Keywords: Model-driven engineering, performance testing, UML, MARTE, non-functional requirements.

Abstract: High-quality software needs to meet both functional and non-functional requirements. In some cases, software must accomplish specific performance requirements, but most of the time, only high-level performance requirements are available: it is up to the developer to decide what performance should be expected from each part of the system. In this context, the MARTE profile was proposed by the OMG to extend UML for model-driven development of real-time and embedded systems, focusing on assisting early performance analysis and scheduling. We propose using the MARTE profile to derive the performance requirements of each action in an UML activity diagram from the requirements of the containing activity and some local annotations. In this work, we show how the MARTE profile can be used for this purpose, define algorithms for computing the required throughput and time limit for each action and study their theoretical and empirical performance. The algorithms have been integrated into the Papyrus UML diagram editor and feed back their results into the original model. Running both algorithms on activities with 2^{25} paths requires 10 seconds on average.

1 INTRODUCTION

In addition to functional requirements, software must meet non-functional requirements. Among them, performance plays a major role in shaping the user experience. In some cases, meeting specific performance requirements is critical. This is the case not only in soft and hard real-time systems, but also in service-oriented architectures (Erl, 2008), where Service Level Agreements (SLAs) may have been signed between the provider and the consumer of a service.

For these reasons, there has been considerable work in estimating and measuring the performance of software systems (Woodside et al., 2007). Estimating the performance of a prospective system usually requires building high-level execution and architecture models and deriving a formalism from them, as in (Smith and Williams, 2003; Woodside et al., 2005), among many others. Measuring the performance of a system requires instrumenting it to produce the desired results, instead of building a model. These approaches complement each other: estimations can be performed early, before the actual system is implemented, while measurements are more accurate.

Measuring the performance of a system can be useful for many purposes: finding performance degradations over time, identifying load patterns over specific time periods and checking if the system is meeting its performance requirements. Obviously, this last use case requires that the performance requirements have been previously defined. However, most of the time, detailed performance requirements are not provided (Weyuker and Vokolos, 2000). Developers may have to meet high-level performance requirements without a clear view of what performance is required in each part of the system.

In this work we propose a model-driven approach to deriving the low-level performance requirements of a system from high-level performance requirements. The user creates UML models annotated with a small subset of the MARTE profile (OMG, 2009) and runs our inference algorithms to derive the low-level requirements, feeding them back into the model.

The rest of this paper is structured as follows: in Section 2, we introduce the MARTE profile for UML, describe the subset used in our work and show our
THE MARTE PROFILE

UML has been widely adopted as a general purpose modelling language for describing software systems. However, UML itself does not include support for modelling scheduling, performance or time aspects, among other non-functional aspects.

For this reason, the Object Management Group proposed in 2005 the SPT (Schedulability, Performance and Time) profile (OMG, 2005), which extended UML with a set of stereotypes describing scenarios that various analysis techniques could take as inputs. In 2008, OMG proposed the QoS/FT (Quality of Service and Fault Tolerance Characteristics and Mechanisms) profile (OMG, 2008), with a broader scope than SPT and a more flexible approach: users formally defined their own quality of service vocabularies and used them to annotate their models.

When UML 2.0 was published, OMG saw the need to update the SPT profile and harmonise it with other new concepts. This resulted in the MARTE (Modelling and Analysis of Real-Time and Embedded Systems) profile (OMG, 2009), published in 2009. Like the QoS/FT profile, the MARTE profile defines a general framework for describing quality of service aspects. The MARTE profile uses this framework to define a set of pre-made UML stereotypes, as those in the SPT profile.

In this section, we will introduce the parts of the MARTE profile required for our algorithms and show an example model, using its predefined stereotypes.

2.1 Selected Subset

The MARTE specification provides support for model-based analysis and design of real-time and embedded systems. Among its sub-profiles, we are interested in the GQAM (Generic Quantitative Analysis Modelling) profile. The GQAM domain model describes the concepts of the GQAM profile using the generic non-functional property modelling framework in MARTE.

