edge Network of Fig. 1
is illustrated in Fig. 2, while the set of network model parame-
ters is shown in Table 2. In order to avoid confusion, we state
that with the word edge, we refer to Edge Computing artifacts,
and with the word link to the network connection between the
EC nodes or VN nodes, as well as the connections between the
vertices of the respective graph representation of them. The set
V = {v1, . . . , vn} corresponds to the nodes of G, where vi 2 V

represents the ECi of the Edge Physical Network. The network
links between the ECs vi, v j of the Edge Network constitute the
set E, where ei j = (vi, v j) 2 E. The available computing re-
sources, Rv, and the provided shared VNFs,Nv, are determined
as the main attributes of an EC v 2 V . Besides that, di j denotes
the delay of the network link ei j. As it is shown in Fig. 1, the
EC1 (v1), in which the VNE request is initially submitted, is
considered as the source node, denoted by v0 and it is where the
end-device is connected.

Figure 3: Virtual Network Embedding Request Model.

3.2. VNE Request Model

The end-user submits a VNE request in any EC v 2 V . The
end-device which is the source of the network tra�c is denoted
as s0. Let Gs = (Vs, Es) be the graph representation of the VNE
request. The set Vs denotes the VNFs that constitute the VNE

4

Figure 4: An example of Distributed VNE.

request. Every element of Vs is a tuple hsi, rsii, where si repre-
sents the i

th VNF of the VN, and rsi its resource requirements;
as the shared VNFs within the VN are already deployed in an
EC, it stands that if si is a shared-VNF then rsi = 0. Further-
more, the Es is the set that contains the virtual links between the
VNFs of the request. Each virtual link

⇣
si, s j

⌘
2 Es is associ-

ated with its residual bandwidth demand, denoted as bi j. Figure
3 illustrates a VNE request, which consists of four VNFs. The
s3 is a shared-VNF and as we mentioned above, its resource re-
quirements are considered equal to zero regarding the VNE. An
example of an embedding solution for this VNE request on the
aforementioned edge network is illustrated in Fig.4. As shown,
the VNE request is submitted in the EC1, as the end-device op-
erates in its coverage. For this VNE request, the VNFs s1, s2
are embedded in the EC2, the s3 in the EC6, and the s4 in the
EC3. In this case, the EC1 does not host a VNF of the request;
it is just considered as the ingress node of the solution, which
includes the necessary paths for the VNE.

4. DVNE Problem Formulation

The discussed DVNE problem is broken down into two sub-
problems. The first one concerns an initial mapping of the VN,
or parts of it, in all ECs of the Edge Network. Then, the con-
struction of the VN is performed in a distributed manner, where
each VNF s 2 Vs has to be deployed in one of the candidate
ECs selected on the mapping of the first phase.

4.1. Initial Intra-EC VN mapping

Aiming at providing a DVNE solution, an initial mapping of
VN parts in the respective EC infrastructures of the Edge Net-
work is performed. With this capacity, each VNF will have a set
of candidate ECs that could be embedded onto. Towards the ini-
tial mapping of a VN within the ECs, several parameters must
be taken under consideration. In particular, shared-VNFs are
pre-deployed in specific ECs, and the residual computing and
network capacity of the ECs is constrained in terms of the avail-
able resources. Taking that into account, a primary fact is that

Table 2: System’s key notations.

Parameter Definition

Edge Network Parameters

G Edge Physical Network graph
V The set of EC nodes v1, v2, . . . of G
E The set of links (vi, v j) of G
Nv Available shared VNFs in node v 2 V

Rv

Available Computing Resources of node v 2
V

di j The network delay of the link e(vi, v j) 2 E

VNE Request Parameters

Gs NSE request service graph
Vs The set of VNFs in Gs

Es The set of virtual links (si, s j)
si The i

th VNF in set Vs

rsi The demanded resources of VNF si

bi j The bandwidth demand of link (si, s j) 2 Es

Problem Formulation Parameters

v0 The EC that the end-device is connected
ui A host EC v for the VNF si, i = 1, . . . ,m
P A DVNE solution
w(vi, v j) The shortest path’s cost between vi, v j

Drt The round-trip delay of a DVNE solution P

a VNE request will have to be partitioned, initially, into more
than one sub-VNs. In essence, this first phase is actually formu-
lated as a typical SFC embedding problem in a cloud infrastruc-
ture [16]. In this paper, we refer to this problem as Intra-EC VN
mapping. The goal of this initial phase is the minimization of
computing and network resource utilization through optimized
mapping of sub-VNs within an EC infrastructure. Moreover,
several works in the literature highlight the importance of co-
location between pairs of service nodes (VNFs) of a network
slice embedding, which is another version of the DVNE prob-
lem, in a cloud data center [27], especially regarding the net-
work latency and bandwidth, as well as other resource allo-
cation parameters (CPU utilization, Inter-Rack network tra�c
within the EC infrastructure). Therefore, the main objective re-
garding the initial Intra-EC VN mapping is to achieve a high co-
location ratio between adjacent VNFs of a VNE request. Then,
the initial mapping is used on the solution of the DVNE sub-
problem.

4.2. Delay-Aware Distributed VNE

The initial Intra-EC VN mapping actually computes multi-
ple embedding alternatives of entire (or part of) VNE requests
in various ECs. The goal of the second phase is to provide a
DVNE solution that minimizes the round-trip delay. Assuming
that an end-device generates the incoming tra�c of the VN and
the response of the corresponding services (VNFs) is returned
to this device, we determine the VN path (VNP) as a circuit with
source (and sink) node the EC that the end-device is connected.
Given a VNE request with Vs = {s1, s2, . . . , sm} and the source

5

of the network tra�c s0 (end-device), we define VNP as:

VNP = {s0, s1, s2, . . . , sm, s0}. (1)

Towards a path-based DVNE formulation, the following defini-
tions are required; (i) A DVNE solution is denoted byP and de-
termines the sequence of the host ECs for every VNF of a VNE
request, starting and ending in the EC v0 that the end-device s0
is connected,

P = {u0, u1, . . . , um, um+1}, (2)

where u0 = um+1 = v0, and ui corresponds to the EC v that is
the host of a VNF si in the solution P, for i = 1, . . . ,m. So,
ui = v 2 V . It is worth mentioning that the node v0, which
is mapped onto the variables u0 and um+1 of the solution P,
is the EC to which the end-device is connected and does not
necessarily have to host a VNF of the request. Thus, it could be
considered only as the first hop of the VNP, without the need of
allocating resources. It stands that P ⇢ V , while its cardinality
is: |P| = m + 2. Let the binary variable ⇢i(v) indicates whether
an EC v is a host for a VNF si in a DVNE solution P,

⇢i(v) =

8>><
>>:

1, if ui = v

0, otherwise
, i = 1, . . . , m. (3)

(ii) The cost of the shortest path between two ECs va, vb in the
graph representation G of the Edge Network, corresponds to
the network delay between the respective ECs and is denoted
by w(va, vb). The round-trip delay of a solution P is denoted by
Drt =

P
m

i=0 w
�
ui, ui+1

�
. Taking into account the aforementioned

system modeling, our objective is to compute a DVNE solution
that minimizes the round-trip delay Drt:

min
P⇤

mX

i=0

w
�
ui, ui+1

�
(4a)

s.t.:
X

v2V
⇢i(v) = 1, 8i 2 {1, . . . ,m} (4b)

mX

i=1

⇢i(v)rsi Rv, 8v 2 V (4c)

w
�
ui, ui+1

�
< 1, 8i 2 {0, 1, . . . ,m} (4d)

The constraint (4b) indicates that for every solution P, each ser-
vice si has a unique hosting EC v, for a specific VNE request.
The constraint (4c) guarantees that the requested resources by
VNFs do not exceed the resource availability of every EC, while
(4d) ensures the existence of a path between the ECs that com-
pose the DVNE solution. In essence, (4d) focuses on the con-
nectivity of the graph that corresponds to the solution P; the
paths that are going to be used in the solution must exist, also,
in the Edge Network Topology graph representation. In the fol-
lowing, the proposed solution is thoroughly described and con-
sists of two parts: (1) the initial Intra-EC Virtual Network Map-
ping, which provides the (partial or not) mapping of the VNE
request within the ECs of the Edge Network and guarantees the
constraint (4c), and (2) the main shortest paths-based algorithm
that undertakes the composition of a DVNE solution, based on

the initial VN mapping, with minimized round-trip delay, while
dealing with the exponential complexity of the problem, achiev-
ing a fast performance in terms of execution time.

