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The neural correlates of speech monitoring overlap with neural correlates of speech comprehension and
production. However, it is unclear how these correlates are organized within functional connectivity
networks, and how these networks interact to subserve speech monitoring. We applied spatial and temporal
independent component analysis (sICA and tICA) to a functional magnetic resonance imaging (fMRI)
experiment involving overt speech production, comprehension and monitoring. SICA and tICA respectively
decompose fMRI data into spatial and temporal components that can be interpreted as distributed estimates
of functional connectivity and concurrent temporal dynamics in one or more regions of fMRI activity. Using
sICA we found multiple connectivity components that were associated with speech perception (auditory and
left fronto-temporal components) and production (bilateral central sulcus and default-mode components),
but not with speech monitoring. In order to further investigate if speech monitoring could be mapped in the
auditory cortex as a unique temporal process, we applied tICA to voxels of the sICA auditory component.
Amongst the temporal components we found a single, unique component that matched the speech
monitoring temporal pattern. We used this temporal component as a new predictor for whole-brain activity
and found that it correlated positively with bilateral auditory cortex, and negatively with the supplementary
motor area (SMA). Psychophysiological interaction analysis of task and activity in bilateral auditory cortex
and SMA showed that functional connectivity changed with task conditions. These results suggest that
speech monitoring entails a dynamic coupling between different functional networks. Furthermore, we
demonstrate that overt speech comprises multiple networks that are associated with specific speech-related
processes. We conclude that the sequential combination of sICA and tICA is a powerful approach for the
analysis of complex, overt speech tasks.
© 2009 Elsevier Inc. All rights reserved.
Introduction

Speakers continuously monitor their speech during production,
which suggests that speech monitoring is an integral part of the
speech production process (Levelt et al., 1999; Postma, 2000). During
speaking the speaker is effectively presented with auditory feedback
of the overt speech, which may be processed by the speech
comprehension system to serve the monitoring process. Evidence
for this concept of speech monitoring comes from studies in which
speech feedback was absent or distorted during speaking, which
resulted in impaired monitoring and control of speech (Fu et al., 2006;
Lane and Tranel, 1971; Postma and Kolk, 1992). Thus, speech
production, comprehension and monitoring are strongly intertwined
processes that could be largely underpinned by overlapping neural
networks. However, it remains unclear to what degree speech
monitoring is embedded within neural substrates of speech produc-
(V. van de Ven).

l rights reserved.
tion and comprehension. In this study, we investigated how spatially
distributed speech-related brain functional networks contributed to
different speech tasks.

Several neuroimaging studies showed that monitoring of one's
own speech involves areas of the superior temporal gyrus (STG) (e.g.,
Hashimoto and Sakai, 2003; McGuire et al., 1996). These studies
manipulated speech monitoring by altering the overt speech feedback
to the participants, for example, by altering the pitch of on-line speech
feedback (McGuire et al., 1996; Toyomura et al., 2007), or by delaying
the speech feedback with respect to the moment of speaking
(Hashimoto and Sakai, 2003). Altered feedback made the labeling of
the perceived speech as one's own more difficult (Fu et al., 2006;
McGuire et al., 1996). This effect was associated with increased
hemodynamic responses during altered feedback conditions, in
comparison to unaltered speech feedback. In addition, a recent
study showed that brain activity during the on-line monitoring of
one's own (unaltered) speech feedback is decreased compared to
masked feedback, as well as passive speech perception (Christoffels
et al., 2007). These results correspond to theoretical models that
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suggest that sensory areas may be inhibited during motor acts in
order to cancel out the resulting self-generated sensory effects (e.g.,
Blakemore et al., 1998; Paus et al., 1996; Wolpert et al., 1995). More
specifically, these ‘forward models’ of sensory inhibition by motor
acts predict that the amount of overlap between the expected
consequences of articulation and actual auditory feedback deter-
mines the amount of attenuation of sensory cortex activation. Several
neurophysiological findings in the monkey (Eliades and Wang, 2003,
2005), electroencephalography (Ford et al., 2002) and microelectric
recordings in humans (Creutzfeldt et al., 1989) provide empirical
support for the predictions of the forward models.

In addition, monitoring or labeling of perceived speech as one's
ownmay also be associated withmedial frontal and parietal areas that
have been associated with a default-mode network (DMN) of brain
activity (Raichle et al., 2001). The DMN has recently received
increased interest, because it may be associated with an intrinsic
organization of functional networks in the brain. The DMN commonly
shows deactivation during task performance, in comparison to a
baseline. A few studies reported changes in activity in the posterior
cingulate cortex and precuneus during speech processing (Binder et
al., 1997; Jardri et al., 2007), inwhich these areas may contribute more
to self-generated, internal speech than to passive listening (Jardri et
al., 2007). In addition, default-mode areas have been associated with
perspective-taking (Lindner et al., 2008) and self-referential proces-
sing (Beer, 2007). Thus, with respect to speech processing, the DMN
may be more associated with agency and self-referential aspects of
speech, rather than the passive perception of speech. Moreover, the
degree of deactivation may vary with the extent to which speech
monitoring is recruited during on-line, overt speech production.

