
Inna M Sokolova- Ph.D. in Biology
- Professor (Full) at University of Rostock
Inna M Sokolova
- Ph.D. in Biology
- Professor (Full) at University of Rostock
About
286
Publications
67,129
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,782
Citations
Introduction
Current institution
Additional affiliations
January 2014 - January 2015
May 2001 - May 2002
Education
September 1991 - May 1997
Zoological Institute of Russian Academy of Sciences
Field of study
- Zoology, Ecology, Physiology
September 1986 - June 1991
Publications
Publications (286)
This dataset is related to the following publication: https://doi.org/10.1016/j.marenvres.2023.106231
Abstract: Organisms in intertidal zones experience fluctuations in environmental stressors such as hypoxia and temperature. These stressors and their fluctuations often appear in combination. Combination of stressors can have different effects com...
Actin, the most abundant cellular protein, is essential for maintaining structural organization, mechanical stability and cellular motility. The actin cytoskeleton undergoes continuous ATP-dependent reorganization, incurring significant energy costs through treadmilling. However, experimental quantifications of these energy expenditures, especially...
Mitochondria generate up to 90% of cellular ATP, making it critical to understand how abiotic factors affect mitochondrial function under varying conditions. Using clones of the rotifer Lecane inermis with known thermal preferences, we investigated mitochondrial bioenergetic responses to four thermal regimes: standard temperature, optimal temperatu...
The oxygen inventory of the global ocean is declining. This phenomenon, known as ocean deoxygenation, has emerged as a fundamental pathway for climate change to alter marine ecosystems. An important concern is how this global oxygen decline will manifest in coastal and oceanic systems that are already subject to low oxygen, or hypoxic conditions. T...
Solar ultraviolet (UV) is among the most important ecological factors shaping the composition of biota on the planet’s surface, including the upper layers of waterbodies. Inhabitants of dark environments recently evolving from surface organisms provide natural opportunities to study the evolutionary losses of UV adaptation mechanisms and better und...
Toxicity testing is an important tool for risk assessment of sediment contamination in estuaries. However, there has been a predominant focus on fitness parameters as toxic endpoints and on crustaceans as test organisms, while effects at the sub-organismal level and on other benthic taxa have received less attention. Also, interactions between sedi...
Climate change is causing extreme short-term warming with greater intensity and more frequent occurrence. Reproduction and subsequent recruitment of coastal ecosystem engineers, such as the blue mussel, may be impacted by the extreme temperatures because these vital functions are sensitive to the timing of short-term changes in abiotic factors. We...
The blue mussels Mytilus edulis and Mytilus trossulus are ecologically and economically important species distributed widely across the Northern Hemisphere. Understanding their behavioral and physiological disparities is crucial for assessing their ecological success and aquacultural value. The recent finding of non-native M. trossulus in the White...
Pollution from personal care products, such as UV-filters like avobenzone and nano-zinc oxide (nZnO), poses a growing threat to marine ecosystems. To better understand this hazard, especially for lesser-studied sediment-dwelling marine organisms, we investigated the physiological impacts of simultaneous exposure to nZnO and avobenzone on the lugwor...
Sessile benthic organisms like oysters inhabit the intertidal zone, subject to alternating hypoxia and reoxygenation (H/R) episodes during tidal movements, impacting respiratory chain activities and metabolome compositions. We investigated the effects of constant severe hypoxia (90 min at ~ 0% O2 ) followed by 10 min reoxygenation, and cyclic hypox...
We evaluated the feasibility of classifying ommastrephid and loliginid squid species by statolith shape analysis into fisheries management units, or stocks. Statoliths of Illex coindetii (Verany, 1839) and Loligo forbesii (Steenstrup, 1856) were studied from multiple areas of the North East Atlantic and Northern Mediterranean Sea during 2021-2022....
Knowledge about the effects of sediment contamination on estuarine benthos has come mainly from observational studies and spiking experiments. There is a lack of experimental studies with field-contaminated sediments, especially those assessing the combined effects of contamination and other environmental stressors. Here we investigated the biomark...
Coastal habitats are exposed to increasing pressure of nanopollutants commonly combined with warming due to the seasonal temperature cycles and global climate change. To investigate the toxicological effects of TiO 2 nanoparticles (TiO 2 NPs) and elevated temperature on the intestinal health of the mussels (Mytilus coruscus), the mussels were expos...
nZnO exposure disrupts metabolism and delays post-hypoxic recovery in mussels.