5. Delay-Aware Distributed VNE Solution

5.1. Initial Intra-EC VN Mapping

For the initial VN mapping, various existing works rely on
heuristic approaches to deal with the combinatorial nature of
the problem, as the VNE is an NP-Complete problem [28]. Typ-
ical approximation algorithms for VNE concern bin-packing

problem approaches, like First-Fit algorithm, for the initial
VNF mapping of a VN within an EC infrastructure [29]. In
this section, we propose a heuristic approach to undertake the
initial mapping of the VNE request within the ECs. This algo-
rithm associates every VNF of the VN with a set of candidates
EC that can be hosted onto. In detail, the VNE request is pro-
cessed for each EC, and the mapping that occurs for every VNF
of the VN would be accepted by the corresponding EC, dur-
ing the next phase of the distributed solution construction. It is
worth mentioning, that a VN could be mapped onto an EC par-
tially, depending on resource availability and other constraints,
as these are described below. Aiming to minimize the servers’
utilization and the bandwidth consumption within an EC infras-
tructure, while achieving a notable VNF pair co-location ratio,
our approach leverages the fact that a VNE request includes pre-
deployed shared-VNFs on specific servers of an EC, in order to
provide a mapping solution.

We assume that the set ⌅ = {⇠1, . . . , ⇠K} contains all the active
servers of an EC infrastructure. A server ⇠ 2 ⌅ has an available
computing capacity c⇠. Furthermore, the physical links between
the servers via a switch are defined by the set L = {l⇠ | ⇠ 2 ⌅}
and every link is associated with a certain available bandwidth
value �l⇠ . As we already mentioned, the shared-VNFs are al-
ready deployed and hosted on specific EC servers. We assume
that the set S H = {si|si 2 Vs : rsi = 0}i, contains the shared-
VNFs of the request, where i = 1, . . . , µ. We also define the
function h(s, ⇠), to express whether a server ⇠ hosts the VNF
s 2 Vs,

h(s, ⇠) =

8>><
>>:

1, if ⇠ is the host of s

0, otherwise
. (5)

The mapping of a VNF si in a server ⇠ has to satisfy the follow-
ing constraints regarding the computing capacity demand rsi

and the bandwidth demand bi,i+1, between adjacent VNFs.

(1) Computing capacity constraint: This constraint inspects the
mapping feasibility based on the aforementioned policy. Par-
ticularly, for shared-VNFs examines if the candidate server ⇠ is
the corresponding host, while for VNFs to be deployed scru-
tinizes the available capacity in the server with respect to the
VNF demand. These define the following parameter ↵1:

↵1 =

8>>>>><
>>>>>:

1, if h(s1, ⇠) = 1 & si 2 S H (deployed in ⇠)
1, if rsi c⇠ & si < S H (to be deployed in ⇠)
0, otherwise

. (6)

6

Algorithm 1 Intra-EC VN Mapping Heuristic
Input: Gs, Nv, ⌅, L, SH
Output: A mappingH of VNFs of a VNE request

1: U {V1
s
, . . . ,Vµs }

2: for V
i

s
2 U do

3: ⌅0 sort ⌅ based on c⇠ in reverse order
4: if i > 0 then

5: Bring host of si�1 2 S H on top of ⌅0
6: end if

7: mapped partitionMapping(Vi

s
, ⌅0, L)

8: if not mapped then

9: re-partition V
i

s
based on resource requirements

10: mapped RepartitionMapping(Vi

s
, ⌅0, L, 1)

11: end if

12: end for

13: procedure partitionMapping(Vi

s
, ⌅0, L)

14: Bring host of si 2 S H on top of ⌅0 if si 2 Nv

15: Reverse the order of the V
i

s

16: for s j 2 V
i

s
do

17: check False

18: for ⇠ 2 ⌅0 do

19: if (6) and (7) satisfied then

20: check True

21: Map s j on server ⇠
22: Update values of c⇠ and �l⇠

23: Bring ⇠ on top of ⌅0
24: end if

25: end for

26: if not check then

27: return False

28: end if

29: end for

30: return True

31: end procedure

32: procedure RepartitionMapping(Vi

s
, ⌅0, L, �)

33: if � = |Vi

s
| then

34: return False

35: end if

36: newParts |Vi

s
| � � length parts of V

i

s

37: Sort newParts in descending order based on resource demands
38: for V

i⇤
s
2 newParts do

39: if partitionMapping(Vi⇤
s

, ⌅0, L) then

40: return True

41: end if

42: end for

43: � � + 1
44: RepartitionMapping(Vi

s
, ⌅0, L, �)

45: end procedure

(2) Bandwidth capacity constraint: The bandwidth of the vir-
tual link (si, si+1), bi,i+1 is allocated by the mapping of the VNF
si+1, as for each partition the mapping sequence is reversed. Al-
though, if the si is co-located with the si+1, the previous band-
width demand is released, and the next virtual link demand is
allocated, which is bi�1,i. Thus, the following parameter is de-
fined to express the bandwidth constraint of a VNF si mapping
in the candidate server ⇠:

↵2 =

8>>>>><
>>>>>:

1, if h(si+1, ⇠)=1 (same hosts)
1, if bi,i+1 �l⇠ & h(si+1, ⇠)=0 (di↵erent hosts)
0, otherwise

. (7)

where, for si to be mapped onto server ⇠ 2 ⌅, if h(si�1, ⇠) = 0,
the demanded bandwidth of the virtual link has to be available
in the physical link l⇠, while in the case where h(si�1, ⇠) = 1,
which means that the adjacent VNFs are co-located, no band-
width is consumed from the corresponding physical link l⇠.

Algorithm 1 includes the steps toward the Intra-EC VN map-
ping. Initially, between the lines 1 and 12 the VN partition
phase takes place. The partitioning of the VNE request is per-
formed, based on the position of the shared-VNFs in the VN,

Figure 5: The proposed heuristic for Intra-EC VN Mapping.

where each partition is a path of VNFs, starting from a new
VNF for deployment and reaches the shared-VNF as a destina-
tion on the partition path (line 1). Assuming µ shared-VNFs
in Vs, we denote U = {V1

s
, . . . ,Vµs } as the set that contains the

partitions of Vs, where V
1
s
[V

2
s
[. . . [V

µ
s = Vs. Each parti-

tion mapping begins from the host server of the shared-VNF,
while the rest available servers are sorted in ascending order
(⌅0) on their available resources (line 3). Between the partitions
of the same VN, a Best-Fit policy is adopted, meaning that the
next partition that has to be mapped will start its VNF map-
ping from its corresponding shared-VNF (line 5), while next on
the list of candidates servers will follow the hosts of the pre-
vious partition. The mapping of a partition is undertaken by
the partitionMapping() procedure (line 7). If a partition is not
able to be mapped due to unavailable resources within the EC,
it will be further partitioned according to its resource demands
(line 9), and the mapping procedure will be invoked again (line
10). The mapping of a VN partition is performed by the par-
titionMapping() procedure (lines 13-31). The mapping process
begins from the host server of the shared-VNF, if the latter is
hosted on this EC, and following the partition path backward
(lines 14-15), the remaining VNFs are placed in a Worst-Fit

fashion based on their resource demands (lines 16 - 29). In
line 19, the mapping constraints are checked for each VNF of
the partition. For enhanced VNF pair co-location and reduced
inter-server network tra�c, at each iteration, the host of the last
placed VNF, emerges at the top of the list of candidates to host
the next VNF (lines 20 - 23). The check parameter identifies
when a partition is not able to fit within the EC, while it returns
False (lines 26-27) as a result of the partitionMapping() proce-
dure and invokes the re-partitioning. If a partition of length |Vs|
does not fit in the EC servers, the heuristic selects sequences of
VNFs of length |Vs| � 1 and maps one of them, starting from
the one with the maximum resource requirements. If none of
the |Vs| � 1 length partitions is mapped, the sequence of VNFs
of length |Vs| � 2 is considered and so on. The process contin-
ues until no VNF remains after re-partitioning. The re-partition
policy aims to maximize the number of adjacent VNFs that can
be co-located during the mapping. The parameter � determines

7

the number of sequential VNFs to be considered for the |Vs|� �
partitions. These partitions are sorted in descending order based
on the total resource requirements. Then, the algorithm iterates
through these partitions and maps the first that fits within the
servers ⌅0 by invoking the basic partitionMapping() procedure.

Figure 5 illustrates an example, where a VNE request con-
sists of two shared-VNFs from a total of six. Following the
above described policy, the VN is partitioned based on the po-
sition of the shared-VNFs in three distinct partitions. For the
sake of demonstration, the mapping process for the first par-
tition V

1
s
= {s1, s2, s3} is performed as follows: The mapping

attempt starts backwards from the VNF s3. As s3 is a shared-
VNF, it is already placed in a server, which is its host, denoted
by ⇠a 2 ⌅, and h(s3, ⇠a) = 1. The ⇠a is now the first candidate
in the list of servers ⌅0 for the VNF s2 to be mapped, based
on resource constraints, aiming to minimize the utilized servers
and the inter-server network tra�c; otherwise, the Worst-Fit is
performed. Then, for the s1 VNF, the first candidate server in
the list ⌅0 would be the host of s2.