The neural correlates of on-line speech monitoring have not been
investigated often on a system level (cf, Tourville et al., 2008). Such an
analysis may not only reveal which areas form a functional network
that is associated with speech monitoring, but may also reveal if and
how such a network is embedded within functional networks of
speech production and comprehension. To address these questions,
we investigated the functional brain connectivity during an overt
speech production and monitoring task of a previously published
functional magnetic resonance imaging (fMRI) study (Christoffels et
al., 2007). More specifically, we attempted to isolate the speech
monitoring network from other speech-related processing networks.
We used spatial independent component analysis (sICA) (McKeown
et al., 1998) to decompose whole-brain blood oxygenation level-
dependent (BOLD) signals into spatial networks, and investigated the
temporal contribution of these components to the functional data.
Although the cognitive subtraction method (typically a mass-
univariate, voxel-by-voxel analysis) has been quite successful in
localizing task-related activity of a number of core regions involved in
speech monitoring (Christoffels et al., 2007; Toyomura et al., 2007), it
is not suitable to study brain dynamics of speech monitoring on a
network level, which requires a multivariate analysis to quantify
relations between voxel time courses. In contrast, ICA provides a way
to investigate how different networks support different aspects of the
complex task of speech production. In general, ICA is a multivariate
and data-driven method that assumes that the observed data is a
linearly weighted combination of a set of statistically independent
sources (Comon, 1994). ICA decomposes a dataset into components
(source estimates) by maximizing their mutual statistical indepen-
dence. In practice, both the sources and the weighting parameters are
unknown and need to be estimated from the observed data. In fMRI
research mostly spatial ICA has been used, because typically the
number of voxels is much larger than the number of scans (Calhoun et
al., 2001; McKeown et al., 1998). This means that components are
characterized by maximized independence in the spatial domain. As a
consequence, sICA provides estimates of new basis functions
(component time courses of activity) that are not subjected to the
independence criterion, but are left free to correlate. Thus, sICA is able
to estimate multiple spatial networks of functional connectivity in a
single analysis, without the requirement of a priori specification of an
ideal hemodynamic signal.

Our spatial ICA results showed that several distinct networks of
cortical and subcortical areas contributed in unique ways to the
processing of the overt speech tasks (see below). However, we did not
obtain a spatial component that exclusively showed a temporal profile
characteristic of speech monitoring, that is, attenuated response
during speech with normal feedback (Christoffels et al., 2007). One
explanation why this was the case may be that the spatial
independence criterion was not optimal to identify the speech
monitoring signal. We therefore applied temporal ICA (tICA) (Biswal
and Ulmer, 1999; Calhoun et al., 2001; Seifritz et al., 2002) to a
restricted part of the data by selecting voxels of the spatial auditory
component. This procedure revealed a single and unique temporal
component that exclusively represented the speech monitoring
temporal pattern sensu Christoffels et al. (2007). Further confirmation
that the temporal component was associated with speech monitoring
was obtained by regression analysis of the temporal component to the
whole-brain functional imaging data, which showed the strongest
contributions of bilateral Heschl's sulcus to the temporal component.
Furthermore, the temporal component was strongly negatively
correlated with activity in the supplementary motor area (SMA).
Consecutive post-hoc psychophysiological interaction analysis (PPI)
(Friston et al., 1997; Kim and Horwitz, 2008) showed that functional
connectivity between SMA and bilateral Heschl's sulcus changed with
task conditions. These findings demonstrated that the temporal
component showed a coupling between different spatial networks,
which changed with task conditions.

In the following sections, we first describe the methods and results
of spatial ICA of the functional time series, and then describe the
methods and results of temporal ICA of the spatially restricted set of
time series. The interpretations and inferences of the sICA and tICA
results are considered in the discussion section.

Methods

Participants

Data of twelve participants from a previous overt speech fMRI
study was used (Christoffels et al., 2007). The mean (SD) age of the
participants was 23.4 (1.4), and all were right handed. All participants
were native Dutch speakers and had no history of hearing or language
related problems. All participants gave their written informed consent
before participating in the study. The study was approved by the
ethical committee of the University Medical Center of Nijmegen, The
Netherlands.

Experimental procedure

The experimental procedure has been described previously
(Christoffels et al., 2007) and is briefly reported here. In a blocked
design, five different task conditions were presented, alternating with
a fixation condition: 1) Overt picture naming [PNvoice], 2) Overt
picture naming with added pink noise [PNnoise], 3) Covert picture
naming [PNcovert], 4) Listening to previously recorded own speech
[LISvoice] and 5) Listening to pink noise [LISnoise]. In the overt picture
naming conditions participants were required to name presented
pictures as quickly and accurately as possible. However, in PNnoise
participants heard additional loud pink noise that masked the
perception of their speech. In the covert naming condition partici-
pants covertly generated the picture name. In the two passive
listening conditions the auditory input was similar to the picture
naming conditions: Both the participants' voice (LISvoice) and the
pink noise (LISnoise) were presented, but participants were not
required to give a naming response.



Fig. 1. Processing steps of hierarchical group-ICA (HICA). Upper row: The spatial ICA
model for a single-subject decomposition (McKeown et al., 1998). HICA groups
components of individual decompositions (hatched boxes) into within-subject clusters
(step 1, left-most accolades, resulting in light grey boxes), which are then clustered into
between-subject clusters (step 2, right most accolade, resulting in dark grey box). Each
step results in a set of component clusters, where the original source of each component
can be retrieved by back-tracking the clustering process. X, time course data matrix of
size voxels×timepoints; M, mixing matrix; C, component matrix of size component-
s×timepoints; P, participant 1 .. p; S, session 1 .. s; Sog-w(b), self-organizing grouping
result of the within- (between-) subject clustering.
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In all conditions white-on-black line drawings were presented for
1000 ms, with an onset of 100 ms after the beginning of the silent
delay between volume acquisitions. There was 2250 ms of silence
before the next volume was acquired in which the participants could
respond. A fixation cross was presented immediately before picture
onset and during fixation conditions. During the listening conditions
scrambled pictures were presented and the auditory stimulus was
presented using the same timing as the PNnoise condition. For the
LISnoise condition the same pink noise recording was used as in the
PNnoise condition.

Each experimental block consisted of five trials of one condition
(20 s). The fixation blocks (16 s) consisted of a continuous
presentation of a fixation cross and a brief instruction (2 s) about
the condition of the upcoming experimental block. There were five
functional runs of 15 experimental task blocks that alternated with
fixation blocks (i.e., 3 repetitions of each condition per run, in total 15
repetitions of each condition per participant).