Figure 1 shows an UML class diagram with the subset of MARTE used by our inference algorithms. The stereotypes from the GQAM profile are prefixed with “Ga” (standing for “generic analysis”), and the non-functional property types from the normative MARTE model library are prefixed with “NFP”. For the sake of brevity, unused attributes have been omitted. The stereotype and attributes used are:

- **GaScenario**
 - hostDemand: zero or more requirements on the CPU time required.
 - throughput: zero or more requirements on the requests which should be handled per second.
 - respT: zero or more requirements on the maximum response time when handling throughput requests per second.

- **GaStep**
 - prob: probability of traversing a control flow.
 - rep: number of times the activity is repeated.

- **GaAnalysisContext**
 - contextParams contains a list of context parameters. These are variables which can be used to parametrise the annotations using VSL (Value Specification Language) expressions. VSL is a textual language defined in MARTE.

All the non-functional property types in the normative MARTE library share several traits, as they inherit from NFP_CommonType. Values can be specified as literals in the value attribute, or as VSL expressions in the expr attribute. The source of a requirement (estimated, measured, calculated or required) is described by the source attribute.

NFP_CommonType is a VSL tuple type. In this paper we will use the notation (key1=value1,...,keyN=valueN) for VSL tuples. For instance, a NFP_Duration of 5 milliseconds required by the client is written as (value=5, unit=ms, source=req).

2.2 Usage

In the previous section, we listed the elements of MARTE used by our inference algorithms. In this section, we will describe how they are to be used.

Activities must have the «GaScenario» and «GaAnalysisContext» stereotypes. «GaScenario» indicates the expected response time (respT) and throughput (throughput) for the entire activity. «GaAnalysisContext» only lists the context parameters (contextParams) which represent the slack per unit of weight assigned to each action in the activity.

Control flows leaving decision nodes are annotated with the «GaStep» stereotype, specifying the
probability \((prob)\) of traversing one of the conditional branches. The probabilities are estimated by the user.

Actions are annotated with the «GaStep» stereotype as well. The user must indicate their expected number of repetitions \((rep)\) and how the available time is to be distributed among them. \(hostDemand\) must contain a tuple with a VSL expression matching \(M+\hat{W}*swI\): \(M \geq 0\) is its minimum time limit, \(W \geq 0\) is its weight and \(swI\) is its context parameter. The time limit inference algorithm will set \(swI\) to the slack per unit of weight assigned to that action.

After the algorithms are done, results are fed back into the activity diagram, replacing those from previous runs. Actions are annotated with the inferred time limits in \(hostDemand\), and with the inferred throughputs in \(throughput\). Context parameters are set to the slack per unit of weight assigned to their actions.

2.3 Running Example

Figure 2 shows the UML activity diagram which we will use as running example for the rest of this paper. Its activity, “Handle Order”, describes how to process a specific order. Starting from the initial node:

1. The order is evaluated.
2. If rejected, close the order: we are done.
3. If accepted, fork into two execution branches:
 a. Create the shipping order and send it to the shipping partner.
 b. Create the invoice, send it to the customer and receive the payment.
4. Once these two branches are done, close the order.

According to the MARTE annotations, the activity should complete its execution in one second when receiving one request per second. Most of the actions have no minimum time limit and weight equal to 1, except for “Evaluate Order”, whose CPU time is fixed by the modeller to 0.4 seconds. All actions are run once, to simplify the discussion. The user has estimated that 80% of all orders are accepted.

3 INFEERENCE ALGORITHMS

In the previous section, we explained how we used the MARTE profile for our algorithms and described the running example for this paper (Figure 2). In this section we will outline the algorithms themselves. The first algorithm computes the expected throughput of each action, and the second algorithm computes the time limit for each action. They improve upon those in (García-Domínguez et al., 2010).

Both require that activities do not contain cycles, that they only have one initial node, and that all their actions are reachable from it. Let us define some terms:

- \(s(e)\) and \(g(e)\) are the source and target vertex of the edge \(e\), respectively.
- \(i(n)\) and \(o(n)\) are the incoming and outgoing edges of the node \(n\), respectively.
- \(L > 0\) is the expected response time (the global time limit) of the selected activity, in seconds.
3.1 Throughput Inference

We will define T as a function which takes a node or edge and produces its expected throughput. For a control flow e, $T(e) = P(e)T(s(e))$, where $P(e)$ is the probability of traversing e.