Life on tidal coasts presents physiological major challenges for sessile species. Fluctuations in oxygen and temperature can affect bioenergetics and modulate metabolism and redox balance, but their combined effects are not well understood. We investigated the effects of intermittent hypoxia (12h/12h) in combination with different temperature regim...
Broadcast spawners, like the blue mussel Mytilus edulis, experience substantial energy expenditure during spawning due to extensive gamete release that can divert energy from other functions. This energetic cost might be intensified by environmental stressors, including hypoxia that suppress aerobic metabolism. However, the energy implications of s...
Introduction: Temperature affects organisms’ metabolism and ecological performance. Owing to climate change, sea warming constituting a severe source of environmental stress for marine organisms, since it increases at alarming rates. Rapid warming can exceed resilience of marine organisms leading to fitness loss and mortality. However, organisms ca...
Oxygen fluctuations are common in freshwater habitats and aquaculture and can impact ecologically and economically important species of fish like cyprinids. To gain insight into the physiological responses to oxygen fluctuations in two common cyprinid species, we evaluated the impact of short-term intermittent hypoxia on oxidative stress and metabo...
Coastal environments commonly experience fluctuations in salinity and hypoxia/reoxygenation (H/R) stress that can negatively affect mitochondrial functions of marine organisms. Although intertidal bivalves are adapted to these conditions, the mechanisms that sustain mitochondrial integrity and function are not well understood. We determined the rat...
Coastal hypoxia is a frequent stressor for marine benthic organisms. While the effects of hypoxia on mitochondrial function and energy metabolism have been studied, the response of mitochondria during spawning events is poorly understood. To address this knowledge gap, we investigated the effects of short-term hypoxia (7 days) and spawning on mitoc...
Sediment contamination and seawater warming are two major stressors to macrobenthos in estuaries. However, little is known about their combined effects on infaunal organisms. Here we investigated the responses of an estuarine polychaete Hediste diversicolor to metal-contaminated sediment and increased temperature. Ragworms were exposed to sediments...
Nano-TiO2 can act as a vector to organic compounds, such as pentachlorophenol (PCP) posing a potential threat to the marine ecosystems. Studies showed that nano pollutant toxicity can be modulated by abiotic factors, but little is known about the potential influence of biotic stressors (such as predators) on the physiological responses to pollutant...
Nano‑titanium dioxide (nTiO2) is a widely used nanomaterial posing potential ecological risk for marine ecosystems that might be enhanced by elevated temperatures such as expected during climate change. nTiO2 may affect benthic filter feeders like mussels through waterborne exposures and via food chain due to the adsorption on/in algae. Mussel byss...
Temperature is a key abiotic factor affecting ecology, biogeography and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism plays a key role in bioenergetics and redox balance making these organelles an important d...
The environmental occurrence of nanoplastics (NPs) is now evident but their long-term impacts on organisms are unclear, limiting ecological and health risk assessment. We hypothesized that chronic exposure to low particle concentrations of NPs can result in gut-associated toxicity, and subsequently affect survival of fish. Japanese medaka Oryzias l...
Nanopollutants such as nZnO gain importance as contaminants of emerging concern due to their high production volume and potential toxicity. Coastal sediments serve as sinks for nanoparticles but the impacts and the toxicity mechanisms of nZnO in sediment-dwelling organisms are not well understood. We used metabolomics to assess the effects of nZnO-...
With the aim of maintaining or obtaining good environmental status in the Northeast Atlantic and northern Mediterranean Sea, the European Marine Strategy Framework Directive (EU-MSFD) came into force in 2008. All EU Member States (MS) have the task of assessing the current state of their adjacent waters to guarantee sustainable use of marine resour...
Zinc oxide nanoparticles are released into marine environments from industrial, medical and consumer uses sparking concerns about their potential ecotoxicological effects. Ecological hazard assessment of nZnO in marine ecosystems is hindered by the lack of understanding of the potential interactive effects of nZnO toxicity with other common abiotic...
Organisms can faster and more efficiently modify and increase their thermal tolerance after a brief exposure to sublethal thermal stress. This response is called "heat-hardening" as it leads to the generation of phenotypes with increased heat tolerance. The aim of the study was to investigate the impact of heat-hardening on the metabolomic profile...
Oxygen fluctuations might occur in mammalian tissues under physiological (e.g. at high altitudes) or pathological (e.g. ischemia–reperfusion) conditions. Mitochondria are the key target and potential amplifiers of hypoxia-reoxygenation (H-R) stress. Understanding the mitochondrial responses to H-R stress is important for identifying adaptive mechan...