Imaging parameters

Imaging was performed on a 3 T whole-body system (Magnetom
Trio, Siemens Medical Systems, Erlangen, Germany) using a standard
head coil. Functional volumes were acquired using a T2⁎-weighted
echoplanar sequence with BOLD contrast (27 slices; TR/TE, 4000/
30 ms; volume scanning time, 1750 ms; inter-scan gap, 2250 ms; FA,
90°; field of view, 224 mm2; slice thickness, 4.5 mm (no slice gap);
matrix, 64×64; voxel size, 3.5×3.5×4.5 mm3). A total of 705 volumes
were acquired for each participant in 5 runs of 141 volumes each.
High-resolution anatomical volumes were acquired using a T1-
weighted three-dimensional (3-D) MP-RAGE (Magnetization-Pre-
pared Rapid Acquisition Gradient Echo) sequence (192 sagittal slices;
TR/TE, 2300/3.93 ms).

Data analysis

Anatomical and functional images were pre-processed and co-
registered using BrainVoyager QX (Brain Innovation, Maastricht, The
Netherlands). The first two volumes of every run were discarded to
account for the T1 saturation effect. Functional image pre-processing
steps included slice scan time correction, linear trend removal and
temporal high-pass filtering (3 cycles per time course≈0.0054 Hz).
Pre-processed functional time series were then transformed into 3-D
standardized space (Talairach and Tournoux, 1988) using a resampled
voxel size of 3×3×3 mm3. Anatomical data were resampled and
transformed to the same standardized space using a resampled voxel
size of 1 mm3. A volume mask was created from the average of the
anatomical 3-D images of the participants, which excluded voxels
belonging to the ventricles or that were outside of the average brain.
Voxel time courses that were tagged by the mask were used for
further analysis using Matlab routines (The Mathworks Inc, Mass.,
USA).

Spatial ICA

The functional data were analyzed using spatial ICA within a
framework that we here refer to as hierarchical-ICA (hICA), which is
an extension of a previously published self-organizing group-ICA
methodology (sogICA) (Esposito et al., 2005) from single to multiple
runs per subject. HICA was applied to the functional datasets in the
following way (see Fig. 1). First, each masked dataset was individually
decomposed by spatial ICA, using the Infomax gradient-learning
algorithm (Bell and Sejnowski, 1995; McKeown et al., 1998) into a set
of 35 components (learning rate=0.0001; stopping criterion
ɛ=0.0001; batch size=25; retained varianceN99%, dimension
reduction performed using principal component analysis [PCA]).
After decomposition the spatial components were Z-scored
(McKeown et al., 1998). Then, sogICA was used to cluster the
decompositions of the within-subject repetitions of the functional
runs using spatial correlation as similarity measure, which resulted in
35 clusters of 5 components each for each subject. For each within-
subject cluster an average cluster group map was obtained, which
served as input to the second-level between-subject clustering, which
yielded 35 clusters of 12 components each. Between-subject group
components were calculated as a one-sample t-statistic map against a
fixed mean of 0. Spatial templates of target cortical areas were used to
select the best matching final group components for further
investigation (Van de Ven et al., 2004; van de Ven et al., 2008),
which included 1) bilateral auditory cortex, 2) left inferior frontal
gyrus and superior temporal cortex, 3) pre- and postcentral gyri and
4) posterior cingulate cortex. In addition, we also used templates for
1) striate and 2) extrastriate cortex and 3) bilateral frontal and parietal
cortices in order to identify components that were associated with the
visual aspects of the task (task instructions and picture presentation).
The between-subject group maps were thresholded at t(11)=3.1
(one-sided, P≤0.005, uncorrected), which were then each corrected
at the voxel-cluster level at a false-positive rate of α=0.05 (Forman et
al., 1995; Goebel et al., 2006). This procedure provides a multiple
comparison correction at the voxel-cluster level and estimates a
corrected threshold for voxel-cluster size, given the inherent spatial
smoothness of the statistical map. The spatial smoothness of the initial
(uncorrected) statistical map was used to reiteratively simulate 1000
maps (Monte Carlo simulation). Of each simulated map, clusters of
voxels that surpassed the uncorrected voxel-level threshold were
gathered in a list. The gathered list of voxel-cluster sizes was then
thresholded at a false-positive rate of 5%, and the minimum cluster
size at that threshold was used as the new cluster size threshold on
top of the initial voxel-level threshold (see also Van de Ven et al., in
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press). Thresholded maps were superimposed on inflated and
flattened anatomical representations (courtesy of Montreal Neurolo-
gical Institute [MNI]).

The temporal characteristics of the group components were
analyzed as follows. By back-tracking the hICA procedure for a selected
group component the corresponding spatial component for each
dataset was identified (see Fig. 1). Then, for each component the
component-activity time course was calculated by back-projecting the
component map to the original data space (Duann et al., 2002;
Esposito et al., 2003; McKeown et al., 1998), and standardized to units
of percent signal change. Time courses were then averaged within
participants, according to the onsets of the experimental conditions
and finally averaged across participants. Amplitude changes were
calculated from the event-related averages by subtracting time course
values of the baseline (selecting timepoints −1 to 0 prior to onset of
conditions) fromvalues during peak responses (timepoints 2 to 4 after
condition onset) for each participant. Significance of the amplitude
changes from baseline was calculated by one-sample t-tests against a
fixed mean of 0.

It should be noted that component maps and time courses were
inspected at the end of the grouping pipeline. Thus, component
clustering was done in a blind and automated fashion where the final
results were used to select groups of components for further analysis.