For a node n, the actual formula depends on its type. For an initial node, $T(n)$ is the expected throughput of the activity. For a join node, $T(n) = \min_{e\in i(n)} T(e)$, since requests in the least performing branch set the pace. For a merge node, $T(n) = \sum_{e\in i(n)} T(e)$, as requests from mutually exclusive branches are reunited. For any other type of node, $T(n) = T(e_1)$, where $e_1 \in i(n)$ is its only incoming edge.

Using these formulas, computing T(Create Invoice) for the example shown in Figure 2 requires walking back to the initial node, finding an edge with a probability of 0.8, no merge nodes and an initial node receiving 1 request per second. Therefore, T(Create Invoice) = $pL = 0.8$.

3.2 Time Limit Inference

Inferring the time limits of each action inside an activity is considerably more complex than inferring their required throughputs. After more definitions, we will describe the algorithm and some key optimisations, and then apply it to the running example in Figure 2.

3.2.1 Preliminaries

The algorithm adds a tuple of the form (value=$t(n)$, unit=s, source=calc) to the attribute hostDemand of each action node n, where $t(n)$ is its inferred time limit. The algorithm also updates the appropriate context parameter with the final slack per unit of weight distributed to n.

Let I be the initial node of the activity being annotated and let $P_<(n)$ contain all paths from the node n to a final node. $t(n)$ must meet the following constraints:

- For every action n, $t(n) \geq m(n)$: the assigned time limit must be greater or equal than the minimum

- $c(n) = (m(n), w(n)) \in C(L)$ is the constraint of the node n, where $m(n)$ is the minimum time limit of n and $w(n)$ is its weight (see Section 2.2). The set of all valid constraints with L as global time limit is $C(L) = \{(m, w) | 0 \leq m \leq L, w \geq 0\}$.

- Each path p also has a constraint, $c(p) = (m(p), w(p)) \in C(L)$, with $m(p) = \sum_{e\in p} m(n)$ and $w(p) = \sum_{e\in p} w(n)$.

- A node n is run $R(n) \geq 1$ times (once by default).
The algorithm is a recursive function which takes a node \(n \) and the time it receives, \(r(n) \). Initially, \(n = I \) and \(r(n) = L \), the global time limit. The algorithm follows these steps:

1. Select two paths from \(P_S(n) \):
 - \(p_{ms}(n) \) has the minimum \(S_{w}(p) \) when \(r(n) \) seconds are available. In case of a tie, pick the path with the maximum \(w(p) \).
 - \(p_{Mm}(n) \) has the maximum \(m(p) \).
2. If \(s(p_{Mm}(n)) < 0 \), the minimum time limits cannot be satisfied: abort.
3. If \(s(p_{ms}(n)) = 0 \) and \(w(p_{ms}(n)) > 0 \), there is no slack in a path with a non-zero weight: abort.
4. Set the time limit of \(n, t(n), \) to \(m(n) + S_w(p_{ms}(n))w(n) \). The remaining time will be \(T_R = T - R(n)t(n) \) seconds. Mark \(k \) as visited.
5. Sort each edge \(e \in o(n) \) in ascending order of \(S_w(p_{ms}(g(e))) \) with \(r(g(e)) = T_R \), the minimum slack per unit of weight when \(T_R \) seconds are available for all paths that start at the target of \(e \).
6. Visit each edge in \(o(n) \):
 - (a) If the target of \(e \) has been visited before, check if the time which was sent to it, \(T'_R \), is strictly less than \(T_R \), the time which would have been sent through \(e \).
 - (b) If the target of \(e \) has not been visited before, invoke this algorithm recursively, setting \(n \) to the target of \(e \) and \(r(n) = T_R \).
7. Set the context parameter related to \(n \) to 0 if \(w(n) = 0 \), and to \((r(n) - m(n))/w(n)\) otherwise. This is the effective slack per unit of weight distributed to \(n \), considering reused surplus times.

3.2.3 Key Optimisations

The algorithm above uses several optimisations to improve its performance. First of all, each path \(p \) is not represented by its sequence of nodes, but by its constraint \(c(p) = (m(p), w(p)) \), saving much memory.