Ocean acidification has become a major ecological and environmental problem in the world, whereas the impact mechanism of ocean acidification in marine bivalves is not fully understood. Cellular energy allocation (CEA) approach and high-coverage metabolomic techniques were used to investigate the acidification effects on the energy metabolism of mu...
Benthic species are exposed to oxygen fluctuations that can affect their performance and survival. Physiological effects and ecological consequences of fluctuating oxygen are not well understood in marine bioturbators such as the soft-shell clam Mya arenaria. We explored the effects of different oxygen regimes (21 days of exposure to constant hypox...
Organic UV filters have emerged as a new threat to marine organisms, but ecotoxicological studies have so far focused on only a few substances despite the chemical diversity of these synthetic sunscreen agents. Here we examined the responses of blue mussels Mytilus edulis to ensulizole, a non-lipophilic UV filter commonly found in the Baltic Sea. M...
Environmental disturbances influence bacterial community structure and functioning. To investigate the effect of environmental disturbance caused by changes in salinity on host-protected bacterial communities, we analyzed the microbiome within the gastrointestinal tract of Ampullaceana balthica in different salinities. A. balthica is a benthic gast...
The multiple biomarker approach is an effective tool to study the responses of aquatic organisms to contaminants. Summarizing multiple biomarker responses for facilitated communication of research findings has been aided by some integrated indices. Here we explain how existing integrated indices were built and why they turn out to be the wheel rein...
Sessile benthic species are submitted to fluctuating oxygen and temperature conditions that can negatively affect their energy and redox balance. Single effects of temperature and oxygen fluctuations have been extensively studied, but their combined effects are not yet well understood. We studied the bioenergetics and oxidative stress markers in th...
Intertidal and estuarine bivalves are adapted to fluctuating environmental conditions but the cellular adaptive mechanisms under combined stress scenarios are not well understood. The Hong Kong oysters Crassostrea hongkongensis experience periodic hypoxia/reoxygenation and salinity fluctuations during tidal cycles and extreme weather, which can neg...
Agrochemicals can adversely affect biodiversity, environment and human health, and commonly occur in mixtures with poorly characterized toxic mechanisms and health hazards. Here, we evaluated the individual and mixture toxicities of Roundup and chlorpyrifos in environmentally relevant concentrations to the zebrafish using molecular and biochemical...
The increasing production and use of nanoparticles (NPs) have raised concerns with regard to their environmental accumulation and toxicity in nontarget organisms. Aquatic ecosystems receive high inputs of nanopollutants from riverine and terrestrial sources, and thus aquatic organisms are potentially vulnerable to the off-target toxic effects of na...
Hypoxia is a major stressor for aquatic organisms, yet intertidal organisms like the oyster Crassostrea gigas are adapted to frequent oxygen fluctuations by metabolically adjusting to shifts in oxygen and substrate availability during hypoxia-reoxygenation (H/R). We investigated the effects of acute H/R stress (15 min at ∼0% O2, and 10 min reoxygen...
Hypoxia is common in marine environments and a major stressor for marine organisms inhabiting benthic and intertidal zones. Several studies have explored the responses of these organisms to hypoxic stress at the whole organism level with a focus on energy metabolism and mitochondrial response, but the instrinsic mitochondrial responses that support...
Temperature is an important abiotic factor that modulates all aspects of ectotherm physiology, including sensitivity to pollutants. Nanoparticles are emerging pollutants in coastal environments, and their potential to cause toxicity in marine organisms is a cause for concern. Here we studied the interactive effects of temperature (including seasona...
Oxygen fluctuations are common in marine waters, and hypoxia/reoxygenation (H/R) stress can negatively affect mitochondrial metabolism. The long-lived ocean quahog, Arctica islandica, is known for its hypoxia tolerance associated with metabolic rate depression, yet the mechanisms that sustain mitochondrial function during oxygen fluctuations are no...
Marine hypoxia caused by nutrient enrichment in coastal waters has become a global problem for decades, especially diel-cycling hypoxia that occurs frequently in the summer season. On the contrary, sudden rainstorms, and freshwater discharge make salinity in estuarine and coastal ecosystems variable, which often occurs with hypoxia. We found mass m...
Marine microplastics pollution is a major environmental concern in marine ecosystems worldwide, yet the biological impacts of microplastics on the coastal biota are not yet fully understood. We investigated the impact of suspended microplastics on the energy budget of the mussels Mytilus coruscus using the Cellular Energy Allocation (CEA) approach....
Ectotherms are exposed to a range of environmental temperatures and may face extremes beyond their upper thermal limits. Such temperature extremes can stimulate aerobic metabolism toward its maximum, a decline in aerobic substrate oxidation, and a parallel increase of anaerobic metabolism, combined with ROS generation and oxidative stress. Under th...
