Ingo Braasch

Ingo Braasch
Michigan State University | MSU · Department of Integrative Biolgy

Dr. rer. nat.

About

172
Publications
40,184
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,943
Citations
Introduction
My research addresses fundamental questions about the genomic and developmental basis of major transitions during the course of vertebrate evolution. We study genomic and morphological novelties in vertebrates at the levels of genome structure, gene family dynamics, and gene regulation and combine comparative genomics with analyses of molecular evolution and developmental genetic approaches using spotted gar (Lepisosteus oculatus) and teleost fishes such as zebrafish as model systems.
Additional affiliations
January 2016 - present
Michigan State University
Position
  • Professor (Assistant)
May 2010 - December 2015
University of Oregon
Position
  • PostDoc Position
May 2009 - April 2010
University of Wuerzburg
Position
  • PostDoc Position

Publications

Publications (172)
Preprint
Accurate species phylogenies are a prerequisite for evolutionary research. Teleosts are by far the largest and the most diversified group of extant vertebrates, but relationships among the three oldest lineages of extant teleosts remain unresolved. Based on seven high-quality new genome assemblies in Elopomorpha (tarpons, eels), we revisited the to...
Article
The Rio Pearlfish, Nematolebias whitei, is a bi-annual killifish species inhabiting seasonal pools in the Rio de Janeiro region of Brazil that dry twice per year. Embryos enter dormant diapause stages in the soil, waiting for the inundation of the habitat which triggers hatching and commencement of a new life cycle. Rio Pearlfish represents a conve...
Article
Full-text available
Over 99% of ray-finned fishes (Actinopterygii) are teleosts, a clade that comprises half of all living vertebrate species that have diversified across virtually all fresh and saltwater ecosystems. This ecological breadth raises the question of how the immunogenetic diversity required to persist under heterogeneous pathogen pressures evolved. The te...
Article
Secretory calcium-binding phosphoprotein (SCPP) genes are expressed in the skin and jaw during the formation of bone, teeth, and scales in osteichthyans (bony vertebrates). Among these mineralized skeletal units is the ganoid scale, found in various fossil actinopterygians (ray-finned fish) but confirmed only in Polypteriformes (bichirs, reedfish)...
Preprint
Full-text available
The Rio Pearlfish Nematolebias whitei is a bi-annual killifish species inhabiting seasonal pools of the Rio de Janeiro region that dry twice per year. Embryos enter dormant diapause stages in the soil, waiting for the inundation of the habitat which triggers hatching and commencement of a new life cycle. This species represents a convergent, indepe...
Article
Full-text available
The bowfin ( Amia calva ) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central specie...
Preprint
Full-text available
The repeated evolution of novel life histories correlating with ecological variables offer opportunities to test scenarios of convergence and determinism in genetic, developmental, and metabolic features. Here we leverage the diversity of aplocheiloid killifishes, a clade of teleost fishes that contains over 750 species on three continents. Nearly...
Article
Full-text available
Nitric oxide (NO) is an ancestral key signaling molecule essential for life and has enormous versatility in biological systems, including cardiovascular homeostasis, neurotransmission, and immunity. Although our knowledge of nitric oxide synthases (Nos), the enzymes that synthesize NO in vivo, is substantial, the origin of a large and diversified r...
Preprint
Full-text available
Nitric oxide (NO) is an ancestral key signaling molecule essential for life and has enormous versatility in biological systems, including cardiovascular homeostasis, neurotransmission, and immunity. Although our knowledge of nitric oxide synthases (Nos), the enzymes that synthesize NO in vivo, is substantial, the origin of a large and diversified r...
Preprint
Full-text available
Over 99% of ray-finned fishes (Actinopterygii) are teleosts, a clade that comprises half of all living vertebrates that have diversified across virtually all fresh and saltwater ecosystems. This ecological diversity raises the question of how the immunogenetic diversity required to persist under heterogeneous pathogen pressures evolved. The teleost...
Article
Tails are a defining characteristic of chordates and show enormous diversity in function and shape. Although chordate tails share a common evolutionary and genetic-developmental origin, tails are extremely versatile in morphology and function. For example, tails can be short or long, thin or thick, feathered or spiked, and they can be used for prop...
Article
In most vertebrates, camera-style eyes contain retinal ganglion cell neurons that project to visual centers on both sides of the brain. However, in fish, ganglion cells were thought to innervate only the contralateral side, suggesting that bilateral visual projections appeared in tetrapods. Here we show that bilateral visual projections exist in no...
Article
Background: The cellular and molecular mechanisms initiating vertebrate cranial dermal bone formation is a conundrum in evolutionary and developmental biology. Decades of studies have determined the developmental processes of cranial dermal bones in various vertebrates and identified possible inducers of dermal bone. However, evolutionarily derive...
Article
The study of sex determination and sex chromosome organisation in non-model species has long been technically challenging, but new sequencing methodologies now enable precise and high-throughput identification of sex-specific genomic sequences. In particular, Restriction Site-Associated DNA Sequencing (RAD-Seq) is being extensively applied to explo...
Preprint
Full-text available