The output of the algorithm 1 is a mappingH = {⌘i}i, where
i = 1, . . . ,m. In specific, ⌘i denotes a server ⇠ 2 ⌅ that hosts
the VNF si 2 Vs, while in the case where the VNF si has no
host in the EC, it stands that ⌘i = None. Thus, EC can be a
candidate host for the VNFs that are mapped as occurs for H .
The mapping H will be used below, from the algorithm that
undertakes the distributed embedding of the VN.

5.2. Distributed VNE with Minimum Round-Trip Delay

The methodology for solving the DVNE problem of Section
IV-B is presented here. Towards the minimization of the round-
trip delay, we implement a shortest path-based approach that re-
lies on the Yen’s k-shortest-paths algorithm [30], which calcu-
lates the k shortest loopless paths between two nodes in a graph
(weighted or not), by utilizing the Dijkstra’s shortest-path al-

gorithm. As mentioned, in typical SFC embedding problems,
a distinct VNF is the destination of the execution sequence.
Imitating this approach, the proposed algorithm, namely kSP-

DVNE, generates paths considering that every VNF s 2 Vs

could be the destination of a VNP and for every potential desti-
nation, a forward VNP (f-VNP) and a backward VNP (b-VNP)
are determined. For example, taking into consideration the
VNE request in Fig. 3, assuming that the destination is the VNF
s2, the corresponding f-VNP is {s0, s1, s2}, while the b-VNP is
{s2, s3, s4, s0}. Additionally, a Virtual Network Embedding Path
(VNEP) is defined for both the f-VNP and b-VNP, denoted as
f-VNEP and b-VNEP respectively. These embedding paths de-
termine the visited EC nodes that host the corresponding VNFs
of f-VNP and b-VNP. The {f-VNEP} [{b-VNEP} provides a
DNVE solution P, which is actually a circuit on the graph G,
as an EC is able to be visited multiple times as it could host
various VNFs of the VNE request. For the above example, the
determined embedding paths are: f-VNEP= {u0, u1, u2} and b-
VNEP= {u2, u3, u4, u0}. Below, a description of the main com-
ponents of the proposed solution is given.

5.2.1. Augmented Graph Construction

The initial Intra-EC VN mapping solution provides the can-
didate ECs for hosting every VNF s 2 Vs. This mapping is
denoted by Hv, 8v 2 V . The implementation of the proposed
DVNE method relies on an augmented graph Ga = (Va,Ea),
where the graphs G and Gs that represent the edge network and
the VNE request are merged. In specific, the set Va = V [Vs

represents the graph’s vertices and consists of these that cor-
respond to the EC nodes V plus the VNFs nodes Vs. Further-
more, the set Ea = E [{(v, s, 0) | 8v 2 V and 8s 2 Vs \ Hv}
represents the augmented graph’s edges. The latter consists of
the edges of the initial substrate network links E, while for ev-
ery EC v that is a candidate host for VNF s, an edge of zero
weight (v, s, 0) is added. For example, we consider the sub-
strate network graph model of Fig. 2 and the VNE request of
Fig. 3. A possible augmented graph Ga is depicted in Fig.
6. In this example, we assume that, depending on the map-
ping of each EC, the VNF s1 can be hosted {v1, v2, v3, v6}. So,
Ea contains all the edges of the set E, while adding to it the
edges (v1, s1, 0), (v2, s1, 0), (v3, s1, 0) and (v6, s1, 0). Similarly,
edges from candidate ECs for hosting the remaining VNFs are
accordingly added in the graphGa. The construction of the aug-
mented graph is essential for the development of the proposed
solution for the round-trip delay minimization. It is worth men-
tioning that the network delay between two co-located VNFs in
the same EC is considered negligible and is determined equal
to zero.

5.2.2. kSP-DVNE algorithm

Regarding DVNE, the proposed approach takes into account
the characteristics of the typical SFC embedding problem. As
mentioned above, a VNE request is submitted in a specific EC.
The VNFs that comprise the VN, can be hosted in various ECs
of the Edge Network. Some of the VNFs of the VNE request
have to be embedded with respect to resource constraints, while
the shared-VNFs are already deployed on specific ECs. Also,
the execution outcome of the VN has to be directed back to
the source; that is the end-device, which generated the request.
This implies no specific destination EC for the network tra�c,
nor a predefined forward and backward Service Function Path.
To deal with this abstract nature of the VN, our approach aims
to examine various instances of the VN, with di↵erent desti-
nation VNF (and a corresponding host EC) following di↵erent
paths toward the respective destination VNF per case. Obvi-
ously, a VNF s could have several candidates hosting ECs v,
and various paths from the source to the destination EC v. The
number of the possible di↵erent destinations VNFs of a VN
equals to the VN’s length, m. Consequently, m will also be the
number of the distinct f-VNPs and b-VNPs. Aiming on pro-
viding the DVNE solution with minimized round-trip delay, the
proposed approach is based on the following remark:

Remark 1. Let SP = {psh(s1), psh(s2), . . . , psh(sm)} the short-

est paths from a source v0 to every VNF si 2 Vs of a VN inGa. If

p
max

sh
is the maximum cost path in SP and s

sh

dst
the correspond-

ing destination VNF, the minimum round-trip delay of a DVNE

8

Figure 6: An augmented graph Ga based on G and Gs.

is:

D
⇤
rt
� 2 ⇥ w(v0, s

sh

dst
).

Given the fact that the network tra�c has to traverse every
host ui of each VNF si, in the best case, the shortest reachable
host for a feasible DVNE solution, is this that corresponds to
p

max

sh
. This path corresponds to a destination VNF s

sh

dst
. If the f-

VNP and respectively the b-VNP can be embedded in the p
max

sh
,

in a way that every edge is traversed at most once from the
f-VNEP and b-VNEP individually, the round-trip delay D

⇤
rt

of
this embedding solution is the minimum achievable. Therefore,
the main goal of this approach is to generate multiple paths that
could be examined in a similar way; that is to find a f-VNEP and
a b-VNEP on the same path, while the path’s edges are traversed
only once for the corresponding f-VNEP and b-VNEP. Below,
more details regarding the proposed method are given.
Candidate Embedding Paths: Towards the generation of a
su�cient number of paths for every destination VNF, we rely
on the Yen’s k-shortest paths (k-SP) algorithm [30], which pro-
vides the k 2 N shortest loopless paths between two vertices in a
graph. Given a VNE request of m VNFs and a source EC v0, we
consider the m possible destination VNFs sdst 2 Vs. The Can-
didate Embedding Paths are generated by computing k shortest
paths from u0 to each VNF sdst. We define the k shortest paths
between the source EC and a VNF s as:

P
k

s
= {p1(s), p2(s), . . . , pk(s)}, (8)

where p
i(s) is the i

th shortest path from v0 to s in Ga and con-
tains the traversed ECs v 2 V with the sequence that they are
visited. Thus, the candidate embedding paths constitute the set:

C =
[

s2Vs

P
k

s
. (9)

As m is the number of di↵erent destination VNFs, also m dis-
tinct pairs of f-VNPs and b-VNPs are determined. Subse-
quently, the paths of C will be examined for e�cient DVNE
solutions, in terms of round-trip delay.

Figure 7: An example of four possible shortest paths from s0 to s2 in Ga.

kSP-DVNE algorithm: Algorithm 2 describes the steps to pro-
vide a solution for the DVNE problem. To begin with, the k

shortest paths in the augmented graph Ga are computed, from
the source EC v0 to each vertex that corresponds to a VNF of
the VN (lines 1-3), as described previously. Afterward, each
candidate path pc 2 C is examined (line 6) based on the follow-
ing policy: A candidate path pc must contain at least one host
EC for every VNF s 2 Vs. Given the augmented graph Ga, a
candidate path pc 2 C is able to provide a DVNE solution if the
following condition is satisfied:

8s 2 Vs,9v 2 pc : 9(v, s) = 0, where (v, s) 2 Ea. (10)

In essence, an edge between an EC v and a VNF s must exist in
Ga, so, the path pc 2 C is a valid candidate path.
f-VNP and b-VNP Embedding : Subsequently, for a valid can-
didate path pc, an embedding solution is constructed. More
precisely, as described above, the solution construction can be
divided into the f-VNP and b-VNP embedding, which leads to
the f-VNEP and b-VNEP, respectively (lines 7-11). Regarding
the f-VNP = {s1, . . . , sdst}, the process starts from the sdst host,
which is the last EC vertex of pc. Accessing the f-VNP in re-
verse order, (i.e., sdst�1, . . . , s1), we seek for the first available
host of the next VNF, following the pc vertices, also, in the
opposite direction. For the b-VNP case, we access the VNFs
straight forward (i.e., sdst+1, . . . , sm), while we seek for the first
available host of the next VNF, following the pc vertices in the
direction towards the source EC. The DVNE solution is defined
based on the f-VNEP and b-VNEP, its round-trip delay is com-
puted (lines 12-18). Figure 8 illustrates an example of the em-
bedding solution construction, considering the path p