Results

Selection of hICA group components was based on best matchwith
a set of spatial templates, which resulted in seven clusters of interest.
Four of the clusters comprised time courses that showed condition-
Fig. 2. Condition-specific HICA components. A: Spatial group maps of the auditory cluster
temporal cluster (lFT; pink–purple) and default-mode network cluster (DMN; green–yellow
(one-sided, P=0.005). White dotted line delineates the superior temporal sulcus. Panels in B
are superimposed. The CS cluster includes caudate and thalamic nuclei, and cerebellar areas.
hippocampal areas. Left hemisphere is shown on the left of each panel. Event-related average
AC (C,G), CS (D,H), lFT (E,I) and DMN (F,J) (time-locked to block onset). The abscissa of the tim
(% sc). Note that each spatial component has a unique, condition-specific contribution to th
specific changes in activity: 1) Auditory cluster (AC), 2) Central sulcus
and motor cluster (CS), 3) Left fronto-temporal cluster (lFT) and 4)
Default mode network cluster (DMN). Three other group components
comprised time courses that showed condition-unspecific changes in
activity, which were related to the visual aspects of the task: 1)
(primary) visual cortex cluster (PVC), 2) dorsal and ventral extra-
striate cortex cluster (EVC) and bilateral fronto-parietal cluster (bFP).
In the following, the condition-specific clusters are described. The
condition-unspecific clusters are described in the Supplementary
results.

Condition-specific components
Figs. 2A, B show the four condition-specific clusters superimposed

on inflated representations of a standardized anatomical image. Table
1 lists the coordinates of the voxel-clusters of the four clusters.

The AC component (red–yellow color coding in Fig. 2; spatial map
corrected at cluster-size threshold of 286 mm3, Pb0.05) comprised
several areas of the STG including Heschl's gyrus and sulcus, the
middle temporal gyrus (MTG), and insula. The cluster showed
increased activity for those conditions that provided speech-related
auditory input (PNvoice: t(11)=2.4, P=0.037; PNnoise: t(11)=3.2,
Pb0.01; LISvoice: t(11)=2.2, P=0.047), suggesting that it repre-
sented sensory auditory processing.

The CS component (blue color scale; cluster threshold=388 mm3,
Pb0.05) comprised the bilateral central sulcus, bilateral precentral
gyrus, SMA and several subcortical areas including thalamus and
striatum. The component showed increased activity specifically
for overt speech production (PNvoice: t(11)=5.0, Pb0.001; PNnoise:
t(11)=5.2, Pb0.001), and to a lesser extent covert speech production
(AC; red–yellow color coding), central sulcus cluster (CS; blue–light blue), left fronto-
) are superimposed on left and right inflated hemispheres, thresholded at t(11)=3.1
show zoomed-in subcortical structures (see left-most panel) onwhich the groupmaps

The lFT cluster includes the left putamen. The DMN cluster includes medial thalamic and
s (C–F) and bar plots (G–J) of the back-projected component time courses are shown for
e course plots refers to the number of scans, the ordinate refers to percent signal change
e data. Error bars indicate 1 standard error; ⁎Pb0.05; ⁎⁎Pb0.01; ⁎⁎⁎Pb0.001.



Table 1
Condition-specific components of interest (COIs).

COI x y z Size t max Mean p Area

bAC −52 −31 14 4642 6.3 0.0027 L HS/STG
51 −11 6 2803 5.4 0.0022 R HG/HS
36 −1 1 2033 9.6 0.0022 R Ins

−38 −6 0 1876 8.0 0.0019 L Ins
42 38 15 876 6.4 0.0026 R MFG
52 −25 23 516 5.0 0.0029 R PO

−57 −51 −2 434 5.1 0.0030 L MTG
−2 −55 46 361 4.9 0.0029 PreC

CS 44 −9 15 10,727 6.9 0.0021 R CS/Ins/PO
0 −5 47 7784 9.0 0.0014 SMA/aCC

−48 −17 21 7703 6.5 0.0022 L CS/Ins/PO
−25 −6 2 3070 8.6 0.0014 L Putamen
−10 −18 2 1480 6.6 0.0015 L Thal

10 −18 1 1093 8.6 0.0015 R Thal
14 −58 −17 1014 5.1 0.0030 R Cerebellum

−16 −55 −20 476 4.6 0.0031 L Cerebellum
lFT −16 13 48 9881 10.9 0.0020 L SFG

−44 −61 32 4828 5.4 0.0024 L AG/IPS
−3 −57 37 1573 6.0 0.0022 PreC
21 −69 −28 1250 4.7 0.0030 R Cerebellum

−13 2 14 519 6.8 0.0020 L Caudate N
−56 −28 −8 506 4.7 0.0029 L MTG

43 −56 36 470 4.7 0.0025 R AG
−33 19 0 387 7.0 0.0021 L Ins

DMN −2 −43 14 40,439 17.9 0.0011 pCC/Hipp/parahippo
0 38 12 19,385 12.1 0.0010 aCC

−43 −68 21 3790 8.2 0.0018 L IPC/MTG
44 −58 23 2820 6.4 0.0017 L IPC/MTG
0 −42 −39 1454 6.9 0.0019 Cerebellum

21 23 48 1432 5.7 0.0024 R SFG
−55 −14 −11 1285 7.7 0.0019 L MTG
−18 23 46 1106 6.1 0.0024 L SFG
54 −7 −14 1015 6.5 0.0022 R MTG

Talairach coordinates (x,y,z) are reported for the center of mass of voxel clusters. t-values
represent maximum value of the cluster (df=11). HS(G), Heschl's sulcus (gyrus); STG,
superior temporal gyrus; MTG, middle temporal gyrus; Ins, Insula; SFG, superior frontal
gyrus; MFG, middle frontal gyrus; AG, angular gyrus; a(p)CC, anterior (posterior)
cingulate cortex; PreC, Precuneus; PO, parietal operculum; Thal, Thalamus; Hippo,
Hippocampus; parahippo, parahippocampal gyrus; IPC, inferior parietal cortex.
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(PNcovert: t(11)=2.4, P=0.033). We suggest that this component
represented the involvement of facial motor processes of speech
production.

The lFT component (pink–purple color; cluster threshold=
348 mm3, Pb0.05) comprised largely left-lateralized voxel-clusters in
inferior, middle and superior frontal gyri, inferior parietal and superior
temporal gyri, and left striatal nuclei. This component was mostly
activated during listening to prerecorded speech (LISvoice: t(11)=2.8,
P=0.017), suggesting strong sensitivity to higher-order speech
comprehension processes.