To select \(p_{Mm}(n) \) at each node we need to know the maximum \(m(p) \) for each path \(p \in P_S(n) \), which we will note as \(m(p_{Mm}(n)) \). We can compute it in advance using (1). As it is recursive, we can evaluate (1) incrementally, starting from the final nodes (for which \(m(p_{Mm}(n)) = 0 \)) and going back up to the initial node in reverse topological order:

\[
m(p_{Mm}(n)) = R(n)m(n) + \max\{m(p_{Mm}(g(e))) | e \in o(n)\} \tag{1}
\]

To select \(p_{ms}(n) \) at each node we need to know the strictest path starting from it. We cannot compute it in advance, as it depends on the time received by the node, \(r(n) \), which is not known \textit{a priori}. Instead, we remove redundant paths from \(P_S(n) \). We will call this reduced set \(P_S^e(n) \). A path \(p_a \in P_S^e(n) \) is removed when it is said to be \textit{always less or just as strict} than some other path \(p_b \in P_S(n) \), independently of the time received by \(n \) or the common ancestors of \(p_a \) and \(p_b \). We denote this by \(c(p_a) \leq_{S(L)} c(p_b) \), and define it formally as follows:

\[
(a, b) \leq_{S(L)} (c, d) \equiv \\
\forall t \in [0, L] \forall x \in [0, L] \forall y > 0 \\
\quad a + x \leq t \land c + x \leq t \land \\
\quad b + y > 0 \land d + y > 0 \Rightarrow \\
\quad t - (a + x) \geq t - (c + x) \quad \frac{b + y}{d + y} \geq \frac{a}{d} \tag{2}
\]

We can simplify (2) into:

\[
a \leq c \land (b \land d \lor a \land b \lor d \land (b - d)L \leq bc - ad) \tag{3}
\]
It can be proved that this defines a partial order (a reflexive, antisymmetric, and transitive binary relation) on \(C(L) \). The proof is omitted for the sake of brevity.

Like \(m(p_{Mon}(n)) \), \(P_S'(n) \) can also be computed incrementally by traversing the graph in reverse topological order. Let \(n_i \) be a child of \(n \) and \(p_0 \) and \(p_b \) be two paths in \(P_S(n_i) \), so \(c(p_0) \preceq_{SL}(L) c(p_b) \). By definition, \(p_b \) is less or just as strict as \(p_b \) regardless of their common ancestors, so \((n) + p_0 \) will also be discarded from \(P_S'(n) \) over \((n) + p_b \). This means that instead of comparing every path in \(P_S(n) \) for every node \(n \), we can build \(P_S'(n) \) by adding \(n \) at the beginning of the paths in \(P_S(n_i) \), for every child \(n_i \) of \(n \), and then filtering the redundant paths using \(\preceq_{SL}(L) \).

Let \(\text{max}_{-SL} S \) select the paths in \(S \) which are not always less or just as strict than any other (maximal elements according to \(\preceq_{SL}(L) \)). We define \(P_S'(n) \) as:

\[
P_S'(n) = \max \{ (R(n)m(n) + M, R(n)w(n) + W) \mid e \in o(n), (M, W) \in P_S'(g(e)) \}
\]

(4)

Note that \(P_S(f) = (0, 0) \), where \(f \) is a final node.

3.2.4 Example

Previously, we defined the algorithm and described the key optimisations performed. We will now apply the algorithm to the example in Figure 2, producing the diagram shown in Figure 3. To save space, we will shorten action names to their initials: “Evaluate Order” will be simply “EO”.

First, \(m(p_{Mon}(\text{CO})) \) and \(P_S'(n) \) are precomputed:

- \(m(p_{Mon}(\text{CO})) = 0, P_S'(\text{CO}) = \{(0, 1)\} \).
- \(m(p_{Mon}(\text{PP})) = 0, P_S'(\text{PP}) = \{(0, 2)\} \).
- \(m(p_{Mon}(\text{CI})) = 0, P_S'(\text{CI}) = \{(0, 3)\} \).
- \(m(p_{Mon}(\text{SO})) = 0, P_S'(\text{SO}) = \{(0, 2)\} \).
- \(m(p_{Mon}(\text{EO})) = 0.4, P_S'(\text{EO}) = \{(0.4, 3)\} \).

