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Abstract. The efficacy of expert systems often depends on the accuracy and 

completeness of the problem specification negotiated with the user. Therefore, 

efficient user interfaces are needed, in order to assist the user in identifying and 

supplying the required data. Our approach presented in this paper is based on 

the utilisation of conversational interfaces, giving users the possibility of 

interacting with the system by means of natural language. Through the use of 

flexible dialogue management plans and an advanced problem solving strategy 

based on case based reasoning and information retrieval, efficient user guidance 

during the interaction with an expert system can be achieved. Thus, the user can 

interactively develop a comprehensive and coherent specification of his 

problem, based on clarifications, explanations, and context-based factual 

information provided by the system. As an application framework we introduce 

the EU-funded Project VIP-Advisor whose objective is the development of a 

virtual insurance and finance assistant capable of natural language interaction.

1   Introduction

Expert Systems aim at simulating human expertise in well defined problem 

domains [6]. Usually, they consist of programs closely resembling human logic in 

which abstract information is used for the computation of a result. Therefore, the 

correctness and precision of the achieved results mainly depend on the quality and 

soundness of the submitted information. This is acceptable as long as domain experts 

use the system, but casual or naïve users frequently fail to be complete and concise 

during the input phase. They either get overwhelmed by the complexity of the required 

data or have problems in fulfilling unclearly specified requests for input. Therefore, 

efficient user interfaces are needed, supporting the user during the problem 

specification phase. By means of a natural language based interaction, a twofold effect 

can be achieved: the user can benefit from a certain degree of freedom while choosing 

a formulation of the data to supply, and the conversational nature of a dialogue can be 

used for improving the user guidance and minimizing the risk of loosing the 

orientation. Moreover, whenever a wish for clarification or a need for assistance 

arises, the user can submit her request in an intuitive way, without having to use or 



even learn unfamiliar formalisms. Indeed, the grammar of a natural language provides 

enough expressive power for formulating interaction steps in many different 

alternatives. 

Common conversational systems such as chatterbots or other more sophisticated 

conversational agents frequently rely on the same underlying technology [5]: user 

utterances are interpreted and, by means of a pattern matching approach, an applicable 

rule is selected out of a predefined rule base. The chosen rule also defines the system 

response to be delivered back to the user. If no relevant rule can be found, a standard 

answer like “Please reformulate your input” is given. In order to cope with the 

sequential nature of the data collection phase of expert systems, in our approach we 

extend the basic technology of conversational systems with flexible dialogue 

management plans: rules are hierarchically organized into structured sequences in 

order to adapt the dialogue flow to the application’s interaction scheme. User 

utterances causing a deviation to the currently applied plan are treated as dialogue 

“problems”: instead of returning the standard request for reformulation, the 

problematic sentence is used as input to a case-based reasoning based problem solver. 

This approach consists of solving the new problem by adapting solutions that were 

used to solve old and similar problems [2]. For this aim, a memory of specific prior 

episodes, called case base, is built. It contains structured recordings of previous 

successful dialogues (i.e. the cases) including the used dialogue rules. They describe 

prototypical sequences of dialogue steps which serve to fulfill a task. If an applicable 

case is found, it is temporarily substituted to the currently used dialogue plan. Once 

fulfilled, the original state is restored, i.e. the previous plan in which the problem 

occurred is processed again. In this way, not only a clarification of concepts can be 

given, but also a user’s request for advice can be handled. The gathered information 

will be considered during the generation of the final problem solution, to be presented 

to the user.  The approach outlined above has been used in the EU-funded Project 

VIP-Advisor, described in the following section.

2   VIP-Advisor

The key objective of the EU-funded Project VIP-ADVISOR (IST-2001-32440) 

was the development of a virtual personal insurance and finance assistant specialized 

in risk management counseling for Small and Medium Enterprises (SMEs). The 

interface supports speech recognition and synthesis in order to make the advisor easier 

and more convenient to use. Through online translation mechanisms it is possible to 

use the advisor in different languages. The project builds upon an existing static 

expert system (the Risk Manager Online) provided by the user organisation 

(Winterthur insurances). The existing tool takes the user through a Q&A session with 

predefined questions before producing a risk analysis matrix. The first steps of the 

Risk Manager Online (RMO) target the generation of an enterprise profile. For this 

aim, the pertaining business sector is identified out of a list of 15 entries. Afterwards,

the main business activities have to be selected. For every business sector a different 

set of activities is generated. On the base of the produced profile, the system generates 



a list of generic assertions, which are evaluated by the user according to different 

levels of appropriateness (Fig. 1a). 

a)

b)

a)

b)

