
http://www.iaeme.com/IJMET/index.

International Journal of Civil Engineering and Technology (IJCIET)
Volume 10, Issue 1, January 2019, pp.
Available online at http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=1
ISSN Print: 0976-6308 and ISSN Online: 0976
 
©IAEME Publication 

 

NONOSCILLATORY PROPERTIES FOR 

SOLUTION OF

DIFFERENCE EQUATIONS OF SECOND ORDER 

WITH POSITIVE AND NEGATIVE 

Dept. of Mathematics, College of Education, 
Mustansiriyah University, 

Hala Majid Mohi and Intisar Haitham Qasem

Dept. of Mathematics, College of Science for Women, 
University of Baghdad, Baghdad, Iraq

ABSTRACT 

This research discussed 

differences equation of second order 

various new conditions which is ensure that all

or infinity liken → ∞ are given 

Keywords: Oscillation, Non Oscillation, Neutra
Equations. 
 

Cite this Article: Intidhar Zamil Mushtt, Hala Majid Mohi and Intisar Haitha
Qasem, Nonoscillatory Properties For Solution of Nonlinear Neutral Difference 
Equations of Second Order With Positive and Negative Coefficients
Journal of Civil Engineering and Technology (IJCIET)
http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=1

INTRODUCTION 

The paper deal with the following second order 
positive and negative coefficients

∆���� 	 
����� � ��������
where Δ is the forward difference operator given by 

infinite sequences of real numbers,
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The paper deal with the following second order nonlinear neutral difference equations with 
positive and negative coefficients: 

 	 �������� � ��     

is the forward difference operator given by 	∆�� � �������	,  

of real numbers,�� � 0, �� � 0 ,	�,	�,	� are positive integers ,
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nonlinear neutral difference equations with 

(1) 
�	, ��, ��	 and ��are 

are positive integers ,� ∈ �!, !, 
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������ � 0for �� ≠ 0. Throughout, we suppose that the following assumptions are 

satisfied: �H�	0 < 
� ≤ 
 < ∞						, 
is constant ; 

�H� & & �' < ∞(��
')(����

*
()�+

; 
�H-There exists asequence./�0such that ∆�/� � �� andlim�→* /� � 0 ; �H4There exist positive constant 5� such that  	��� ≥ 5�� ; 7H8 9There exist positive constant 5� such that��� ≤ 5��. 

By a solution of equation (1) we mean a sequence  � which satisfies equation (1) for each 
large: . 

A solution  � is said to be a nonoscillatory if it is eventually positive or eventually 
negative; otherwise, it is called oscillatory [1]. Oscillatory and asymptotic behavior solution 
of nonlinear neutral difference equations in many studies others, see for examples and the 
references cited therein[2-10]. The authors studied the existence of nonoscillatory solution of 
second order nonlinear neutral difference equations with positive and negative 
coefficients[11]. ∆����∆�� � 
���� � �������� 	 ��;����� � 0 

Inthe researchers obtained the oscillation and non oscillation criteria of second order 

nonlinear neutral difference equations with positive and negative coefficients[12]. ∆���� � 
����� � �������� 	 ��<����� � 0 

In this researchers established some new sufficient conditions for oscillation and 
asymptotic behavior solution of the equation [13]. ∆���� 	 
����= � �������� 	 ��<����� � �� 

The purpose of this paper is to obtain new sufficient conditions for then nonoscillation of all 

solutions of eq. (1). An example is provided to illustrate the main result.   

MAIN RESULT 

The next results provide some sufficient conditions for the nonoscillation of all solutions of 
eq. (1) 
Let � � �� be a nonoscillatory solution of (1) for: ≥ >. 

Define for : ≥ :? 																																				@� 	� 	 �� 	 
�����																																																													�2 
Assuming �H�hold, we define for : ≥ :? 

																																			B� �& & �'���'��(��
')(����

*
()� 																																						�3 

And∆�B� � 	7�������� � ������������9	, � � � 

Set  																																							D� � @� 	 B� 	 /�(4) 

The following theorem based on Theorem 7.6.1, pp. 184 [14]: 

Theorem 2.1. ([14], pp.182) 

Assume that .
�0 is a nonnegative sequence of real numbers and let  � bea positive integer. 
Suppose that  
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lim	 inf�→* & 
' � ������ � 1���
���
')���  

Then  

i. The difference inequality���� 	 �� � 
����� ≤ 0,			: � 0,1,2,⋯	 
Cannot have eventually positive solutions. 

ii. The difference inequality���� 	 �� � 
����� ≥ 0, : � 0,1,2,⋯	 
Cannot have eventually negative solutions.  