After that, the algorithm sends the available second \((L = 1)\) into the initial node and then into EO. EO takes 0.4 seconds and sends the remaining 0.6 seconds through the decision node. The next action in the strictest path is CI, which takes 0.2 seconds and sends 0.4 seconds into PP. PP takes another 0.2 seconds and sends the remaining 0.2 seconds to CO.

Once the strictest path is done, we back up and proceed with the next strictest path, sending 0.4 seconds into SO. At first, SO takes only 0.3 seconds, but since CO received only 0.2 seconds before, we reuse the extra 0.1 seconds into SO. The final time limit of SO is 0.4 seconds. We back up and continue with the empty branch for rejected orders, finding nothing to annotate: we are done.

As for the context parameters: \(sw_{EO} \) is set to 0, as \(w(\text{EO}) = 0 \), \(sw_{CI}, sw_{PP} \) and \(sw_{CO} \) are set to 0.2. \(sw_{SO} \) is set to 0.4: note that the initial slack per unit of weight for SO was 0.3, but after reusing the extra 0.1 seconds, it changed to 0.4.

4 EVALUATION

The algorithms have been implemented using the Epsilon Object Language (EOL) (Kolovos et al., 2010) and integrated into the Papyrus graphical UML editors (Eclipse Foundation, 2011). Code is available at (García-Domínguez, 2011). In this section we will analyse their restrictions and performance.

4.1 Restrictions

The inference algorithms are limited in several ways. The most important restriction is that the graph formed by the nodes of the activity must be acyclic, which hinders the modelling of repetitive structures. We have partially addressed this issue by using the attribute \(\text{rep} \) of «GaStep» to indicate the expected number of repetitions of an action.

At first glance, the algorithm still requires to annotate each action with some knowledge from the model, so it would appear not to save much effort. However, the information annotated by the user on each activity only depends on the action (minimum time and weight) or control flow (probability) themselves, instead of all the paths they are part of. In addition, any sufficiently advanced tool can add the missing annotations with the default values set by the user. The time limit inference algorithm also ensures that the annotations are consistent with each other.

When the algorithms do not take into account the fact that the same behaviour might be reused in several places: each action is assumed to be different from the rest. A simple and conservative solution would be simply taking the strictest constraint over all the occurrences of that behaviour. Integrating the “same behaviour” constraint would be interesting, but it might considerably increase the cost of the algorithm.

4.2 Theoretical Performance

Having discussed the limitations of the algorithms, we will now examine their theoretical performance.

Let us consider an activity with \(n \) nodes and \(e \in O(n^2) \) edges, with \(O(n) \) incoming edges in each node. The throughput inference algorithm is easy to analyse: by going back from the final nodes to the initial nodes, each node and edge in the activity needs to
be visited exactly once. The throughput for the $O(n)$ join and merge nodes requires evaluating an expression in constant time over their $O(n)$ incoming edges. However, throughputs for the rest of the $O(n + e)$ nodes and edges can be computed in constant time. Therefore, a conservative upper bound for the running time of the throughput inference algorithm is $O(n)O(n) + O(n + e)O(1) = O(n^2)$. The running time does not depend on the values of the annotations.

The time limit inference algorithm is harder to analyse. Its performance depends both on the structure of the graph and the values of the annotations. For this reason, we will use a specific kind of activity to frame the analysis, which we call a fork-join activity. As shown in Figure 4, it has an initial node, I, followed by a sequence of f “levels”. Each level has a fork node with two branches with a single action, joined before the next level. The activity has $n = 2 + 4f \in \Theta(f)$ nodes and $e = 1 + 5f \in \Theta(f)$ edges in total, and there are 2^f paths from the initial node to the final node. These activities are inexpensive to generate, as the number of nodes and edges grows linearly. At the same time, they can represent the worst case of the algorithm, since the number of paths from the initial node to the final node grows exponentially.