Fig. 1. Screenshots of the Risk Manager Online

For instance, the user may have to provide the level of dependency on its suppliers 

(in the case of a business pertaining to the sector “retail trade” and exercising the 

activity “purchasing”). Finally, the evaluated sentences are used for the generation and 

visualization of a risk portfolio. The identified risks are grouped to five categories and 

their weighting is shown by means of a diagram (Fig. 1b). In the successive steps of 

the RMO the user can view and select appropriate measures to counter the presented 

risks and, finally, build a personalized risk plan. Within the VIP-Advisor project, only 

the steps up to the presentation of the risk analysis are considered. The standard 

interaction means of the RMO are augmented by the usage of natural language for 

both input and output. The virtual assistant guides the user during the elicitation of the 

needed data and provides help in unclear or problematic situations (Figure 2). 

Fig. 2. A screenshot of the VIP-Advisor system prototype



Therefore, the user can always take over the initiative, by asking questions or 

expressing his uncertainty during the fulfillment of a specific task. An Interaction 

Manager component is responsible for coordinating and synchronizing the multi-

modal interaction with the system, as the user can simultaneously talk via a 

microphone and make selections directly on the Risk Manager Forms via the pointing 

device and keyboard. Whenever a user’s intervention causes a deviation from the 

current plan, a new one has to be selected and substitutes the no longer valid plan. 

This process is deeper described in the following Section.

3   Dialogue Management

The main aim of the dialogue management components of VIP-Advisor is to 

control the evolution of the conversation. This is achieved by following the active 

dialogue strategy, defined within the currently adopted dialogue management plan. A

plan can be represented in terms of a decision tree whose nodes stand for the system’s 

output states and the edges represent user inputs (usually annotated by patterns). 

Therefore, if at a specific state one edge can be applied (i.e. the pattern annotating it 

matches the user input) the destination node is set as the new current state, and the 

related system utterance is outputted. If, instead, no matching edge can be identified, 

the user utterance is analyzed by a Problem Identifier component. Its aim is to check 

whether the user input can be interpreted as a dialogue problem. Four problem classes 

in which the system recognizes the need to apply a new dialogue plan are identified: 

concept definitions, process descriptions, concept clarifications and arbitrary 

knowledge requests. A concept definition may consist of a straightforward question 

from the user seeking a definition e.g., “What is a fire risk?”. Process descriptions

entail the user asking for explanation of a process, e.g., “How can I prevent a fire 

risk?”. In both of these cases a direct answer to the question usually suffices so that 

FAQ-like dialogue plans (consisting of one question and a related answer) are used for 

solving the problem. Concept clarification is more complex than the first two problem 

classes since the solution consists of more than a straightforward sequence of 

questions and answers. A user may, for instance, ask “Why should I prevent a fire 

risk?”. More information needs to be elicited from the user so that the system can 

present the user with a process as its answer. The dialogue cases here are manual-like 

(troubleshooting) rather than FAQ-like.  Finally, an arbitrary knowledge request is not 

part of the dialogue, for example, a user may enquire as to possible payment modes or 

ask for the location of an office. The solution is provided by general information 

retrieval, information sources being either the enterprise portal or the Web, whereas 

problems of the first three classes are handled by the Case Based Reasoner Module.

Internally, system and user actions are described by a semantic language based on 

communicative acts for representing both the meaning and the intention of an 

interaction step. The used communicative acts are derived from Searle’s theory of 

speech acts [4] and adapted to the system’s needs. Actions performed by means of the 

pointing device or English sentences exchanged between user and system are all 

represented by a communicative act, such as “request”, “inform”, “confirm”, 

“authorize” and so on. All acts are extended by a set of parameters which specify the 



meaning and contents of the performed interaction step. For instance, the signature for 

“request” is:

request (type, matter, subject, content)

This communicative act is used to represent a situation in which one of the speakers 

requires the other speaker to provide some information. The parameter “type” is used 

for determining the kind of information requested. Usual values are “data”, 

“explanation” or “comparison”. The parameter “matter” specifies what exactly is 

being requested. For instance, common values are “definition”, “process”, “feature” or 

“lastAction”. The last two parameters provide a deeper characterization of the 

communicative act: “subject” is used for specifying the topic of conversation and 

“content” refers to the object of the request. Analogously, the communicative act 

“inform” provides the same signature as “request”. It is used when information (not 

necessarily new in the dialogue) is provided in a sentence. In the case of a user 

utterance, the choice of a communicative act, as well as the assignment of values to its 

pertaining parameters is carried out by both analyzing the grammatical structure of the 

sentence and by considering contextual information. For instance, during the business 

sector selection phase, the user may post the question “What is meant by 

manufacturing?”. The standard dialogue management plan only expects the selection 

of a business sector at this stage (it includes patterns such as “please select *” or “I 

choose *”), therefore no valid matching can be found, and the Problem Identifier has 

to be invoked. This module ascertains that the sentence is indeed a “request” for an 

“explanation” (typically expressed by the formulation “What is meant by”). 