The DMN component (green–yellow color; cluster threshold=
746 mm3, Pb0.05) included the posterior cingulate cortex, the anterior
cingulate cortex, bilateral inferior parietal, anterior regionsof themiddle
temporal cortex, thalamus, and hippocampus and parahippocampal
areas. This cluster showed the strongest deactivations for overt and
covert speech production (PNvoice: t(11)=−6.1, Pb0.001; PNnoise:
t(11)=−6.8, Pb0.001; PNcovert: t(11)=−3.8, Pb0.01). We suggest
that this component is mostly associated with the on-line processing
of self-referential aspects of speech.

Supplementary Fig. S2 shows the spatial overlap and differences
between sICA results and linear regression main effects of picture
naming and listening conditions. For the main effects, white coloring
refers to increased activity with respect to baseline and black coloring
refers to decreased activity. Increased activity during picture naming
(main effect) overlapped with the CS and AC component, and
increased activity during listening (main effect) overlapped with the
AC component. These findings of overlap would be expected given the
AC and CS component time courses. The picture naming main effect
also showed decreased activity in medial frontal cortex, which
overlapped with the frontal areas of the DMN component. The
listeningmain effect also showed increased activity in medial superior
frontal areas, which overlapped with areas in the lFT component.
However, main effects did not include lateral areas of the DMN and lFT
components.

Temporal ICA

The spatial components showed clearly circumscribed connectiv-
ity patterns, and showed unique contributions to the overt speech
conditions. However, no single component clearly showed a char-
acteristic speechmonitoring network in the sense of altered activity of
normal feedback in comparison to manipulated feedback (Christoffels
et al., 2007; Fu et al., 2006; McGuire et al., 1996) within the STG. In
light of a previous analysis of this data, as well as reports of other
studies, we hypothesized that the effect of discrepancies between
expected and actual verbal feedback resided within the auditory areas
(Christoffels et al., 2007; Tourville et al., 2008). To investigate if the
neural correlate of speech monitoring could be represented by a
temporally independent source that was spatially distributed across
multiple networks we used temporal ICA (tICA).

The application of tICA to fMRI datasets is less straightforward than
spatial ICA, mostly because the number of voxels (the channels in
tICA) is far greater than the number of timepoints (samples). When
left unrestricted, estimation of the covariance matrix may become
unstable, and poses a computational limitation for most working
stations. An often-used strategy is to apply tICA to a subset of voxels
(Calhoun et al., 2001; Seifritz et al., 2002), usually in the context of a
spatially-informed restriction, i.e., when temporal sources are
hypothesized to be present in one or several specific brain structures
(Seifritz et al., 2002). In our case, we used the AC spatial group
component as a mask to select voxel time courses for further analysis
(voxel selection criterion: t≥3.1).

A second issue that must be dealt with is the requirement of
temporal independencewithin the restricted dataset. A rule-of-thumb
is that the number of samples should be some multiple of the square
of the number of channels (Makeig et al., 1999). To ensure that the
restricted data met this criterion, the restricted volume of each of the
five functional sessions were first standardized (via Z-transformation)
and temporally smoothed (Gaussian kernel FWHM=6.2 s) and then
concatenated within each participant, resulting in an aggregate
dataset of 492 voxels by 695 timepoints for each participant. We
then restricted the dimension of each aggregate dataset to 25 (using
PCA), which resulted in a reduced dataset that provided 25×695
inputs to estimate 252 unmixing weights.

Infomax ICA (Bell and Sejnowski, 1995) was used to decompose
each participant's reduced aggregate dataset into 25 temporally
independent components. The components were clustered across
participants using sogICA (Esposito et al., 2005), but for this analysis
the clustering was applied to the temporal dimension only (temporal
correlation as similarity measure) (see Fig. 3A). The resulting group
temporal components were ranked in ascending order of intra-
cluster distance. The group temporal components were further
investigated by creating condition-specific event-related averages
for each subject using the standardized temporal components, and
were then averaged across participants (thus, in a similar fashion as
event-related averages of the spatial components). Amplitude
changes were calculated in the same way as those calculated for
the event-related averages of the spatial components. The event-
related averages of the temporal component clusters were visually
inspected for a speech monitoring effect sensu Christoffels et al.
(2007). To quantify the effect, we used a repeated measures analysis
of variance (ANOVA) to calculate a 2-way interaction of the
amplitude changes between speech source (PN vs. LIS) and feedback



Fig. 3. Temporal ICA method and results. (A) Processing steps of single-subject and consecutive grouping of temporal ICA (tICA). Upper row: The tICA model for a single-subject
decomposition, in which selected time courses of the five sessions of a participant are standardized (Z-scoring) and aggregated into dataset XA. The aggregated dataset is then
decomposed using tICA, which results in a component matrix (C) in which each row is a temporally independent component. Rows of M indicate the spatial contribution of the
temporal components to the aggregate dataset. Clustering across individual realizations of C is performed in one analysis step, using sogICA, in which the similarity measure is
temporal pair-wise correlations (compare with Fig. 1). Sog(t), self-organizing grouping result of the between-subject clustering of temporal components. Other abbreviations and
notations are similar to Fig. 1. (B) Selected tICA component, which shows decreased activity for overt speech (PNvoice) compared to overt speech with noise (PNnoise), which are
both decreased in comparison to the listening conditions (LISvoice and LISnoise). The ordinate refers to signal change in arbitrary (standardized) units. (C) The fit of the temporal
component to the functional data is presented as a random effects fit with individual designmatrices that were generated using a leave-one-out procedure. Results are superimposed
on left and right inflated hemispheres (see Fig. 2A) and on the averaged anatomical image (map thresholded at Pb0.005, two-tailed, and corrected at the cluster-level size of
104 mm3, Pb0.05; left hemisphere on the left of pictures). Positive fits included bilateral Heschl's sulcus (HS), precuneus and occipital cortices. Negative fits left bilateral
supplementary motor area (SMA). Purple outlines represent the outline of voxel clusters of the AC spatial component that were used to select voxels for tICA. Voxel cluster sizes and
coordinates are presented in Table 2.
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type (voice vs. noise). To obtain a full-factorial design, we ignored
the amplitude changes to the covert picture naming condition.