Theorem 2.2. ([15], Lemma 2.1- Lemma 2.2, pp.477-478) 

i. Suppose that  0 < 
� ≤ H < 1 for some positive constant	H, : ≥ :?. Let  I� be a 

nonoscillatory solution of a functional inequality I�JI� 	 
�I���K < 0In a neighbourhood of infinity, where� � 0, thenlim�→* I� �0.  

ii. Suppose that  1 < H ≤ 
�  for some positive constant	H, : ≥ :?. Let  I� be a 

nonoscillatory solution of a functional inequality I�JI� 	 
�I���K � 0In a neighbourhood of infinity, where� � 0, thenlim�→* I� �0. 

Theorem 2.3. Suppose that �� ≤ ������, if�H� 	 �H8  hold, in addition to 

lim	 inf�→* & &|�' 	 �'����|
'����
(�M
')( � �� 	 N 	���M����5�	�� 	 N 	� � 1��M����

���
()�����M�� 													�5 

� � N � �.Then every nonoscillatory solution of equation �1 goes to infinity as: → ∞. 

Proof. Let �� be an eventually positive solution of (1) for: ≥ :?, we may assume that 
there exist a positive nteger:?, and ���� � 0, ���� � 0, ���� � 0,for: ≥ :? ≥ N.Set @�, B�,D� as in (2),(3) and (4) then (1) it become  ∆�D� 	 ��� 	 ������������ � 0,																			�6 

Hence ∆�D� ≤ 0 ,thus there exist :� ≥ :?such that 	∆D� < 0	or 	∆D� � 0	 for  : ≥ :� ≥:?. 

Now let 	∆D� < 0	for : ≥ :�.Thus implies that D� < 0  for : ≥ :� ≥ :� andD� →	∞as : → ∞. We claim that �� → ∞as : → ∞, otherwise there exist :� ≥ :�andS � 0such 

that �� ≤ S,so 7H8 9 is hold then (3) is become  

																																										B� ≤ S5& & �'(��
')(����

*
()� 																				�7 

Substitution (7) in (4) we obtained  

		D� ≥ 	
����� 	 S5& & �'(��
')(����

*
()� 		 /� 

D� � 	
����� � U 

Implies that  

																								D� ≥ 	
�����																																																																�8 
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This is a contradiction. Then  �� → ∞as : → ∞.  

Now If  ∆D� � 0  for  : ≥ :�, thenD� � 0  or D� < 0for  : ≥ :� ≥ :�. 

First, suppose that D� � 0, from (4) we can conclude that 		D� ≤ @� 		 /�then D� <@� � U   for  U � 0, hence��@� � 0 , By Theorem2.2-ii we get lim�→* �� � 0, 
thenlim�→* @� � lim�→*D� � 0,which is contradiction since D� is positive increasing.  
Next ifD� < 0, by taking the summation from  : to: � N,N � �for both sides of (4) yield 

	∆W��M�� 	 	∆D� � &��' 	 �'�������'����M
')�  

		∆D� ≤ &��' 	 �'�������'����M
')� 																																										�9 

So by�H4 is hold then (9) become 

																																													∆D� ≤ 5� &��' 	 �'�����'����M
')� 								�10 

Now (8) can be written in the  	 �YZD� ≤ ����.Hence  

	 1
�����D����� ≤ ���� 
Substituting the last inequality in (10) we obtain 

		∆D� ≤ 	5� &��' 	 �'����
�����
��M
')� D'���� 

		∆D� ≤ 5�[& |�' 	 �'����|
'����
��M
')� \D��M���� 

	∆D� � 5�[& |�' 	 �'����|
'����
��M
')� \D�����M�� ≥ 0 

By theorem 2.1-ii and in virtue of (5) it follows that the last inequality cannot has 
eventually negative solution, which is a contradiction.  