Particularly, a “definition” is sought, referring to a “business sector” (as defined by the 

context, i.e. the currently processed interaction step), namely “manufacturing”. As a 

result, the communicative act “request (explanation, definition, business sector, 

manufacturing)” is generated. As we will see in the following section, this 

communicative act will be used as a “problem definition”, entailing the Case Base 

Reasoner Module to search for a new strategy, which aims at a solution of the 

problem. In Table 1 you can see a summary of the criteria used by the Problem 

Identifier for the assignment of a recognized problem to a specific problem class (in 

case of a request communicative act).

Table 1. Values for „type“ and „matter“ attributes of the „request“ communicative act and their 

relation to problem classes. For the last column refer to section 4.

Problem 

Class

Type Matter Case Type Relevant Case 

Categories

Concept

Definition

Explanation,

Comparison,

…

Definition,

Feature,

…

FAQ-like All

Process

Description

Explanation,

Description,

…

Process,

Operation,

Procedure,

…

FAQ-like Interviews, RMO 

usage, System Usage

Concept

Clarification

Instruction,

Clarification,

…

Process,

Feature,

Operation,

Procedure,

…

Manual-like Interviews,

Business Sectors and 

Activities



4 Case-based Retrieval

Case-based reasoning techniques are applied in VIP-Advisor whenever an 

unexpected dialogue situation occurs, causing a deviation from the original dialogue 

plan. The estimation of the suitability of a new plan is based on pragmatic relevance: 

a dialogue plan is relevant to a certain problem if its application helped solving the 

problem in similar situations happened before. Cases establish a repository of 

problems which occurred previously, together with the solutions which were applied 

to solve the according problem. A problem solution contained in a case was useful 

(and used) in the past; hence, the more the current problem is similar to the old one, 

the more likely the old solution applies. The initial case base utilized for VIP Advisor 

contained about 500 different problem definitions and related solutions. For the 

collection of the cases, several knowledge sources have been used, including the 

FAQs and glossaries of various insurance and financial web portals as well as 

interviews carried out with professional advisors. The interviews had the aim of 

recognizing problems and questions that users normally have during a risk 

management advisory session. The cases are divided into different categories, 

according to the topic they refer to. For instance, cases about pertinent laws, risk 

factors, and insurance types are included, but also FAQs about business sectors and 

activities, general financial and insurance concepts and explanations to specific 

processes and functions of the Risk Manager Online tool can be found. The case base 

will be regularly updated by examining the system log files: problems which could not 

be solved will be considered as a new case after the identification of an appropriate 

solution. In VIP Advisor, the cases are coded using XML. An example case is shown 

in Figure 3.

Fig. 3. An example Case

<problemDefinition>

<ComActList>

<request> <type>explanation</type>

<matter>definition</matter>

<subject>business sector</subject>

<content>Manufacturing</content>

</request>

<text>Can you explain to me what the business 

sector Manufacturing is?</text>

</ComActList>

</problemDefinition>

<problemSolution>

<ComActList>

<inform> <type>explanation</type>

<matter>definition</matter>

<subject>business sector</subject>

<content>Manufacturing</content>

</inform>

<text>By the business sector manufacturing we mean

 the trade which produces goods and machines

 of every kind.</text>

</ComActList>

</problemSolution>



The problem definition part consists of a communicative act and a representative 

user utterance causing the problem. The problem solution part contains the dialogue 

plan to apply in order to solve the problem. The figure shows a simple problem 

solution, consisting of only a single answer. This case would be relevant for the user 

mentioned in the previous section, asking for the meaning of “manufacturing”.

Analogously to the problem definitions contained in cases, a problem 

representation p resulting from the user input which caused the deviation to a current 

plan consists of attribute-value-pairs and text. The retrieval of a suitable case is 

carried out by finding cases whose problem definition is topically similar to the

representation of problem p. So we map our dialogue problem dealing with pragmatic 

relevance onto a retrieval problem dealing with topical relevance. Our assumption is 

that the more (topical) relevant a problem definition is w.r.t. a problem representation, 

the more (pragmatic) relevant is the according dialogue plan for the given problem.