Increased production and release of ZnO nanoparticles (nZnO) has caused potential toxic effects on marine ecosystems and aquatic organisms. However, nZnO toxicity and its modulation by common environmental stressors including temperature are not yet fully understood. We examined the responses of immune cells (hemocytes) of the blue mussels (Mytilus...
Microplastics (MPs) have become a ubiquitous emerging pollutant in the global marine environment. The potential toxic effects of MPs and interactions of MP pollution with other stressors such as food limitation on marine organisms’ health are not yet well understood. This study investigated the effects of three-week exposure to different MPs and fo...
The global occurrence of organic UV filters in the marine environment is of increasing ecotoxicological concern. Here we assessed the toxicity of UV filters ensulizole and octocrylene in the blue mussels Mytilus edulis exposed to 10 or 100 μg l⁻¹ of octocrylene and ensulizole for two weeks. An integrated battery of biochemical and molecular biomark...
There are many toxicological studies on microplastics, but little is known about the effect of nanoplastics (NPs). Here, we evaluated the oxidative stress responses induced by NPs (10, 104 and 106 particles/l) in juvenile Larimichthys crocea during 14-d NPs exposure followed by a 7-d recovery. After exposure, the activities of antioxidant enzymes (...
Benthic animals inhabiting the edges of marine oxygen minimum zones (OMZ) are exposed to unpredictable large fluctuations of oxygen levels. Sessile organisms including bivalves must depend on physiological adaptations to withstand these conditions. However, as habitats are rather inaccessible, physiological adaptations of the OMZ margin inhabitants...
• In mosaic marine habitats, such as intertidal zones, ocean acidification (OA) is exacerbated by high variability of pH, temperature, and biological CO2 production. The nonlinear interactions among these drivers can be context‐specific and their effect on organisms in these habitats remains largely unknown, warranting further investigation.
• We w...
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect eco...
Engineered nanoparticles including ZnO nanoparticles (nZnO) are important emerging pollutants in aquatic ecosystems creating potential risks to coastal ecosystems and associated biota. The toxicity of nanoparticles and its interaction with the important environmental stressor (such as salinity variation) are not well understood in coastal organisms...
The global increase in cyanobacterial blooms poses environmental and health threats. Selected cyanobacterial strains reveal toxicities despite a lack of synthesis of known toxic metabolites, and the mechanisms of these toxicities are not well understood. Here we investigated the toxicity of non-cylindrospermopsin and non-microcystin producing Aphan...
Estuarine and coastal benthic organisms often experience fluctuations in oxygen levels that can negatively impact their mitochondrial function and aerobic metabolism. To study these impacts, we exposed a common sediment-dwelling bivalve, the soft-shell clam Mya arenaria , for 21 days to chronic hypoxia (P O2 ∼4.1 kPa), cyclic hypoxia (P O2 ∼12.7-1....
Coastal environments commonly experience strong oxygen fluctuations. Resulting hypoxia/reoxygenation stress can negatively affect mitochondrial functions, since oxygen deficiency impairs ATP generation, whereas a surge of oxygen causes mitochondrial damage by oxidative stress. Marine intertidal bivalves are adapted to fluctuating oxygen conditions,...
In mosaic marine habitats such as intertidal zones ocean acidification (OA) is exacerbated by high variability of pH, temperature, and biological CO 2 production. The non-linear interactions among these drivers can be context-specific and their effect on organisms in these habitats remains largely unknown, warranting further investigation.
We were...
Titanium dioxide nanoparticles (nano‐TiO2) are widely used in consumer products, raising environmental and health concerns. An overview of the toxic effects of nano‐TiO2 on human and environmental health is provided. A meta‐analysis is conducted to analyze the toxicity of nano‐TiO2 to the liver, circulatory system, and DNA in humans. To assess the...
Benthic organisms are subject to prolonged seasonal food limitation in the temperate shallow coastal waters that can cause energetic stress and affect their performance. Sediment-dwelling marine bivalves cope with prolonged food limitation by adjusting different physiological processes that might cause trade-offs between maintenance and other fitne...
Input of ZnO nanoparticles (nZnO) from multiple sources have raised concerns about the potential toxic effects on estuarine and coastal organisms. The toxicity of nZnO and its interaction with common abiotic stressors (such as elevated temperature) are not well understood in these organisms. Here, we examined the bioenergetics responses of the blue...
Fluctuations in the ambient oxygen concentrations represent a major stressor for aerobic organisms causing ATP deficiency during hypoxia and excessive production of reactive oxygen species during reoxygenation. Modulation of the mitochondrial electron transport system activity was proposed as a major mechanism involved in both the mitochondrial inj...