Having defined the structure of the activities, let us analyse the algorithm by parts in the worst case:

- Computing $m(p_{\text{max}}(n))$ in advance for each node always takes $O(1)O(n) = O(n)$ operations, as it requires evaluating an arithmetic expression over the $O(1)$ incoming edges of each of the n nodes.
- Computing $P_3(g)$ in advance for each edge is actually the most expensive part of the algorithm: in the worst case, $O(2^f)$ paths need to be considered at every node and selecting the strictest ones takes $O(4^f)$ operations per node and $O(n4^f)$ in total.

The last step depends on the number of elements of $P_3(g)$ for each edge e in the graph: in the worst case, $|P_3(g)| = |P_3(g)|$ for every node and $O(n4^f)$ operations are required.

Joining the three parts of the algorithm yields a time of $O(n4^f)$ operations in the worst case for a fork-join activity. The absolute worst case is very expensive but also very rare, as shown in the next section.

4.3 Empirical Performance

Previously, we concluded that the throughput algorithm had polynomial cost regardless of the anno-

Figure 3: Running example after inferring time limits

Figure 4: Example fork-join activity with f levels
tions, and that the time limit inference algorithm could reach exponential cost, depending on the annotations. In this section we will study how close are the average times to this absolute worst case.

Our first step was to measure the performance of the algorithms using fork-join activities with 1 to 25 levels. We ran the algorithms on these activities requiring 1s response time when 1 request was received per second. The actions were annotated in two ways: either using a fixed minimum time limit and weight (0 and 1, respectively) or using uniformly distributed random values, so the minimum time limits were consistent and weights were between 0 and 1. To simplify the analysis, each action had rep set to 1.

The results are shown in Figures 5 and 6. Figure 5 confirms that the time required for the throughput inference algorithm grows linearly, regardless of the annotations. Figure 6 suggests that the average times for fixed and random annotations are quite far from the $O(n^{4f})$ absolute worst case.

It is interesting to note that when the minimum time limit is equal to 0 in all actions, the partial order in (3) can be simplified to $a \leq c$, which is a total order. Therefore, these fixed annotations are instances of the best case of the time limit inference algorithm, in which all paths are comparable. As shown in Figure 6, the time limit inference algorithm required 400 milliseconds on average to annotate a fork-join activity with fixed annotations and 25 levels.

On the other hand, using uniformly distributed random annotations resulted in much larger running times, with 10 seconds required on average to annotate a fork-join activity with 25 levels. Nevertheless, Figure 6 does not grow as quickly as would be expected from the $O(n^{4f})$ absolute worst case.

This suggests that removing redundant paths reduces the impact of the absolute worst case. However, its effectiveness depends on the relative magnitude of the minimum time limits and weights with regards to the global time limit L. The left operand of $(b - d)L < bc - ad$, part of (3), grows as L increases and reduces the number of comparable pairs of paths.

We performed an additional study to clarify how common the absolute worst case was and study its relationship with L. We sampled with $L = 0.5s$ and $L = 1.5s$ the space of all fork-join activities with 3 levels which contained a 2-level fork-join with 4 incomparable paths. Minimum time limits for the actions
ranged from 0 to \(\min(L, 1) \), in steps of 0.1s. Weights ranged from 0 to 10, in steps of 1 unit. Inconsistent graphs were discarded. For each activity, we measured the number of incomparable paths at the initial node (“top-level paths”); in a 3-level fork-join activity, there can be between 1 and \(2^3 = 8 \) such paths.

Evaluating \(1.99 \times 10^6 \) fork-join activities for \(L = 0.5s \) and \(7.16 \times 10^9 \) for \(L = 1.5s \) produced the results in Figure 7. It is interesting to note that for \(L = 1.5s \), while 31.842\% of all 1-level fork-join activities were in the worst case, only 2.492\% 2-level fork-join activities were in the worst case. With 3 levels, no fork-join activities were in the worst case with \(L = 0.5s \), and only 0.047\% were in the worst case with \(L = 1.5s \). This suggests that the absolute worst case becomes harder to find as graphs become more complex, explaining why average times did not grow exponentially in Figure 6. Additionally, it indicates that the worst case becomes more common as \(L \) grows in relation to the values used in the annotations.