We also investigated the contribution of the selected cluster of
temporal components to thewhole-brain time courses. One option for
this analysis could be to use the temporal components for each
participant as the ideal model of brain activity for that participant.
However, this entails a circularity inwhich the data of each participant
is fitted to a basis function that was derived from that same data. To
avoid this circularity, we adopted a leave-one-out procedure for
creating individual GLM predictors. In this procedure, the design
matrix for a particular participant was built by averaging the temporal
components from all but one participant, leaving out the temporal
component of the tested participant. Because the temporal compo-
nents were estimated from individual participant data sets, the leave-
one-out strategy ensured that no temporal component estimated from
one data set was re-used to explain the variance of that same data set.
This step was repeated twelve times to build a new design matrix for
each participant. Finally, for each participant an additional standard
predictor was added to the design matrix as second covariate, which
modeled the presence of the task, irrespective of condition. Design
matrices were fitted in a two-level, random effects analysis. Results
were initially thresholded at P≤0.005 (two-tailed) and corrected for
multiple comparisons on the cluster-level at P≤0.05.
Results

Through visual inspection of the event-related averages of the
temporal clusters we selected one temporal cluster (ranked 3rd) that
showed a speech monitoring effect: Activity for LISnoise and LISvoice
were higher than PNnoise, which was itself higher than PNvoice (see
Fig. 3B; the average temporal correlation between the temporal cluster
members was 0.16±0.013). Supplementary Fig. S3 shows the first 10
clusters of temporal components (ranked according to ascending
average intra-cluster distance). Quantification of the speechmonitoring
effect showed a significant main effect for source (F1,11=9.0, P=0.012)
and a significant two-way interaction of source×feedback type
(F1,11=6.2, P=0.03),which supported the observed speechmonitoring
effect of the temporal components. To ensure that the effect was not
due to the choice of using amplitude changes, we repeated the analysis
with beta coefficients of the experimental conditions to the time
courses. The results of the analysis of beta coefficients corroborated the
results of the amplitude changes (see Supplementary results).

Whole-brain random effect analysis using the leave-one-out
procedure for building individual design matrices revealed bilateral
Heschl's sulcus activity, which was positively related to the leave-one-
out model of the temporal component, and left SMA, which was
negatively related to the leave-one-out model (see Fig. 3C and Table 2).



Table 2
Leave-one-out random effects results.

x y z Size t p Area

Pos 51 −21 6 7287 16.6 0.0006 R HS
−14 −93 5 1952 13.4 0.0005 L OG
−48 −25 7 6441 10.8 0.0008 L HS

15 −88 0 2818 9.8 0.0006 R OG
3 −65 36 1884 6.8 0.0011 R PreC

−17 −77 −14 418 6.1 0.0010 L OG
38 −46 39 182 5.7 0.0010 R IPS
32 −60 40 303 5.1 0.0013 R IPS
2 −33 −7 227 5.0 0.0012 IC

44 24 30 143 4.9 0.0014 R MFG
Neg −1 −10 58 863 −6.2 0.0008 L SMA

Listed are coordinates, size and statistical result of voxel clusters that surpass the
cluster-threshold size of 104 mm3. Pos (Neg), areas showing positive (negative) fit to
the temporal component. HS, Heschl's sulcus; OG, occipital gyrus; SMA, supplementary
motor area; IPS, intra-parietal sulcus; MFG, middle frontal gyrus; PreC, precuneus; IC,
inferior colliculi.

Fig. 4. Psychophysiological interaction results. The figure shows the results of
psychophysiological interactions (PPI) between overt picture naming (PN) conditions
and bilateral Heschl's sulcus (bHS) activity onto supplementary motor area (SMA)
activity. (A) The PPI design matrix for each dataset was modeled in the following way.
The psychological variable combined PN conditions of the original (hemodynamically
convolved) design matrix such that the PNvoice condition was multiplied by 1 and the
PNnoise condition was multiplied by −1 (all other conditions were multiplied by 0).
The upper panel (solid line) shows the PPI psychological variable for 1 subject. The
physiological variable (regional time course) was obtained by averaging voxel time
courses of bHS, as identified by whole-brain correlation with the selected temporal
component (bHS activity of 1 subject, broken line). Finally, the PPI interaction termwas
obtained by multiplying the (mean-centered) psychological and physiological variables
(lower panel). (B) Scatterplot of SMA activity as a function of bHS activity for the
PNvoice (black dots) and PNnoise (open circles) conditions of 1 subject. Regression
lines were fitted to the two data clouds. The change in regression coefficient with
different task conditions shows that functional connectivity between SMA and bHS is
modulated by task conditions.
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Does the regression of BOLD time courses to the temporal
component reveal information about dynamic functional coupling,
in the sense that functional connectivity changed with task condi-
tions? To address this question post-hoc, we quantified psychophy-
siological interactions (PPI) between the regional time courses of
areas from the temporal component regression. PPI combines a
psychological variable (e.g., task conditions) with a physiological
variable (e.g., regional time courses) in order to test if functional
connectivity between the physiological variable and an observed time
course is augmented by different task conditions (Friston et al., 1997;
Kim and Horwitz, 2008). Formally, PPI constitutes a regression
analysis onto the psycho- and physiological variables (main effects)
and their interaction term, which models the augmentation between
the main effects (see Fig. 4A). The psychological variable was obtained
by combining the predictors of the original design matrix in such a
way that it modeled the differential activity of feedback type of the
overt picture naming conditions (i.e., psychological variable=
(PNvoice−PNnoise), with all other conditions set to 0), the
physiological variable was bilateral Heschl's sulcus (bHS) activity,
and the interaction term was modeled as the product of the (mean-
centered) main effect variables. This analysis revealed a significant
interaction term for SMA across all participants (t(11)=−3.0,
P=0.012). Fig. 4B shows the scatterplot of SMA activity as a function
of bHS activity for a single participant for the PNvoice condition (black
dots) and PNnoise condition (open circles). Correlations between bHS
and SMA (represented by fitted linear regression lines) changed
significantly with type of condition (rPNvoice=0.19, rPNnoise=0.33,
PPNvoice−PNnoise=0.033). The PPI interaction terms for the other
regions were not significant. These results thus confirm and general-
ize the finding of a whole-brain network associated with the speech
monitoring temporal component, and show dynamic coupling
between frontal and temporal regions according to task conditions.