2(s2) of
Fig. 7. The destination VNF s2 is placed in the corresponding
host EC of the candidate path v6. The EC v1 is the source EC,
and so v0 = v1, while the f-VNP is {s0, s1, s2} and the b-VNP is
{s2, s3, s4, s0}. Regarding the end-device, which is the source s0
of the network tra�c, the EC that it is connected is the v0 = v1.
Starting the embedding from f-VNP, the s2 is hosted on v6. The
next VNF to be placed is the s1. The first EC that is a candidate
host for s1 from v6 towards v1 will be chosen. In this case, v6

9

Algorithm 2 Delay Aware kSP-DVNE Algorithm
Input: Ga, G, Gs

Output: P⇤, D
⇤
rt

1: for s 2 Vs do

2: P
k

s
 k-Shortest Paths from u0 in Ga

3: end for

4: C {Pk

s
}, 8s 2 Vs

5: for pc 2 C do

6: if (10) is satisfied then

7: Identify the destination VNF sdst in pc

8: f-VNP {s0, . . . , sdst}
9: b-VNP {sdst, . . . , s0}

Embed f-VNP on pc (reverse order)

10: f-VNEP {u0, u1, . . . , udst}
Embed b-VNP on pc

11: b-VNEP {udst, . . . , um, u0}
12: Construct the embedding solution
13: P f-VNEP [b-VNEP
14: if (4b) satisfied then

15: Drt
P

m

i=0 w(ui, ui+1), ui 2 P
16: if (4d) satisfied then

17: Check if Drt < D
⇤
rt

18: Update D
⇤
rt

and P⇤ if needed
19: end if

20: end if

21: end if

22: end for

is nominated as a host of s1. The f-VNEP is then {v1, v6, v6},
containing the host ECs for the corresponding services. Con-
cerning the b-VNP embedding, the shared VNF s3 has only one
candidate host EC v4, where it is already placed. Then, for the
s4, exclusively the ECs after the v4 and backward (toward v0)
are taken into account for the identification of a candidate host,
where v1 is the only choice for s4. In this way, the b-VNEP is
shaped as {v6, v4, v1, v1}. The construction of the final solution
is the circuit starting from the v0 = v1 and traversing the respec-
tive hosts of each VNF of the request, observing the execution
order in which they are defined. Thereafter, the DVNE solution
is,

P = {u0, u1, . . . , u4, u5} = {v1, v6, v6, v4, v1, v1},

as v0 = v1. The round-trip delay of this solution is calculated
using the shortest paths between the traversed ECs and equals
to:

Drt(P) =
4X

i=0

w(ui, ui+1).

5.2.3. Complexity Analysis

The proposed DVNE solution can be divided into three ma-
jor parts: (i) the augmented graph Ga construction, (ii) the k-
shortest paths set C = {Pk} calculation and (iii) the computation
of the solution with the lowest round-trip delay Drt,P. From
this perspective, we can analyze the complexity of the solution
as follows:

(a) A candidate embedding path of a VN with destination VNF s2.

(b) DVNE solution provided by the proposed kSP-DVNE heuristic.

Figure 8: A DVNE solution in the p
2(s2) path of Fig. 7.

(i) The construction of Ga = (V,E) is based on G = (V, E) and
Gs = (Vs, Es). Every vertex v 2 V is examined as a candidate
host for a subset of the VNFs si ⇢ Vs. So, for each v 2 V ,
we iterate the VNFs which belong to the mapping Hv and the
corresponding edges of zero weight are added in the graph ac-
cordingly. Let n = |V | and m = |Vs|, the augmented graph con-
struction demands n ⇥ |Hv| operations and, as |Hv| |Vs| = m,
8v 2 V , (at most m VNFs can be hosted in an EC), the time
complexity is O(nm).
(ii) According to Algorithm 2, the following step is to com-
pute the k-shortest paths, in order to create the set of the candi-
date paths to be examined. To achieve this, we utilize Yen’s
algorithm in the graph Ga = (Va,Ea). As it described in
[30], the time complexity of the algorithm O(k|Va|3). With re-
spect to our modeling, it is valid that Va = V [Vs, therefore,
|Va| = |V |+ |Vs| = n+m. Therefore, the time complexity of that
algorithmic step is O(k(n + m)3).
(iii) In order to provide the solution, the shortest path cost w

that represents the network delay between every pair of nodes
in V has to be calculated in prior for each VNE request. As de-
scribed above, the round-trip delay of an embedding solution is
Drt =

P
m

i=0 w
�
ui, ui+1

�
. Using the Floyd-Warshall all pair short-

est paths algorithm [31], we obtain the desired results in the
complexity of O(n3).
(iv) The candidate paths list is accessed just once in order to
find the DVNE solution, and its length is equal to km. In an it-
eration, each path is validated if contains hosts for all services.
At most, a path consists of n vertices that will have to be exam-
ined, as we care about vertices that represent ECs. Furthermore,

10

two more times, the path is traversed for providing the mapping
of the f-VNP and b-VNP, thus, 2n at most vertices could be ac-
cessed. The round-trip delay calculation is the sum of the pairs
of vertices in P, which have cardinality equal to m + 2. Hence,
the time complexity of the loop that calculates the DVNE solu-
tion is:

O(km(n + 2n + (m + 2))) = O�km(n + m)
�
.

In summary, the complexity of the proposed algorithm is:

O(nm + k(n + m)3 + n
3 + km(n + m)) = O(kn

3), (11)

as m < n, where m, n 2 N. It is obvious that the algorithm’s
complexity depends on the k value, which determines the num-
ber of the candidate paths for the DVNE. Higher value of k

implies larger search space for the algorithm and increased
chances for finding a near optimal (or the optimal) embedding
solution. Additional remarks regarding the e↵ect of the k pa-
rameter on the complexity of the algorithm are presented in the
evaluation section. At next, we present a performance evalu-
ation of both the initial Intra-EC placement Heuristic and the
kSP-DVNE algorithm through simulation and comparison with
relative studies.

6. Evaluation

In this section, the evaluation of the proposed approach that
deals with the DVNE problem is presented in two distinct parts.
Initially, the heuristic Intra-EC VN mapping performance is
analyzed and compared with a relative approach in the litera-
ture [29]. Subsequently, the Distributed VNE solution is evalu-
ated and furthermore compared with an existing work regarding
delay-aware hybrid-SFC embedding in a distributed manner at
the network edge [12]. For every experiment, the impact of
major parameters on the DVNE solution is illustrated through
numerical results and relevant discussions.

We implemented both sV-VNM and kSP-DVNE approaches,
as well as the overall simulation environment using Python
programming language. The same stands for the relevant ap-
proaches from the literature that are utilized to perform the
comparisons with the algorithms that we propose in this paper.
The ECs and the VN are implemented as two separated objects
containing the computing and network attributes of the afore-
mentioned system modeling. To generate the graph based mod-
els of the Edge Network and the VNE request, the Python pack-
age NetworkX [32] is utilized. This package enables the corre-
sponding parameters of the model to be parsed on the package’s
graph objects, as nodes’ and links’ attributes. The simulations
took place on a Virtual Machine with installed operating system
Ubuntu 20.04, with 4 virtual CPU cores and 16GB of RAM.

6.1. Intra-EC VN Mapping Heuristic Evaluation

Regarding the proposed heuristic for the Intra-EC VN map-
ping, namely shared VNF-based VN Mapping Heuristic (sV-

VNM), the evaluation is performed through modeling and sim-
ulation, while as mentioned before a comparison with a similar

Table 3: sV-VNM Evaluation - Simulation Parameters.

Parameter Value

Number of ECs |V | 100
Number of active servers |⌅| per EC U[5, 10]
VNE Length |Vs| per request U[3, 10]
Shared-VNFs in every request 20% � 30% of |Vs|
Available cores per server U[2, 16]
Available bandwidth per Intra-EC link 1 Gbps
Demanded cores per VNF U[1, 5]
Demanded Bandwidth per virtual link U[30, 150] Mbps
Total VNE requests 1000

approach [29] is also provided. This approach, namely First-Fit
Allocation heuristic (FFAh) allocates the VNFs of an SFC in
a group of servers, which operate under the same core switch
in an Edge Network. Similarly to sV-VNM, the FFAh aims
at providing an initial VNF mapping towards the minimization
of the power consumption (i.e., number of activated servers)
within the EC and the minimization of the aggregated network
tra�c that the VNFs inject between the servers. Furthermore,
this work leverages the VNF co-location to achieve its objec-
tives. The main idea of the FFAh can be described as follows.
For every cluster of servers, which compose an EC in our case,
the FFAh sorts the servers in decreasing order with respect to
their available resources. Afterward, the FFAh strives to al-
locate each VNF of the SFC in a first-fit fashion. The above
remarks make the FFAh a suitable alternative for comparison
with the proposed sV-VNM approach.