Background The molecular mechanisms initiating vertebrate cranial dermal bone formation is a conundrum in evolutionary and developmental biology. Decades of studies have determined the developmental processes of cranial dermal bones in various vertebrate species, finding possible inducers of dermal bone. However, the evolutionarily derived characte...
Preprint
Full-text available
The bowfin fish ( Amia calva ) diverged before the genome duplication in teleost fishes, and its archetypical body plan and slow rate of molecular evolution make it a key species for genomic exploration as a basal representative of the neopterygian fishes. To investigate the evolution and development of ray-finned fishes, we generated a chromosome-...
Article
Goldfish are popular ornamental animals with morphologically highly diverse strains generated by artificial selection over the past millennium. New genome analyses reveal the genetics underlying some of the most iconic goldfish phenotypes and illuminate the domestication of these diverse strains following genome duplication.
Article
Full-text available
Sturgeons seem to be frozen in time. The archaic characteristics of this ancient fish lineage place it in a key phylogenetic position at the base of the ~30,000 modern teleost fish species. Moreover, sturgeons are notoriously polyploid, providing unique opportunities to investigate the evolution of polyploid genomes. We assembled a high-quality chr...
Preprint
Full-text available
The study of sex determination and sex chromosome organisation in non-model species has long been technically challenging, but new sequencing methodologies are now enabling precise and high-throughput identification of sex-specific genomic sequences. In particular, Restriction Site-Associated DNA Sequencing (RAD-Seq) is being extensively applied to...
Article
Intestinal tract development is a coordinated process involving signaling among the progenitors and developing cells from all three germ layers. Development of endoderm-derived intestinal epithelium has been shown to depend on epigenetic modifications, but whether that is also the case for intestinal tract cell types from other germ layers remains...
Article
Salamanders and lungfishes are the only sarcopterygians (lobe-finned vertebrates) capable of paired appendage regeneration, regardless of the amputation level. Among actinopterygians (ray-finned fishes), regeneration after amputation at the fin endoskeleton has only been demonstrated in polypterid fishes (Cladistia). Whether this ability evolved in...
Article
RT-PCR analysis of gar pituitary and brain indicated that different combinations of gar melanocortin receptor mRNAs are present in the same tissues with mRNAs for gar mrap1 and gar mrap2. Against this background, an objective of this study was to determine whether the ligand sensitivity for either ACTH or α-MSH was affected when gar (g) melanocorti...
Article
The Melanocortin 1 receptor (MC1R) is the central melanocortin receptor involved in vertebrate pigmentation. Mutations in this gene cause variations in coat coloration in amniotes. Additionally, in mammals MC1R is the main receptor for agouti signaling protein (ASIP), making it the critical receptor for the establishment of dorsal‐ventral countersh...
Article
Full-text available
Dorso-ventral (DV) countershading is a highly-conserved pigmentary adaptation in vertebrates. In mammals, spatially regulated expression of agouti-signaling protein (ASIP) generates the difference in shading by driving a switch between the production of chemically-distinct melanins in melanocytes in dorsal and ventral regions. In contrast, fish cou...
Preprint
Full-text available
Salamanders and lungfishes are the only sarcopterygians (lobe-finned vertebrates) capable of complete limb and paired fin regeneration, respectively. Among actinopterygians (ray-finned fishes), regeneration after amputation at the fin endoskeleton has only been demonstrated in Polypterid fishes (Cladistia). Whether complete appendage regeneration i...
Article
Full-text available
Fishes of the genus Danio exhibit diverse pigment patterns that serve as useful models for understanding the genes and cell behaviors underlying the evolution of adult form. Among these species, zebrafish D. rerio exhibit several dark stripes of melanophores with sparse iridophores that alternate with light interstripes of dense iridophores and xan...
Data
Pigment pattern defects of edn3b mutants but not edn3a mutants resemble D. nigrofasciatus. (A) Details of ventral patterns illustrating deficiency in peritoneal iridophores (arrowhead) in D. rerio edn3a mutants but not edn3b mutants or D. nigrofasciatus. (B) Defects in areas covered by iridophores and numbers of melanophores in heterozygous and hom...
Data
Expansion of iridophore clones differs between D. rerio and D. nigrofasciatus. Representative images for individuals of each species mosaic for iridophore reporter pnp4a:palmEGFP at an early stage of pattern formation, and a late stage, once patterns were complete. Dashed yellow lines indicate approximate regions of correspondence between early and...
Data
Induced mutations in D. rerio Edn3 loci. Panels show genomic structures of Edn3 loci with locations encoding the mature peptides (green) as well as local nucleotide and amino acid sequences. Untranslated regions are shown in brown. For edn3a, the b1282 allele has a 43 bp deletion that removes 13 of 20 amino acids comprising the active Edn3a peptide...
Data
Reduced edn3b expression in D. tinwini compared to D. rerio. (A) Pigment pattern of D. tinwini. (B) Species differences in skin edn3b expression during adult pattern development (F2,7 = 48.2, P<0.0001). Shared letters indicate bars not significantly different in post hoc Turkey HSD comparisons of means (P>0.05). Numbers in bars indicate biological...
Data
Supplementary Information File. Data Matrices. Numerical data used for quantitative analyses. (XLSX)
Preprint
Intestinal epithelium development depends on epigenetic modifications, but whether that is also the case for other intestinal tract cell types remains unclear. We found that functional loss of a DNA methylation machinery component, ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1), leads to reduced enteric neuron number, chang...