5 RELATED WORK

Obtaining the desired level of performance has been a regular concern since the development of the first computer systems, as shown by the early survey in (Lucas, 1971). There are basically two approaches: evaluating a model of a prospective system, or measuring the performance of an implemented system. These approaches are complementary: using analytic models reduces the risk of implementing an inefficient software architecture, which is expensive to rework (Smith and Williams, 2003). When the system is implemented, measuring its performance is more accurate, and can detect not only design issues, but also bad coding practices and unexpected workloads or platform issues. Our work adapts the MARTE profile, a standard notation used for modeling non-functional requirements and creating analytic models from them, to generate the performance requirements for testing each part of the system.

Using analytic models requires highly specialised knowledge and notations. Widespread adoption of UML as a de facto standard notation has prompted researchers to derive their analytic models from UML models, first with an ad hoc annotations and later consolidating on the standard extensions to UML, such as QoS/FT (OMG, 2008) or SPT (OMG, 2005). The survey in (Woodside, 2007) reviews many of the approaches before MARTE replaced SPT in 2009. Since then, MARTE has been used for many purposes, such as deriving process algebra specifications (Tribastone and Gilmore, 2008) and extended Petri networks (Yang et al., 2010) or detecting data races (Shousha et al., 2009), among others. We selected MARTE as it is based on UML, it is being actively used and offers both pre-made annotations (like SPT) and a generic framework (like QoS/FT).

Bernardi et al. have defined the Dependability and Analysis Modeling sub-profile for MARTE (Bernardi et al., 2009). It has been combined with the standard GQAM and PAM sub-profiles of MARTE to evaluate the risk that a soft real-time system does not meet its time limits (Bernardi et al., 2010). Our work also handles time limits, but our focus is different: we help the tester “fill in the blanks” using the available partial information. We use a model of the system to generate some of the parameters of the performance test cases.

Alhaj and Petriu generated intermediate performance models from a set of UML diagrams annotated with the MARTE profile, describing a service-oriented architecture (Alhaj and Petriu, 2010): UML activity diagrams model the workflows, UML component diagrams represent the architecture and UML sequence diagrams detail the behaviour of each action in the workflows. In our previous work, we similarly modeled workflows in a service-oriented architecture using an ad hoc notation based on UML activity diagrams (García-Domínguez et al., 2010). However, our approach does not model the resources used by the system: we assume tests are performed in an environment which mimics the production environment.

6 CONCLUSIONS AND FUTURE WORK

Software needs to meet its performance requirements in addition to its functional requirements. To achieve this goal, several approaches can be combined: the expected performance can be estimated using an early model, or the actual performance of the system can be measured. Currently, the research community is converging on the UML MARTE profile (OMG, 2009) as a standard notation to drive early performance and scheduling analysis. On the other hand, performance testing requires expectations to be defined for each part of the system. However, these are usually only available for high-level components: developers need to manually translate these to lower-level requirements for the smaller subcomponents.

In this work, we have adapted and improved the algorithms in (García-Domínguez et al., 2010) to operate on MARTE-annotated UML activity diagrams, inferring performance requirements from a global annotation and some local ones. One algorithm infers throughputs and has polynomial cost in relation to the...
number of nodes of the activity. The other infers time limits and its worst case has exponential cost, as it may need to enumerate all paths from the initial node to the final nodes. However, further analysis of the average case suggests that this worst case is very rare, and becomes even harder to find as graphs become more complex. This is because the time limit inference algorithm discards redundant subpaths using a partial order relation.

For the next versions of the algorithms, we intend to handle nested activities, so the user can describe the system as a hierarchy of components and infer time limits and throughputs in a top-down approach. Handling actions which are repeated in several places would be interesting, but the cost of the algorithms might increase. After improving the algorithms, our main priority is to assist in the generation of test cases for an existing tool, transforming the MARTE-annotated UML model into text. One approach is to generate performance tests which wrap existing functional tests. Another approach is to partially generate test plans for existing performance testing tools.

ACKNOWLEDGEMENTS

This work was partly funded by the research scholarship PU-EPIF-FPI-C 2010-065 of the University of Cádiz.

REFERENCES