6.1.1. Simulation Setup

With respect to our system modeling, the EC is the corre-
sponding cloud data center and it contains a group of avail-
able servers linked with the corresponding switch of the EC.
The number of ECs is equal to 100, while the number of ac-
tive servers ⌅ = {⇠i}i within each of them varies in the discrete
uniform space [5, 10]. Regarding the computing and network
resources, the available cores for each server, c⇠, ranges from
4 to 16, while the available bandwidth capacity �l⇠ of each l⇠

link, is set to 1 Gbps. Furthermore, we consider a pool of 20
distinct type of VNFs that a subset can be selected from, in or-
der to compose a VNE request. Concerning the VNE request,
its length ranges from 3 to 10, while up to 3 of these VNFs
are shared-VNFs. For the rest VNFs, the demanded CPU cores
are uniformly distributed in the space [1, 5]. The bandwidth de-
mand of the virtual links, between adjacent VNFs ranges from
30 to 150 Mbps. In order to ensure fairness in comparative
results regarding the performance of the considered heuristics,
we assume that all the demanded shared VNFs of each VNE
request are available in any of the ECs during the experiment.
Each VNE request is submitted in any of the ECs of the sub-
strate network, which, as mentioned above, will have di↵er-
ent resource availability, and di↵erent placement of the shared
VNFs. In total, 1000 VNE requests are generated and for-
warded to all of the ECs. Table 3 includes all simulation param-
eters of the Intra-EC VN Mapping experiment. The comparison

11

(a) Average number of utilized servers per EC. (b) Average number of utilized links per EC.

(c) The pair co-location ratio between adjacent VNFs. (d) The pair co-location ratio of adjacent VNF and shared-VNF.

Figure 9: Experiment Results - Comparison between the sV-VNM Heuristic and FFA Heuristic.

of the two heuristics is based on the following metrics: (i) The
average number of servers used per VNE request in every EC,
(ii) the average number of physical links that are utilized (in-
jected tra�c between servers) in every EC, (iii) the percentage
of the co-located on the same server adjacent VNFs and (iv)
the percentage of pair co-location involving shared-VNFs with
respect to the length of the VNE request.

6.1.2. sV-VNM and FFAh Comparative Results

The numerical results are illustrated in Fig. 9. Regarding
the average number of used servers, the sV-VNM utilizes 12-
20% less servers regarding VNE of small and medium lengths
(3-6 VNFs in the VNE) compared to the FFAh, while it still
performs slightly better for larger VNE requests (7-10) with 6-
10% less utilized servers, as it is shown in Fig. 9a. Similar
results occurred regarding the physical links allocated for ev-
ery request. On average, the sV-VNM utilized approximately
18% less physical links to allocate the virtual links of a VNE
(Fig. 9b). The performance of the proposed sV-VNM is bet-
ter in both aforementioned metrics, especially in the small and

medium length VNEs, where the percentage of the shared-
VNFs is higher, compared with the larger requests that the
two heuristics perform similarly. Additional results concern the
pairing ratio of adjacent VNFs that the heuristics achieve.

Figures 9c and 9d demonstrate the co-location ratio between
adjacent VNFs in general and those that include shared-VNFs
respectively. Co-location ratio determines the e�ciency of the
VNFs mapping with regard to the servers’ and links’ utiliza-
tion. Specifically, the co-location of adjacent VNFs leads to
reduced network tra�c between di↵erent servers and limited
network delay between the corresponding VNFs, which is also
beneficial regarding the QoS of a VN, as also stated in [33].
The proposed sV-VNM heuristic accomplishes an average co-
location ratio of 69.8% in the general case, which is a notice-
able improvement compared to the 62.7% of the FFAh. As
for the pairs that involve shared-VNFs the corresponding ra-
tio reached by the sV-VNM ranges from 95% for small length
VNE requests to a minimum of 68% for larger VNE lengths.
On the other hand, FFAh provides an average 60% co-location

12

ratio of pairs that include shared-VNFs, which is approximately
20% less than sV-VNM. The results reflect the e�ciency of the
mixed policy adopted by the proposed algorithm. In particular,
the partitioning based on the shared-VNFs and the placement
of them in a Best-Fit fashion leads to a higher co-location ra-
tio between the adjacent VNFs that connect the distinct VNE
partitions. As mentioned above, each partition mapping starts
from the host of the respective shared-VNF (if exists), while
the worst-fit policy is used when the least recently used server
stays on top of the candidate list for mapping the next VNF.
This VNE partition mapping policy gives an advantage to the
sV-VNM compared to the FFA heuristic. Nevertheless, for a
single VNE partition mapping, which does not include shared-
VNF, the two heuristics are expected to perform equally.

6.2. kSP-DVNE Algorithm Evaluation

We hereby present the performance evaluation of kSP-DVNE
algorithm. The proposed solution is compared with a technique
introduced in [12], which tackles the issue of minimizing the
network latency during hybrid-SFC embedding in an edge net-
work environment. The authors in [12] design their solution
on the Hybrid-SFC Embedding Auxiliary Graph (HSAG), the
main components of which are defined as: (i) the tier that cor-
responds to the VNF (or Service Functions - SFs) of the h-SFC,
(ii) the layer of the substrate candidate EC nodes of every VNF
(or SF) and (iii) the nodes, which reflect to the substrate EC
nodes in our case. Each tier contains a set of layers, where each
layer is composed of nodes, which correspond to the ECs that
are candidates to host the related SF. A solution is constructed
by examining all the possible paths that occur via the auxiliary
graph. When the nodes of a layer are examined, for every one
of them a new layer is defined in the next tier. Thus, starting
from the initial tier, which includes only the source node, the
paths to the candidate nodes for hosting the next VNF (or SF)
are calculated. Then, for each tier’s nodes, the shortest paths
to the next VNF in the sequence of the h-SFC are calculated,
until reaching the source node again. Consequently, we refer
to the solution of [12] as HSAG, which achieves the minimal
network latency in the h-SFC embedding problem. Despite the
fact that it is a faster solution than the brute force, it is still of
high computational complexity in the worst case, in which the
VNFs have a large number of candidate host nodes. This is due
to the fact that the number of layers on each tier grows faster,
while the same stands for the alternative paths, which are ex-
amined in the solution path construction. The discussed DVNE
problem is equivalent to the h-SFC problem with no-specific
destination substrate node, as presented in [12]. We adapted the
HSAG solution to our DVNE problem, and still it provides the
solution with the minimal round-trip delay. However, our pro-
posed algorithm achieves the optimal or near optimal solution
much faster, making it suitable for IoT scenarios, not only for
the initial embedding, but for di↵erent time sensitive network
reconfiguration scenarios, where the VNE path has to be re-
defined in the substrate network. Furthermore, we implemented
a greedy approach in addition to the proposed kSP-DVNE and
the HSAG. The greedy algorithm is also a path-based approach,

Table 4: kSP-DVNE Evaluation - Simulation Parameters.

Parameter Value

Number of ECs (substrate nodes) |V | 40
VNE Length |Vs| per request U[3, 10]
Shared-VNFs in every request U[20%, 30%] o f |Vs|
Physical Link (vi, v j) delay (ms) U[5, 15]
Available cores per EC server U[2, 16]
Available bandwidth per Intra-EC link 1 Gbps
Demanded cores per VNF U[1, 5]
Demanded Bandwidth per (si, s j) link U[30, 150] Mbps
Total requests 700

while it utilizes the Dijkstra algorithm to select in a greedy fash-
ion, the next closest to the current substrate node, which is a
candidate for the embedding of the examined VNF. In the aug-
mented graph Ga, starting from the source node v0 the shortest
path to the first VNF s1 is calculated. The penultimate node
of the path is considered as the host u1 of the s1 VNF. Con-
sequently, the shortest path from u1 to s2 is computed, and so
on, until the construction of a complete embedding solution.
The greedy algorithm is used on our kSP-DVNE approach, as
a lower bound solution of round-trip delay minimization for
the DVNE problem, to deal with some cases that might occur,
where no valid candidate paths are identified in the augmented
graph. Regarding the greedy algorithm’s complexity, if m is the
length of a VNE request, m Dijkstra shortest paths are calcu-
lated, so the time complexity is O(m(|V | + |E|)log|V |).