Discussion

We used a sequential combination of spatial and temporal ICA to
investigate different brain networks that were related to speech
production, perception and monitoring. SICA of the functional data
revealed one set of components that showed condition-specific
contributions to the different speech tasks, and a second set of
components that showed condition-unspecific contributions, which
were mostly related to the visual instructions and onset of a task
block. TICA of the auditory cortex revealed a single temporal
component that represented the speech monitoring pattern. An
analysis of the spatial extent of this temporal component showed
that bilateral Heschl's sulcus and parietal areas were strongly related
to the component, and that SMA was inversely related to the
component. Post-hoc psychophysiological interactions further con-
firmed that task conditions modulated functional connectivity
between SMA and bilateral Heschl's sulcus. These findings suggest
that speech monitoring is subserved by a dynamic functional coupling
between different spatial networks, which changes with task condi-
tions. The results are discussed in detail below.

Condition-specific contribution to speech processes

We found a small set of components that showed condition-
specific contributions to overt speech production and comprehension.
The AC component comprised areas that are associated with speech
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perception and production, including primary and secondary auditory
cortices, the posterior temporal plane, insula and MTG. The compo-
nent-activity time course showed a contribution to all speech
conditions, but the strongest contribution for overt speech produc-
tion, whether or not masked with noise. Superior temporal areas have
been associated with speech monitoring (Christoffels et al., 2007;
McGuire et al., 1996; Toyomura et al., 2007), and have been associated
with the production as well as perception of speech (Hickok et al.,
2003; Indefrey and Levelt, 2004; Okada and Hickok, 2006; Tzourio-
Mazoyer et al., 2004), whereas the insula has been associated with
motor aspects of speech production (Ackermann and Riecker, 2004;
Dronkers, 1996; Ford et al., 2002) or phonological planning (Bles and
Jansma, 2008). The component-activity time course did not clearly
show a unique speech monitoring pattern. It should be noted that
activity related to the masked speech production condition seemed
higher than with normal feedback, but this effect was not significant.
Furthermore, this component was more strongly activated for speech
production conditions in general, but also to speech comprehension
conditions, which suggested that the component represented a
mixture of multiple speech processes. Therefore, temporal ICA was
used to further disentangle the subcomponent processes in order to
investigate if the component was associated with feedback processing
in overt speech (see discussion below).

The CS component comprised cortical and subcortical areas that
are associated with motor planning and execution, including motor
and somatosensory cortex, thalamus and striatum. The time course of
this component showed a strong association with overt, but not
covert, speech production conditions. Importantly, the CS component
also comprised areas of the STG, which in part overlapped with areas
found in the AC component. Note that this component specifically
reflected speech production processes, because there is no distinction
between the two speech production conditions despite the qualita-
tively quite different sensory inputs, and no response to the two
listening control conditions. This finding suggests that sensorimotor
processing of overt speech production overlaps with cortical areas of
auditory perception, in correspondence with previous studies in
humans and monkeys (Foxe et al., 2002; Schroeder et al., 2001).

The left FT component comprised areas in inferior and superior
frontal gyri, and temporo-parietal areas, which have been associated
with language processing (Binder et al., 1997; Indefrey and Levelt,
2004; Simon et al., 2002; Tzourio-Mazoyer et al., 2004). The
component time course showed a significant contribution only to
the perception of off-line, prerecorded speech, which suggests that
specific frontal and temporo-parietal areas may be uniquely asso-
ciated with the perception and comprehension of speech, rather than
to the production of speech (Hickok et al., 2003; Tzourio-Mazoyer
et al., 2004). Albeit speculative, this dissociation between speech
comprehension and production may be the consequence of labeling
the source of the speech as self vs. externally generated. Alterna-
tively, the left FT component may represent the involvement of
attention in language processing. The perception of speech from an
external source warrants further processing and attention. Top-down
attentional control has been associated with lateral frontal and
parietal areas (Corbetta and Shulman, 2002; Hopfinger et al., 2000;
Kastner et al., 1999). In addition, attention to speech stimuli can
increase activity in left-lateralized temporal areas (Hugdahl et al.,
2003).

Finally, the component with strong medial frontal and parietal
contributions consistently showed decreased activity from baseline
for all speech conditions, which conforms to previous reports of
decreased activity during task executions in DMN areas (McKiernan et
al., 2003; Raichle et al., 2001). The DMN can be reliably investigated
using ICA (Esposito et al., 2006; Greicius et al., 2004; van de Ven et al.,
2008). In our study, the DMN showed the strongest deactivations for
the speech production tasks, including covert speech production,
compared to the listening tasks. This finding is consistent with other
fMRI results of decreased activity in DMN areas during off-line
perception of one's own speech (Jardri et al., 2007), and extends it to
overt speech generation. Furthermore, our results suggest that DMN
areas may be modulated by the amount of effort or cognitive control
that is required for task performance (Esposito et al., 2006; McKiernan
et al., 2003; van de Ven et al., 2008).

Speech monitoring and temporal ICA

None of the spatial components showed a time course that was
exclusively related to speech monitoring. In addition, our findings
suggested that the AC component represented a temporal mixture of
speech processes, including speech production and perception.
Reports in the literature further supported this suggestion (Tzourio-
Mazoyer et al., 2004).