Theorem 2.5. Suppose that�� ≥ ������, and �H� 	 �H8  are hold, then every nonoscillatory 
bounded solution of equation �1 converge to zero as n → ∞. 

Proof.  Let y^ be an eventually positive solution of (1) for n ≥ n? ,we may assume that 
there exist a positive integer n?, and y^�_ � 0, y^�` � 0, y^�a � 0,for n ≥ n? ≥ N,since 
from (6) we have ∆�W^ ≤ 0  for n ≥ n? ,thus there exist a n� ≥ n? such that 	∆W^ � 0		or 	∆W^ < 0		 for  n ≥ n� ≥ n? . 

Next suppose that 	∆W^ � 0		for n ≥ n�.Thus implies that W^ < 0or W^ � 0 for n ≥n� ≥ n� and  W^ → ∞as n → ∞. So for (4) we get W^ ≤ y^ 		 F^ , It implies that  y^ → ∞ as  n → ∞, which is a contradiction ,hence 	∆W^ � 0		is not possible .  

Now If  ∆D� � 0  for  : ≥ :�, thenD� � 0  or D� < 0for  : ≥ :� ≥ :�. 
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First, suppose that D� < 0.Then there exists:- ≥ :�,	d � 0	such that D� ≤ 	d < 0, for  : ≥ :�. Since �� is bounded, thenlimsup�→* �� � h < ∞,and there exists a subsequence .i(0()�*  such that�=j → ∞asi( → ∞,and �kj � max.�=: i? ≤ U ≤ i(0 , limsup�→* �kj ≤ h 

Since  �� is bounded then by (7) and (4) we get 

�=j ≤ 	d � 
=j�=j�� � S5& & �'(��
')(����

*
()� � /=j 

< 	d � 
=j�kj � U				U � 0																										 
 So �=j ≤ 	d � limsup�→* �kjaso → ∞, we get from the last inequality  h ≤ 		d � h  which is a 

contradiction. 

Finally ifD� � 0,from (4) we get 	D� ≤ @� 		 /�,implies that0 < D� ≤ @� for large enough : , so  ��@� � 0  and by Theorem2.3-ii,it follows that lim�→* �� � 0 . 

PRACTICAL METHOD AND CONSIDERATIONS 

In this section, we illustrate the main results by giving some examples 

Example 1: Consider the difference equation: 

∆��y^ 	 p1 � p��q^q y^�� � 	r	s p��q^ y^��	 	 p��q^ y^�- � 	�	� p1 � p��q^q 2^ (11) 

Where  � � 1, � � 2, � � 3, N � 1	, ���� � ��, 5� � 5� � 2 

One can find that all conditions of theorem 2.4 hold as follows: 

tu � v � wvsx
u � 1		hi	: → ∞ 

& & �' < & y5w	1	2 x
(z*

()�+
< ∞(��

')(����
*

()�+
 

�� 	 ������ � w12x
� 	 	5	2 w12x

��� � 	18 < 0				, : → ∞ 

lim	 inf�→* & &|�' 	 �'����|
'����
(�M
')( ����

()�����M��
2-3� 

So, according to theorem 2.4 every solution of (11) is goes to infinity as  : → ∞, for 
instance �� � 2�is such a solution. 

Example 2:Consider the difference equation 

∆���� 	 y1 � w1ex
^z���� � �e�� � ee� e�^����	 	 �	2|�� � 2|�-���- � ���12 

Where� � 1, � � 2, � � 3, N � 1	, ���� � ��, 5� � 5� � 2, 

�� � w	1	e x
^ �|�� 	 3|�� 	 |� � |����	|�- � 3|��			 
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One can find that all conditions of theorem 2.5 hold as follows: 

	
� � 1 � w1|x
� � 1		hi	: → ∞ 

& & �' � �e�� � ee & e�}*
})^+

< ∞(��
')(����

*
()�+

 

	�� 	 ������ � 0.06294 � 0 

So, according to theorem 2.5 every solution of (12) has nonoscillatory solution tend to 
zero as: → ∞, for instance �� � |��is such a solution. 

CONCLUSION 

In this paper some necessary and sufficient conditions are get it to ensure the nonoscillatory 
for all solutions of second order nonlinear neutral delay difference equations with positive and 
negative coefficients. One sequences are used for this suggest.  
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