6.2.1. Simulation Setup

The alternative algorithms for solving the DVNE problem
were implemented using the Python programming language.
Relying on real network topologies [34], we simulated an edge
network composed of 40 EC infrastructures. A request for VNE
can be submitted to any of these ECs, which length fluctuates
uniformly from 3 to 10 VNFs, with the 20% to 30% of these
being shared-VNFs on specific ECs. These shared-VNFs are
derived from a pool of 20 in total. The computing resources
demand for every VNF ranges uniformly for 1 to 5 CPU cores.
Regarding the links between the ECs, the network delay varies
from 5 to 15 ms. For each VNE length, 100 requests are gen-
erated. Based on this configuration, two di↵erent experiments
are conducted. At first, we measure the e�ciency of the pro-
posed heuristic in comparison with the HSAG and the greedy
solution, under a random mapping of the VNFs that compose
a VNE request, following as much as possible a similar setting
with [12]. Specifically, each EC can host between 2 and 3 out of
the 20 available shared-VNFs. At the same time, an EC can be
a candidate host of the 10% to 40% of the VNFs that compose
a VNE request, following a uniform distribution. The average
degree of the graph that represents the Edge Network is equal
to 3, while the kSP-DVNE algorithm is configured to operate
with the value of k equal to 40 ⇥ 3 = 120, that is the number of
the EC nodes |Va|multiplied by the average degree of the graph
deg(G). More details regarding the selection of the k value are
provided in subsection 6.3. Table 4 includes all key simulation

13

(a) Average Round-Trip Delay. (b) Average Execution Time.

Figure 10: kSP-DVNE and HSAG comparison under random initial mapping of VNFs.

parameters for the evaluation of kSP-DVNE.
The second experiment aims at analyzing the e↵ectiveness

of the proposed kSP-DVNE combined with the initial Intra-EC
heuristic. In detail, following the same experimental setup as
above regarding the edge network parameters, as summarized
in Table 4, the sV-VNM heuristic undertakes the initial map-
ping of the VN within the ECs. The Intra-EC parameters are,
also, identical with the Intra-EC simulation parameters. In par-
ticular, these parameters are the available cores per server and
the available bandwidth per link. During this experiment, the
shared-VNFs availability is not constant among the ECs. In-
dicatively, per VNE request, the available shared-VNFs among
the ECs are uniformly redistributed, in order to include a dy-
namic aspect in the simulations; that is to avoid the same shared
VNFs to be always available in the same EC for all the VNE
requests during the whole experiment. The number of shared-
VNFs that each EC can provide for each VNE request varies
from 2 to 3. Subsequently, the performance of the various com-
pared DVNE approaches is analyzed, again under the mapping
derived by the proposed sV-VNM heuristic.

6.2.2. kSP-DVNE Evaluation Results

Figure 10 shows the experimental results when the initial
mapping of the VNFs si of a VNE request is performed ran-
domly among the ECs. Both kSP-DVNE and HSAG outper-
form the greedy algorithm in terms of the round-trip delay min-
imization. The proposed kSP-DNVE achieves the minimum
round-trip delay at 81% of the total requests. Compared to
the HSAG, which provides the distributed embedding with the
minimum round-trip delay, the kSP-DVNE produces embed-
ding solutions with a slight increase of 1.88% in the average
round-trip delay, for all the VNE lengths. Figure 10a depicts
the round-trip delay of the embedding derived by each algo-
rithm with respect to the VNE length. Concerning the execution
time, which is illustrated in Fig. 10b, the proposed kSP-DVNE
outperforms the HSAG by providing the embedding of the VNE

much faster due to its lower complexity. Specifically, the exe-
cution time of the kSP-DVNE increases linearly with respect
to the VNE length, as it is explained in the complexity analy-
sis above, reaching an execution time reduction of over 90% on
average compared to the HSAG, especially for a higher number
of VNFs in the VN. It is worth mentioning that in the execu-
tion time of the kSP-DVNE heuristic, also the running time of
the greedy algorithm is included, since it is used to provide a
lower bound of round-trip delay for our solution. Regarding
the second experiment, where the initial mapping of the VNFs
that compose a VN is performed using the proposed sV-VNM
heuristic, the results are shown in Fig. 11. Concerning the com-
parison with the greedy algorithm, again, both kSP-DNVE and
HSAG achieve better results in terms of the round-trip delay, as
it is shown in Fig. 11a. In fact, the kSP-DVNE performance
shows significant improvement, as in the 95% of the cases pro-
vides the solution with the minimum round-trip delay, while the
deviation from the HSAG solutions this time is approximately
only 0.7%. Similar results with the first experiment occurred
regarding the execution time, as illustrated in Fig. 11b, where,
still, the kSP-DVNE outperforms the HSAG. The fact that the
initial mapping comes from the sV-VNM, which reflects to a
higher co-location of adjacent VNFs, enables the improvement
of the kSP-DVNE performance in terms of the round-trip delay
minimization. The increase of the execution time of the HSAG,
here, comes from the fact that the sV-VNM provides more can-
didate solutions compared to the previous experiment. Again,
the execution time of the greedy algorithm is included in the
corresponding kSP-DVNE heuristic.

In order to explain the reason behind that improvement,
firstly, we discuss about the proposed heuristic weaknesses.
The main shortcoming of kSP-DVNE is that during the exami-
nation of the candidate paths for embedding, it always chooses
the next embedding node towards the destination VNF, during
the embedding of the f-VNP, or towards the source node v0 for
the embedding of the b-VNP, respectively. Thus, during the

14

(a) Average Round-Trip Delay. (b) Average Execution Time.

Figure 11: Comparison of the kSP-DVNE versus HSAG under initial mapping using sV-VNM.

embedding of the f-VNP or b-VNP, if there is a network path of
low network delay between two nodes that have to be traversed
several times (back and forth) to provide the optimal solution,
it will not be chosen by the kSP-DVNE heuristic, unless it is
the only solution in the current candidate path. Therefore, by
increasing the co-location of the adjacent VNFs of a VN, the
need for multiple traversals of the same network links to pro-
vide the optimal results is eliminated.

Obviously, the major advantage of the proposed heuristic
is the fast computation of the distributed embedding solu-
tion while achieving almost the same round-trip delay, on av-
erage, compared with the HSAG. This fact makes the kSP-
DVNE a suitable solution to support ultra-reliable service de-
ployment and high availability of NFV infrastructures at the
network edge, with minimized round-trip delay, especially in
cases where re-configuration of the VN embedding is needed,
such as end-device mobility, infrastructure failure and workload
management in virtualized services. Especially, combined with
the sV-VNM heuristic for the initial mapping of the VN, the
kSP-DVNE provides most of the times the optimal solution in
a real-time fashion.

6.3. Analysis for k parameter

The value of the parameter k determines the number of candi-
date paths that will be examined by the above DVNE algorithm,
while it also determines its computational complexity. Obvi-
ously, a larger value of k corresponds to a larger search space
for the algorithm and increased chances for finding a near opti-
mal, or the optimal, DVNE solution, in terms of round-trip de-
lay. Towards finding a suitable value of parameter k, we present
a simulation-based analysis. Under 4 di↵erent edge network
topologies, we conduct experiments with 500 di↵erent VNE re-
quests, with the length of the VNs varying from 5-7 following
a uniform distribution, while the rest of VNE and EC simula-
tion parameters are identical to the above kSP-DVNE evalua-
tion setting. Lets us also denote by deg(G) the average vertex

degree of the graph G, which represents the Edge Network, and
by |V | = n, the number of the nodes of G, representing the
ECs. The characteristics of the four topologies of the simula-
tions are as follows: The first three topologies are single-layer
networks with di↵erent densities, which correspond to various
numbers of EC nodes and average node degrees. More specif-
ically, their parameters are (i) n = 40, deg(G) = 3, (ii) n = 24,
deg(G) = 3 (iii) n = 40, deg(G) = 4. Also, the specifications
of these topologies are the same as in the first experiment of the
kSP-DVNE evaluation algorithm (6.2.1). The last considered
topology is a hierarchical EC network, composed of three lay-
ers, following the could continuum paradigm. The layers corre-
spond to 1) the access, 2) the aggregation, and 3) the core lay-
ers. Each of these layers has di↵erent characteristics regarding
the number of ECs, the computing capacities of them, and the
network delay of the links between them. We denote each layer
as a subgraph Gi that contains ni ECs. For running simulations,
the parameters are set as follows: (1) access layer: n1 = 25,
deg(G1) = 4, (2) aggregation layer: n2 = 10, deg(G2) = 3, and
(3) core layer: n3 = 5, deg(G3) = 2. The average network link
delay between the EC nodes for each layer ranges in [5, 15] ms
for the G1, [15, 30] ms for G2, and [30, 50] ms for G3. The
network delay of the links that connect the G1 with G2, and G2
with G3 fluctuates uniformly between 20 to 40 ms, and 40 to 60
ms, respectively. Moreover, to simulate the di↵erent capacities
of ECs at each layer, we assumed that the shared-VNFs that an
EC is able to host are in the range [2, 3], [3, 4], and [4, 5] for the
respective layers represented by G1, G2, G3. Correspondingly,
a di↵erent number of VNFs for every VNE request is mapped,
randomly, in the EC for each layer; that is [1, 2], [2, 3], and [2,
4] VNFs of a VNE request per respective layer’s EC, following
a uniform distribution. In order to highlight the e↵ect of k on
the convergence and complexity of the proposed algorithm, the
metrics that we consider are: (i) the cumulative round-trip delay
of the kSP-DVNE heuristic, compared to the optimal solution,
as well as (ii) its execution time, for varying values of k. Figure

15

(a) 40 ECs Network with deg(G) = 3. (b) 24 ECs Network with deg(G) = 3.