Preprint
Full-text available
Fishes of the genus Danio exhibit diverse pigment patterns that serve as useful models for understanding the genes and cell behaviors underlying the evolution of adult form. Among these species, zebrafish D. rerio exhibit several dark stripes of melanophores with sparse iridophores that alternate with light interstripes of dense iridophores and xan...
Article
Reply to: 'Subfunctionalization versus neofunctionalization after whole-genome duplication'.
Article
Background: The caudal fin of actinopterygians experienced substantial morphological changes during evolution. In basal actinopterygians, the caudal fin skeleton supports an asymmetrical heterocercal caudal fin, while most teleosts have a symmetrical homocercal caudal fin. The transition from the ancestral heterocercal form to the derived homocerc...
Article
Whole-genome duplications (WGDs) are important evolutionary events. Our understanding of underlying mechanisms, including the evolution of duplicated genes after WGD, however, remains incomplete. Teleost fish experienced a common WGD (teleost-specific genome duplication, or TGD) followed by a dramatic adaptive radiation leading to more than half of...
Article
Gar is an actinopterygian that has bone, dentin, enameloid, and ganoin (enamel) in teeth and/or scales. Mineralization of these tissues involves genes encoding various secretory calcium-binding phosphoproteins (SCPPs) in osteichthyans, but no SCPP genes have been identified in chondrichthyans to date. In the gar genome, we identified 38 SCPP genes,...
Preprint
Full-text available
Whole genome duplications (WGD) are important evolutionary events. Our understanding of underlying mechanisms, including the evolution of duplicated genes after WGD, however remains incomplete. Teleost fish experienced a common WGD (teleost-specific genome duplication, or TGD) followed by a dramatic adaptive radiation leading to more than half of a...
Article
The melanocortin system is a complex neuroendocrine signaling mechanism involved in numerous physiological processes in vertebrates, including pigmentation, steroidogenesis and metabolic control. This review focuses at one of its most fascinating function in fish, its regulatory role in the control of pigmentation, in which the melanocortin 1 recep...
Article
Dorsoventral pigment patterning, characterized by a light ventrum and a dark dorsum, is one of the most widespread chromatic adaptations in vertebrate body coloration. In mammals, this countershading depends on differential expression of agouti-signaling protein (ASIP), which drives a switch of synthesis of one type of melanin to another within mel...
Article
In this study, we characterize the retina of the spotted gar, Lepisosteus oculatus, a ray-finned fish. Gar did not undergo the whole genome duplication event that occurred at the base of the teleost fish lineage, which includes the model species zebrafish and medaka. The divergence of gars from the teleost lineage and the availability of a high-qua...
Article
Full-text available
Regulation of bone development, growth, and remodeling traditionally has been thought to depend on endocrine and autocrine/paracrine modulators. Recently, however, brain-derived signals have emerged as key regulators of bone metabolism, although their mechanisms of action have been poorly understood. We reveal the existence of an ancient parathyroi...
Data
Quantification of joint defects in zebrafish lacking prg4 genes.This file includes the average OARSI scores for wild types and mutants related to Figure 4H.DOI: http://dx.doi.org/10.7554/eLife.16415.010
Data
DNA sequences for in situ hybridization probes and genotyping. (1A) Forward and reverse primers used to amplify zebrafish cDNA for in situ hybridization probe generation. (1B) Sequences used to generate in situ hybridization probes for stickleback and spotted gar prg4 genes. (1C) Forward and reverse primers used to genotype prg4a and prg4b mutant z...
Article
The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons (vol 48, pg 427, 2016)
Article
Full-text available
With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmo...
Article
Full-text available
Several attributes intuitively considered to be typical mammalian features, such as complex behavior, live birth and malignant disease such as cancer, also appeared several times independently in lower vertebrates. The genetic mechanisms underlying the evolution of these elaborate traits are poorly understood. The platyfish, X. maculatus, offers a...
Article
Full-text available
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by...
Article
Full-text available
Background: The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the palliu...
Article
Full-text available
There is no obvious morphological counterpart of the autopod (wrist/ankle and digits) in living fishes. Comparative molecular data may provide insight into understanding both the homology of elements and the evolutionary developmental mechanisms behind the fin to limb transition. In mouse limbs the autopod is built by a "late" phase of Hoxd and Hox...
Article
Full-text available
Background: The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the palliu...
Article
Full-text available
The origin of novel phenotypic characters is a key component in organismal diversification; yet, the mechanisms underlying the emergence of such evolutionary novelties are largely unknown. Here we examine the origin of egg-spots, an evolutionary innovation of the most species-rich group of cichlids, the haplochromines, where these conspicuous male...
Article
Many fields of biology—including vertebrate Evo-Devo research—are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this “genomic tsunami.” Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish gen...
Article
Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only prese...
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##