Using tICA applied to voxels tagged by the spatial AC component,
we found one temporal component that exclusively represented the
speech monitoring signal in the sense of an interaction of speech
source and monitoring difficulty. When estimating the fit of the
temporal component to the functional data, results showed the
strongest positive fit to bilateral Heschl's sulcus, whereas SMA showed
the strongest negative fit. PPI analysis further confirmed that the
temporal component represented dynamic coupling between SMA
and bilateral Heschl's sulcus. We suggest that these areas represent
the speech monitoring network.

The tICA results showed that the speech monitoring network
entails a sensory component, which is suppressed in the case of
increased monitoring effort, and a motor component, which is
increased in the case of increased monitoring effort. These findings
contribute to the debate about the information-processing structure
of speech monitoring. Computational modeling and neuroimaging
studies showed a strong involvement of the motor system in speech
monitoring, owing to the role of initiating and controlling motor
commands of speech generation (Christoffels et al., 2007; Tourville et
al., 2008). Further, other studies suggested that activity of cortical
areas of the STG is modulated in accordance with monitoring effort
(McGuire et al., 1996). Our results clearly underline that speech
monitoring is embeddedwithin (but also crosses) brain networks that
contribute to the comprehension or the production of speech. The
spatial overlap of speech monitoring areas with other brain networks
creates a situation in which the spatial independence criterion of sICA
is not optimally suitable to separate speech monitoring into a unique
spatial component (cf, Calhoun et al., 2001). The STG appears to be a
multimodal processing site, in which sensorimotor and auditory
perception processes converge (Eliades and Wang, 2003; Foxe et al.,
2002; Schroeder et al., 2001; Tourville et al., 2008), and therefore
makes this area a candidate cortical site for speech monitoring.

An unexpected result was the positive correlation between the
selected temporal component and bilateral occipital areas. Spatial ICA
showed that the visual cortices showed peak of activity 1 or 2 s after
block onset, after which activity dropped back to baseline (see
Supplementary Fig. S1), and preceded activity peaks of condition-
specific clusters. These findings suggest that occipital cortex was
mostly responsive to the visual instructions, which preceded block
onset by 4 s (i.e., one functional whole-brain image). However, the
correlation of early visual areas with the selected temporal compo-
nent suggests that activity in visual areas may have been modulated
during task performance. Application of the tICA and clustering
procedures to selected voxels of the extrastriate cortex component
(EVC) did not reveal a temporal component cluster similar to the
auditory temporal component cluster. Activity in visual areas can be
modulated by higher order cognitive processes, such as visual
attention or anticipation (Kastner et al., 1999; Tootell et al., 1998),
which may have occurred in response to the instructions. Alterna-
tively, activity changes in Heschl's sulcus may have altered activity in
visual cortex, which would be in accordance with studies that showed
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multisensory interactions of activity between early auditory and
visual cortices (Kayser et al., 2008; Lehmann et al., 2006).

General discussion

Our results provide a framework that incorporates several of the
different research lines on speech monitoring in a specific manner:
Activity in bilateral auditory areas is inversely associated with activity
in motor areas, the SMA and bilateral insula. Thus, speech monitoring
is not captured within a single, unique spatial network, but comprises
the functional coupling between specific nodes of different spatial
networks.

These findings may be relevant to a parallel line of research that
investigates psychotic symptoms, such as hallucinations in schizo-
phrenia, in which a prevalent neuropsychological model suggests
that such symptoms result from an impaired monitoring system of
internally generated events (Frith, 1992). A number of studies
showed that the on-line perception of auditory verbal hallucinations
is associated with increased activity in auditory cortex (Dierks et al.,
1999; Lennox et al., 2000; Van de Ven et al., 2005). At the same
time, hallucinating schizophrenia patients may be impaired on tasks
that include monitoring of self-generated speech or movements
(Ford et al., 2002; Johns and McGuire, 1999; Shergill et al., 2005).
This impairment has been associated with decreased functional
coupling between frontal and temporal areas in hallucinating
schizophrenia patients (Ford et al., 2002; Lawrie et al., 2002).
These findings, in combination with ours, suggest that hallucinations
arise from impaired communication between motor and early
auditory areas, resulting in insufficiently suppressed activity in
early auditory cortex. In this light, our study provides an experi-
mental design and analysis pipeline that could be applied to overt
speech production in schizophrenia in order to further investigate
these issues.

The grouping of ICA components in a hierarchical, two-stage
fashion is a reliable and intuitive extension of the sogICA framework
(Esposito et al., 2005; van de Ven et al., 2008). This methodology
preserves the individual decompositions and allows for a hierarchical
combination of components in a similar fashion as the nowadays
widely used random effects hypothesis test. This study is the first to
use the sogICA framework to cluster temporally independent
components. The use of tICA in fMRI research is more complex than
its spatial variant, but a handful of studies demonstrated that it can be
a useful addition to the array of analysis tools in fMRI research
(Calhoun et al., 2001), especially in cases where temporal dynamics in
the data are not easily modeled using only the experimental protocol
(Biswal and Ulmer, 1999; Seifritz et al., 2002).

A potential weakness of our study could be that the line drawing
pictures that were used in the picture naming conditions were
presented in a scrambled fashion in the listening conditions. This was
done in order to prevent participants from automatically engaging in
covert picture naming during the listening conditions. Participants
may refrain from reflexive covert picture naming during active
performance of an alternative task (Jescheniak et al., 2002), but we
could not rule out that participants would refrain from covert naming
in the case of passive listening. Similarly, we cannot rule out that our
choice of presenting visual stimuli may have influenced the results in
an unknown way. Nevertheless, our findings conform to previous
neurophysiological results and computational modeling predictions,
which suggest that the potential influence may be limited.

In conclusion, we demonstrate that different functional networks
contribute to different aspects of overt speech production. Speech
production and perception networks overlapped in auditory cortex,
which suggests that this area is functionally heterogenous. However,
speech monitoring was not captured in a single, unique component.
Temporal ICA showed that speech monitoring could be captured by a
unique temporal component in the auditory cortex. Finally, the
temporal component was characterized by a dynamic coupling
between frontal and auditory cortices according to task conditions.
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