(c) 40 ECs Network with deg(G) = 4. (d) 40 ECs 3-layer Hierarchical Network.

Figure 12: kSP-DVNE performance with varying values of k on several EC Networks.

12 shows the numerical results for the di↵erent edge network
settings. At every plot, on the left y-axis the cumulative round-
trip delay is shown, while the right y-axis, indicates the execu-
tion time of the kSP-DVNE heuristic, both with respect to the
value of k. In all cases, we observe that the increase in the exe-
cution time of the algorithm is linear with respect to the value of
k. The di↵erences in the absolute execution times between the
four simulations are due to the k-shortest paths algorithm’s cal-
culations, as a more dense graph with a higher number of nodes
demands more time to compute the k-shortest paths. Concern-
ing the kSP-DVNE convergence, as shown in Fig. 12, the algo-
rithm achieves near optimal solutions as k ! (n ⇥ deg(G)), as
it pointed with circle in the corresponding sub-figures. As de-
scribed earlier, the proposed algorithm will not select a DVNE
solution, where multiple traversals of the same edge have to be
chosen, except in the case that it is the only feasible solution
in the examined path. An increased k value does not a↵ect this
behavior. Especially, in the case of the hierarchical EC net-
work, we observe that the round-trip network delay is increased

compared to the single-layer topologies, as more VNFs, shared
and new deployed, have more candidate host ECs in the ag-
gregation, or core layer, due to capacity constraints. However,
based on the embedding policy of our algorithm, which avoids
multiple traversals of the same link during the DVNE solution
construction, its convergence to the optimal, exhibits similar
behavior. Thus, in order to take advantage of the minimal exe-
cution time of the kSP-DVNE heuristic compared to HSAG and
other exhaustive search and backtracking approaches, without
discounts on its convergence, a value of k equal to (n⇥ deg(G))
is suggested. Under this setting and based on eq. (11), the com-
putational complexity of the algorithm equals to O(deg(G)n4).

7. Conclusions

In this paper, the problem of Distributed Virtual Network
Embedding in a time-e�cient manner is studied. In particu-
lar, concerning the strict network delay requirements of IoT-
based applications, where services are provided as VNFs to the

16

end-devices in an edge network, our work aims to provide e�-
cient DVNE solutions with round-trip delay minimization. To
achieve this, an algorithm that undertakes the initial Intra-EC
mapping of the VN is proposed, in order to identify the can-
didate host ECs for each VNF of the VNE request, while at
the same time ensuring to meet the computing and network re-
source requirements. Furthermore, an algorithm for providing
the DVNE solution is introduced, aiming at round-trip delay
minimization. Given the initial mapping of the VN, an aug-
mented graph is constructed to describe the properties of the
Edge Network and the VNE request, and the k shortest paths
algorithm is utilized to generate candidate embedding paths for
the DVNE solution construction. Considering several m pairs of
f-VNP and b-VNP, km number of candidate paths are examined.
The proposed algorithm’s worst case complexity is O(kn

3).
Regarding the initial mapping algorithm, the comparative

evaluation results indicate reduced server and network link uti-
lization within the EC infrastructure, and a higher pair VNFs
co-location ratio, compared to an alternative state-of-the-art ap-
proach, especially in cases where the VN contains pre-deployed
and already mapped VNFs. With reference to the kSP-DVNE,
the provided comparative evaluation highlights its e�ciency,
as it achieves to provide the optimal solution at the 95% of
the VNE requests, especially when combined with the initial
Intra-EC mapping algorithm, with a significant reduction in the
execution time compared to the HSAG solution. Moreover, a
simulation-based analysis regarding the appropriate k value is
presented.

Regarding our future work, we aim to further investigate the
e↵ect of the k parameter in the kSP-DVNE algorithm’s e�-
ciency, and the capability of the sV-VNM to approximate the
optimal solution for the initial Intra-EC VN mapping. Also, we
will focus on the modification of the proposed algorithms for
SFCs that includes multiple paths due to load balancing func-
tions. In addition, as the algorithm’s execution time enables its
usage for online re-optimization of the VNE request, and mul-
tiple VNs are able to use the same shared VNF instances, we
will focus our work on extending the DVNE problem with the
aspect of dynamic workload management and scaling, leverag-
ing control theory and machine learning techniques. Finally,
we will implement the proposed DVNE solution with emerg-
ing cloud resource orchestration frameworks like Kubernetes[3]
and OpenStack [2] and evaluate them under realistic edge in-
frastructure scenarios.

Acknowledgement

This research was supported by the CHIST-ERA-18-
SDCDN-003 (DRUID-NET), and has been co-funded by the
European Union (European Regional Development Fund -
ERDF) and Greek national funds through the Operational
Program ”Competitiveness, Entrepreneurship and Innovation
2014-2020” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: DRUID-NET (eDge
computing ResoUrce allocatIon for Dynamic NETworks), MIS
5070466.

References

[1] D. Dechouniotis, N. Athanasopoulos, A. Leivadeas, N. Mitton,
R. Jungers, S. Papavassiliou, Edge computing resource allocation for dy-
namic networks: The DRUID-NET vision and perspective, Sensors 20 (8)
(2020) 2191. doi:10.3390/s20082191.

[2] OpenStack, https://www.openstack.org/, (accessed on 20 April
2023) (2022).

[3] Kubernetes, https://kubernetes.io/, (accessed on 20 April 2023)
(2022).

[4] J. Halpern, C. Pignataro, Rfc 7665: Service function chaining (sfc) archi-
tecture (2015). doi:10.17487/RFC7665.

[5] ETSI GS NFV 006 V2.1.1, Architectural Framework Specifi-
cation, https://www.etsi.org/deliver/etsi_gs/nfv/001_099/

006/02.01.01_60/gs_nfv006v020101p.pdf, (accessed on 20 April
2023) (2021).

[6] ETSI GS MEC 003 V3.1.1, Multi-access Edge Comput-
ing (MEC); Framework and Reference Architecture, https:

//www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.

01.01_60/gs_MEC003v030101p.pdf, (accessed on 20 April 2023)
(2022).

[7] J. Dizdarević, F. Carpio, A. Jukan, X. Masip-Bruin, A survey of commu-
nication protocols for Internet of Things and related challenges of fog and
cloud computing integration, ACM Computing Surveys (CSUR) 51 (6)
(2019) 1–29. doi:10.1145/3292674.

[8] D. Mirkovic, G. Armitage, P. Branch, A survey of round trip time predic-
tion systems, IEEE Communications Surveys & Tutorials 20 (3) (2018)
1758–1776. doi:10.1109/COMST.2018.2816917.

[9] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niyato,
O. Dobre, H. V. Poor, 6g internet of things: A comprehensive survey,
IEEE Internet of Things Journal 9 (1) (2021) 359–383. doi:10.1109/

JIOT.2021.3103320.
[10] R. Mahmud, F. L. Koch, R. Buyya, Cloud-fog interoperability in iot-

enabled healthcare solutions, in: Proceedings of the 19th international
conference on distributed computing and networking, 2018, pp. 1–10.
doi:10.1145/3154273.3154347.

[11] A. J. Ferrer, J. M. Marquès, J. Jorba, Towards the decentralised cloud:
Survey on approaches and challenges for mobile, ad hoc, and edge com-
puting, ACM Computing Surveys (CSUR) 51 (6) (2019) 1–36. doi:

10.1145/3243929.
[12] D. Zheng, C. Peng, X. Liao, X. Cao, Toward optimal hybrid service func-

tion chain embedding in multiaccess edge computing, IEEE Internet of
Things Journal 7 (7) (2019) 6035–6045. doi:10.1109/JIOT.2019.

2957961.
[13] T. Taleb, I. Afolabi, M. Bagaa, Orchestrating 5G network slices to sup-

port industrial internet and to shape next-generation smart factories, Ieee
Network 33 (4) (2019) 146–154. doi:10.1109/MNET.2018.1800129.