We apply uncertain inference to retrieve topical relevant cases. For this, we adapt the 

framework proposed by van Rijsbergen for information retrieval [1]. In our case, we 

seek P(pd→p), the probability that a problem definition pd implies a problem 

representation p. Uncertain inference like described above can be implemented using 

the probabilistic inference engine HySpirit [3]. HySpirit is an implementation of 

probabilistic datalog based on Horn clauses, used for modelling uncertain facts and 

rules (similar to Prolog).

In order to perform retrieval of cases, we have to index the problem definitions in 

the case base. As we have shown, problem definitions consist of certain attributes and 

text. Both are indexed and represented as probabilistic facts within HySpirit. In our 

example above, we have the attributes type, matter, subject and content. These are 

indexed using a special predicate attribute. The attributes of the example case in 

Figure 3 (having the ID c1) would be indexed as

attribute(type, c1, explanation).

attribute(matter, c1, definition).

etc.

Besides attributes, we also find text in a problem definition. We create a full-text 

index in HySpirit using the two predicates term and termspace. The first one 

draws the connection between cases and terms, whereas the latter one contains 

information about all terms in the index. Each term or termspace fact is given a 

certain probability, determined by two well-known measures from information 

retrieval, the normalised term frequency (tf) and the inverse document frequency (idf).  

The term frequency of a term t in a case c is higher the more frequent it appears in the 

text of the problem definition of c; on the other hand, the inverse document frequency 

of t is higher the lesser it appears in other cases. As an example,

0.3 term(water, c1).

states that the term “water” appearing within the text tag of the problem definitions, 

has a term frequency of 0.3 in c1, while

0.2 termspace(water).

indicates the inverse document frequencies of “water”, 0.2. 



As mentioned before, each case is represented by a problem definition pd and we 

estimate P(pd→p) for each problem representation p and each problem definition. The 

resulting probability is used as the retrieval weight to rank the cases in the case base 

and deliver the according dialogue plan. Problem definitions are described as 

probabilistic facts like above. Case-based retrieval is performed in two steps: first, we 

match the attribute values of the problem definitions in the case base against the 

attribute values of the problem representation. If we can uniquely identify a case with 

the best relevance weight (i.e. there are no other cases also having the best weight), we 

present this case as the one containing the solution for the problem. If there are more 

top-ranked cases having the same retrieval weight, we use the full text of both problem 

definition and problem representation to determine the best-matching case. This way 

we lay the focus on matching the attributes, but consider the free text when attribute 

matching does not yield a unique result. The underlying assumption for this retrieval 

strategy is that problem definitions and problem representations can correctly be 

classified into the attributes and that the matching of attributes has the higher priority 

than the matching of text. In the ideal case the result will be unique and we can stop. If 

not, we have to choose a case out of the top ranked cases, i.e. the cases with the 

highest retrieval weight. In our framework this means we neglect all cases not having 

the highest retrieval weight and recalculate the weight for all remaining cases. For 

these, the new inference process is based on rules reflecting the terms which can be 

extracted from the text of the problem definition. Out of the user’s utterance we 

extract the terms “meant” and “manufacturing” (stop words are eliminated). We now 

calculate a probability for the predicate ptext:

ptext(C) :- term(meant, C) & termspace(meant).

ptext(C) :- term(manufacturing, C) &

 termspace(manufacturing).

? - ptext(C).

The probability for the predicate ptext is calculated by applying the Sieve 

formula (see [3] for details on the calculation of probabilities in HySpirit). If we still 

do not have a unique top-ranked case after the 2

nd

 step, we randomly chose a case 

among those with the highest weight based on ptext.

The problem solutions of cases solving problems pertaining to the concept 

clarification class have a more complex structure than simple FAQ-based cases. 

Instead of a single answer, they require the processing of an entire dialogue plan 

before producing a final answer. Within the plan, the system may ask counter 

questions, evaluate the user’s answer and finally generate a dynamic output, based on 

the data collected during the processing of the plan. For instance, consider the 

following user question: “Should I care about a fire risk in my stock?” (coded by the 

communicative act “request(clarification, feature, risk, fire in stock)”). A direct 

answer to this question would be inappropriate, as it depends on whether the user’s 

business is trading with flammable goods or not. Therefore, before delivering a final 

statement, the system should investigate about the inflammability of the goods. This is 

achieved by processing the plan contained in Figure 4. The actual branch of this plan 

is processed according to the user’s response to the counter question. The 

communicative acts annotating the edges stand for patterns of user input. For the sake 

of simplicity in this example we considered a counter question allowing only for a 



simple answering scheme (e.g. a confirmation or a rejection). This approach can also 

be applied (thus raising in interest) in the case of counter questions enabling for 

multiple responses.