Allometric decline of mass-specific metabolic rate with increasing body size in organisms is a well-documented phenomenon. Despite a long history of research the mechanistic causes of metabolic scaling with body size remain under debate. Some hypotheses suggest that intrinsic factors such as allometry of cellular and mitochondrial metabolism may co...
In marine pollution monitoring, the biomarkers recorded in sentinel organisms are influenced by natural confounding factors that may jeopardise their interpretation. Among these confounding factors, little is known about the influence of sex along the annual reproductive cycle. The present investigation aims at contributing to understand how sex an...
Molluscan shell formation is a complex energy demanding process sensitive to the shifts in seawater CaCO3 saturation due to changes in salinity and pH. We studied the effects of salinity and pH on energy demand and enzyme activities of biomineralizing cells of the Pacific oyster (Crassostrea gigas) and the hard-shell clam (Mercenaria mercenaria). A...
Hypoxia is a major stressor in estuarine and coastal habitats leading to adverse effects in aquatic organisms. Estuarine bivalves such as the blue mussels Mytilus edulis and the Pacific oysters Crassostrea gigas can survive periodic oxygen deficiency but the molecular mechanisms that underlie cellular injury during hypoxia-reoxygenation are not wel...
Marine benthic invertebrates are frequently exposed to fluctuating oxygen levels resulting in hypoxia-reoxygenation (H/R) stress in the intertidal, estuarine and shallow coastal habitats. H/R stress can strongly affect the organisms' physiological performance due to the negative shifts in bioenergetics and redox balance. H/R stress commonly leads t...
Climate change challenges marine organisms by constraining their temperature-dependent scope for performance, fitness, and survival. According to the concept of Oxygen and Capacity Limited Thermal Tolerance (OCLTT), the overall thermal performance curve relates to an organism’s aerobic power budget, its overall aerobic scope for growth, exercise, r...
ZnO nanoparticles (nZnO) are released into the coastal environment from multiple sources, yet their toxicity to marine organisms is not well understood. We investigated the interactive effects of salinity (normal 15, low 5, and fluctuating 5-15) and nZnO (100 μg l-1) on innate immunity of the blue mussels Mytilus edulis from a brackish area of the...
• Human activities have altered not only the oxygen content of the coastal and open ocean, but also a variety of other physical, chemical and biological conditions that can have negative effects on physiological and ecological processes. As a result, marine systems are under intense and increasing pressure from multiple stressors.
• The combined ef...
Strongly seasonal environments pose challenges for performance and survival of animals, especially when resource abundance seasonally fluctuates. We investigated the seasonal variation of key metabolic biomarkers in the muscles of males from three species (Rhinella jimi, R. granulosa and Pleurodema diplolister) of anurans from the drastically seaso...
Eukaryotes are the outcome of an ancient symbiosis and as such, eukaryotic cells fundamentally possess two genomes. As a consequence, gene products encoded by both nuclear and mitochondrial genomes must interact in an intimate and precise fashion to enable aerobic respiration in eukaryotes. This genomic architecture of eukaryotes is proposed to nec...
To assess the influence of food type on biomarkers, mussels (Mytilus galloprovincialis) were maintained under laboratory conditions and fed using 4 different microalgae diets ad libitum for 1 week: (a) Isochrysis galbana; (b) Tetraselmis chuii; (c) a mixture of I. galbana and T. chuii; and (d) a commercial food (Microalgae Composed Diet, Acuinuga)....
Biofouling causes massive economical losses in the maritime sector creating an urgent need for effective and ecologically
non-harmful antifouling materials. Zinc oxide (ZnO) nanorod coatings show promise as an antifouling
material; however, the toxicity of ZnO nanorods to marine organisms is not known.We compared the toxicity
of suspended ZnO nanor...
Mitochondrial respiratory states and rates MitoEAGLE Task Group
Questions
Questions (2)
Dear colleagues,
I am trying to find an antibody to cytochrome c oxidase subunit 4 that crossreacts with oysters (Crassostrea gigas). Does anyone have an antibody they can share or suggestions to try?
I found this antibody in AbCam that crossreacts with vertebrates and Drosophila - perhaps someone has it and can share with us a few microliters to try out?
Anti-COX IV antibody [20E8C12] (ab14744)
Thanks!
Inna
Does anyone have a protocol or experience with a mitochondrial isolation kit to obtain good quality mitochondria for functional assays from small tissue samples (100-200 mg)? Any suggestions would be much appreciated!