[14] I. Dimolitsas, D. Dechouniotis, S. Papavassiliou, P. Papadimitriou,
V. Theodorou, Edge Cloud Selection: The Essential Step for Network
Service Marketplaces, IEEE Communications Magazine 59 (10) (2021)
28–33. doi:10.1109/MCOM.211.2001056.

[15] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, R. Buyya, Resource allocation
and task scheduling in fog computing and internet of everything envi-
ronments: A taxonomy, review, and future directions, ACM Computing
Surveys (CSUR) 54 (11s) (2022) 1–38. doi:10.1145/3513002.

[16] G. Papathanail, A. Pentelas, I. Fotoglou, P. Papadimitriou, K. V. Katsaros,
V. Theodorou, S. Soursos, D. Spatharakis, I. Dimolitsas, M. Avgeris,
et al., MESON: Optimized cross-slice communication for edge com-
puting, IEEE Communications Magazine 58 (10) (2020) 23–28. doi:

10.1109/MCOM.001.2000207.
[17] Open Source MANO (OSM), ”http://osm.etsi.org, (accessed on 20

April 2023) (2023).
[18] G. Papathanail, I. Dimolitsas, I. Fotoglou, D. Dechouniotis, S. Papavassil-

iou, P. Papadimitriou, Towards Secure and Optimized Cross-Slice Com-
munication Establishment, in: 2022 IEEE 8th International Conference
on Network Softwarization (NetSoft), IEEE, 2022, pp. 127–132. doi:

10.1109/NetSoft54395.2022.9844063.
[19] K. Papadakis-Vlachopapadopoulos, I. Dimolitsas, D. Dechouniotis, E. E.

Tsiropoulou, I. Roussaki, S. Papavassiliou, On blockchain-based cross-
service communication and resource orchestration on edge clouds, Infor-
matics 8 (1) (2021) 13. doi:10.3390/informatics8010013.

17

https://doi.org/10.3390/s20082191
https://www.openstack.org/
https://kubernetes.io/
https://doi.org/10.17487/RFC7665
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/006/02.01.01_60/gs_nfv006v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/006/02.01.01_60/gs_nfv006v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.01.01_60/gs_MEC003v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.01.01_60/gs_MEC003v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.01.01_60/gs_MEC003v030101p.pdf
https://doi.org/10.1145/3292674
https://doi.org/10.1109/COMST.2018.2816917
https://doi.org/10.1109/JIOT.2021.3103320
https://doi.org/10.1109/JIOT.2021.3103320
https://doi.org/10.1145/3154273.3154347
https://doi.org/10.1145/3243929
https://doi.org/10.1145/3243929
https://doi.org/10.1109/JIOT.2019.2957961
https://doi.org/10.1109/JIOT.2019.2957961
https://doi.org/10.1109/MNET.2018.1800129
https://doi.org/10.1109/MCOM.211.2001056
https://doi.org/10.1145/3513002
https://doi.org/10.1109/MCOM.001.2000207
https://doi.org/10.1109/MCOM.001.2000207
http://osm.etsi.org
https://doi.org/10.1109/NetSoft54395.2022.9844063
https://doi.org/10.1109/NetSoft54395.2022.9844063
https://doi.org/10.3390/informatics8010013

[20] L. Bondan, M. F. Franco, L. Marcuzzo, G. Venancio, R. L. Santos,
R. J. Pfitscher, E. J. Scheid, B. Stiller, F. De Turck, E. P. Duarte, A. E.
Schae↵er-Filho, C. R. P. d. Santos, L. Z. Granville, FENDE: Marketplace-
Based Distribution, Execution, and Life Cycle Management of VNFs,
IEEE Communications Magazine 57 (1) (2019) 13–19. doi:10.1109/

MCOM.2018.1800507.
[21] P. Cappanera, F. Paganelli, F. Paradiso, VNF placement for service chain-

ing in a distributed cloud environment with multiple stakeholders, Com-
puter Communications 133 (2019) 24–40. doi:10.1016/j.comcom.

2018.10.008.
[22] J. Pei, P. Hong, K. Xue, D. Li, E�ciently embedding service func-

tion chains with dynamic virtual network function placement in geo-
distributed cloud system, IEEE Transactions on Parallel and Distributed
Systems 30 (10) (2018) 2179–2192. doi:10.1109/TPDS.2018.

2880992.
[23] B. Németh, N. Molner, J. Martı́n-Pérez, C. J. Bernardos, A. De la Oliva,

B. Sonkoly, Delay and reliability-constrained vnf placement on mobile
and volatile 5g infrastructure, IEEE Transactions on Mobile Computing
21 (9) (2021) 3150–3162. doi:10.1109/TMC.2021.3055426.

[24] N. Torkzaban, J. S. Baras, Trust-aware service function chain embedding:
A path-based approach, in: 2020 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), IEEE, 2020,
pp. 31–36. doi:10.1109/NFV-SDN50289.2020.9289885.

[25] D. Chemodanov, F. Esposito, P. Calyam, A. Sukhov, A constrained short-
est path scheme for virtual network service management, IEEE Trans-
actions on Network and Service Management 16 (1) (2018) 127–142.
doi:10.1109/TNSM.2018.2865204.

[26] R. Chai, D. Xie, L. Luo, Q. Chen, Multi-objective optimization-based
virtual network embedding algorithm for software-defined networking,
IEEE Transactions on Network and Service Management 17 (1) (2019)
532–546. doi:10.1109/TNSM.2019.2953297.

[27] A. Pentelas, P. Papadimitriou, Network service embedding for cross-
service communication, in: 2021 IFIP/IEEE International Symposium
on Integrated Network Management (IM), IEEE, 2021, pp. 424–430,
https://ieeexplore.ieee.org/abstract/document/9464038.

[28] M. Rost, S. Schmid, On the hardness and inapproximability of virtual net-
work embeddings, IEEE/ACM Transactions on Networking 28 (2) (2020)
791–803. doi:10.1109/TNET.2020.2975646.

[29] A. Marotta, E. Zola, F. D’Andreagiovanni, A. Kassler, A fast robust
optimization-based heuristic for the deployment of green virtual network
functions, Journal of Network and Computer Applications 95 (2017) 42–
53. doi:10.1016/j.jnca.2017.07.014.

[30] J. Y. Yen, Finding the k shortest loopless paths in a network, management
Science 17 (11) (1971) 712–716. doi:10.1287/mnsc.17.11.712.

[31] R. W. Floyd, Algorithm 97: shortest path, Communications of the ACM
5 (6) (1962) 345. doi:10.1145/367766.368168.

[32] NetworkX, Network Analysis in Python, https://networkx.org, (ac-
cessed on 20 April 2023) (2023).

[33] D. Laskaratos, I. Dimolitsas, G. Papathanail, M.-E. Xezonaki, A. Pente-
las, V. Theodorou, D. Dechouniotis, T. Bozios, P. Papadimitriou, S. Pa-
pavassiliou, Meson: A platform for optimized cross-slice communication
on edge computing infrastructures, IEEE Access 10 (2022) 49322–49336.
doi:10.1109/ACCESS.2022.3171573.

[34] The University of Adelaide, The Internet Topology Zoo, http://www.
topology-zoo.org/index.html, (accessed on 20 April 2023) (2013).

18

https://doi.org/10.1109/MCOM.2018.1800507
https://doi.org/10.1109/MCOM.2018.1800507
https://doi.org/10.1016/j.comcom.2018.10.008
https://doi.org/10.1016/j.comcom.2018.10.008
https://doi.org/10.1109/TPDS.2018.2880992
https://doi.org/10.1109/TPDS.2018.2880992
https://doi.org/10.1109/TMC.2021.3055426
https://doi.org/10.1109/NFV-SDN50289.2020.9289885
https://doi.org/10.1109/TNSM.2018.2865204
https://doi.org/10.1109/TNSM.2019.2953297
https://ieeexplore.ieee.org/abstract/document/9464038
https://doi.org/10.1109/TNET.2020.2975646
https://doi.org/10.1016/j.jnca.2017.07.014
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1145/367766.368168
https://networkx.org
https://doi.org/10.1109/ACCESS.2022.3171573
http://www.topology-zoo.org/index.html
http://www.topology-zoo.org/index.html

	Introduction
	Related Work
	System Modelling
	Substrate Network Model
	VNE Request Model

	DVNE Problem Formulation
	Initial Intra-EC VN mapping
	Delay-Aware Distributed VNE

	Delay-Aware Distributed VNE Solution
	Initial Intra-EC VN Mapping
	Distributed VNE with Minimum Round-Trip Delay
	Augmented Graph Construction
	kSP-DVNE algorithm
	Complexity Analysis

	Evaluation
	Intra-EC VN Mapping Heuristic Evaluation
	Simulation Setup
	sV-VNM and FFAh Comparative Results

	kSP-DVNE Algorithm Evaluation
	Simulation Setup
	kSP-DVNE Evaluation Results

	Analysis for k parameter

	Conclusions