<request>

<type>confirmation</type>

<matter>feature</matter>

<subject>trade</subject>

<content>inflammable goods</content>

</request>

<text>Do you trade with inflammable goods?</text>

<confirm>

<type>approve</type>

</confirm>

<inform>

<type>explanation</type>

<matter>feature</matter>

<subject>risky trade</subject>

<content>fire risk</content>

</inform>

<text>Then, a fire risk in your case would encompass 

possible burnings in your stocks due to…</text>

<confirm>

<type>reject</type>

</confirm>

<inform>

<type>explanation</type>

<matter>feature</matter>

<subject>no risky trade</subject>

<content>fire risk</content>

</inform>

<text>Then, the risk of fire is very low because… </text>

<request>

<type>confirmation</type>

<matter>feature</matter>

<subject>trade</subject>

<content>inflammable goods</content>

</request>

<text>Do you trade with inflammable goods?</text>

<confirm>

<type>approve</type>

</confirm>

<inform>

<type>explanation</type>

<matter>feature</matter>

<subject>risky trade</subject>

<content>fire risk</content>

</inform>

<text>Then, a fire risk in your case would encompass 

possible burnings in your stocks due to…</text>

<confirm>

<type>reject</type>

</confirm>

<inform>

<type>explanation</type>

<matter>feature</matter>

<subject>no risky trade</subject>

<content>fire risk</content>

</inform>

<text>Then, the risk of fire is very low because… </text>

Fig. 4. The problem solution part of a concept clarification case

5. Context-based Retrieval

So far we based the calculation of P(pd→p) on topical relevance and assumed that 

its degree is proportional to the degree of pragmatic relevance. Within our retrieval 

framework we have the chance to go a step further towards pragmatic relevance by 

incorporating non-topical context information into the retrieval process. We consider 

two different sources for contextual information, namely the user profile and the 

utterances exchanged so far between user and system, called dialogue history. The 

former is generated at runtime by analyzing the contents of the user input (both 

performed actions with the pointing device and spoken text). The latter is extracted 

out of the interaction log files. For the generation of context-aware system responses, 

cases contain a section called “contextual Data”. It consists of a sequence of attribute-

value pairs, expressing the suitability of a case to a certain contextual state. This 

approach allows for a flexible extension of the cases with context-relevant data.  For 

instance, to avoid repeated trials to execute the same plan, the already used cases are 

available as part of the context.

During the interaction with the system, the user input can be analyzed for inferring 

user characteristics, thus building a profile. Once a problem solution is found, it can 

be checked if the retrieved case matches the current profile. Otherwise, a new case has 

to be identified. For instance, the country of origin can be used for providing a more 

adapted problem solution. This is especially appropriate for problems whose solution 



depends on local information, such as legal rule or used terminology. Furthermore, by 

analyzing the user behaviour, her level of expertise can be determined. Cases more 

suitable to experts can be avoided as a response to less skilled users, and vice versa. 

While building the Case Base of VIP-Advisor, experts of various domains 

obviously needed to be involved. A thorough research was carried out and the results 

carefully evaluated. Comparisons about legal systems of different countries, as well as 

deep reviews of definitions and explanations were performed. The aim was to achieve 

an efficient diversification and personalization of the cases, according to different user 

properties. The interviews with risk management advisors resulted in both the 

identification of an evaluation scheme for identifying the level of expertise of users 

and the specification of appropriate problem solutions.

6 Summary and Outlook

In this paper we presented an extension to the dialogue management capabilities of 

conversational interfaces to expert systems. By the use of a goal-oriented dialogue 

strategy defined within flexible management plans, we minimized the risk of 

orientation loss and improved user guidance by offering support and advice in both 

problematic and unclear situations. In order to cope with dialogue plan deviations 

caused by user interventions we devised a case-based retrieval approach accessing a 

repository of prototypical problem occurrences and their related solutions. Within the 

project activities, several functionality and usability tests have been performed. Real 

users with different levels of expertise were involved in the evaluation, carrying out 

risk management sessions on the basis of predefined scenarios. While slight 

improvements to the interface components such as the voice recognition and the 

translation engine are still needed, the outcome of the tests showed a positive impact 

of the system’s problem solving capabilities. 

Future work will also consider the implementation of a more proactive dialogue 

behavior. It will be analyzed if problems occurring stereotypically for a given context 

and for users having similar profiles can be anticipated. In this case, the system might 

take over the initiative suggesting a solution to a problem most likely to appear in the 

next interaction steps. The aim is to provide a more efficient support to users not able 

to generate a focused problem description or even not capable of recognizing on their 

own the existence of an advisory need.
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