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Summary

Vascular resistance in the mammalian pulmonary circulation is affected by many endogenous agents that influence
vascular smooth muscle, right ventricular myocardium, endothelial function, collagen and elastin deposition, and fluid
balance. When the balance of these agents is disturbed, e.g. by airway hypoxia from high altitude or pulmonary
obstructive disorders, pulmonary hypertension ensues, as characterized by elevated pulmonary artery pressure (Ppa).
Among neuropeptides with local pulmonary artery pressor effects are endothelin-1 (ET-1), angiotensin II (AIl), and
substance P, and among mitigating peptides are calcitonin gene-related peptide (CGRP), adrenomedullin (ADM), atrial
natriuretic peptide (ANP), vasoactive intestinal peptide (VIP) and ET-3. Moreover, somatostatin,s (SOM;3) exacerbates,
whereas SOM, decreases Pp, in hypoxic rats, with lowering and increasing of lung CGRP levels, respectively. Pressure
can also be modulated by increasing or decreasing plasma volume (VIP and ANP, respectively), or by induction or
suppression of vascular tissue remodeling (ET-1 and CGRP, respectively). Peptide bioavailability and potency can be
regulated through hypoxic up- and down- regulation of synthesis or release, activation by converting enzymes (ACE for
AII and ECE for ET-1), inactivation by neutral endopeptidase and proteases, or by interaction with nitric oxide (NO).
Moreover, altered receptor density and affinity can account for changed peptide efficacy. For example, upregulation of
ET, receptors and ET-1 synthesis occurs in the hypoxic lung concomitantly with reduced CGRP release. Also, receptor
activity modifying protein 2 (RAMP2) has been shown to confer ADM affinity to the pulmonary calcitonin-receptor-
like receptor (CRLR). We recently detected the mRNA encoding for RAMP2, CRLR, and the CGRP receptor RDC-1 in
rat lung. The search for an effective, lung selective treatment of pulmonary hypertension will likely benefit from
exploring the imbalance and restoring the balance between these native modulators of intrapulmonary pressure. For
example, blocking of the ET-1 receptor ET, and vasodilation by supplemental CGRP delivered i. v. or via airway gene
transfer, have proven to be useful experimentally.
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Introduction

Pulmonary hypertension
Vascular mammalian

pulmonary circulation is influenced by many endogenous

resistance in  the

agents that may directly or indirectly affect vascular
smooth muscle, right ventricular myocardium, endothelial
function, collagen and elastin deposition, and fluid
balance. The pulmonary circulation is known to develop
hypertension independent of systemic blood pressure.
The best known stimulus for development of pulmonary
hypertension (PH) is airway hypoxia, encountered at high
altitude. Other
subsequently

causes for airway hypoxia, and
hypoxia-induced PH (HPH), are
hypoventilation due to sleep apnea or restrictive
pulmonary disorders such as congenital diaphragmatic
hernia (O’Toole et al. 1996, Cutz et al. 1997) and
atelectasis (respiratory distress syndrome) in infants and
chronic obstructive pulmonary disease (COPD) and aduit
respiratory distress syndrome among adults (Zapol and
Hurford 1993) and also pneumonia or sepsis. Moreover,
infants who have died from sudden infant death
syndrome carry markers suggestive of airway hypoxia
and PH (Valdes-Dapena 1992). Other known causes of
PH are pyrrilizidine alkaloid
monocrotaline (Kay et al 1982) and serotonergic
pharmaceuticals such as the weight loss agents Fen-phen,
Redux, and Aminorex (Gurtner 1985, Gaul et al. 1992,
Abenhaim e al. 1996, Weir et al. 1999). Primary PH
constitutes yet another category of PH, in which the
etiology is unknown. Because PH is usually associated
with right ventricular hypertrophy, pulmonary vascular
hypertrophy and muscularization, and lung edema
(Hunter et al. 1974, Hultgren 1978), restoration of normal
pulmonary artery pressure (Pp,) is clinically challenging.

ingestion of the

Conventional pharmaceutics

Many conventional pharmacological agents have
been used to reduce pulmonary hypertension, including
the B-adrenoceptor antagonist metipranolol (O3téadal et
al. 1978), heparin sodium (platelet-derived growth factor
inhibition) (Kentera et al. 1985), teprotide (inhibition of
angiotensin converting enzyme) (McKenzie et al. 1984),
bradykinin (pulmonary vasodilation) (Gavras and Gavras,
1988), and prostacyclin (Magnani and Galie 1996) among
others. However, these agents have unwanted side effects
and limited efficacy (Cuiper ez al. 1996, Kulkarni et al.
1996, Kesten et al. 1999). Kneussl et al. (1996) stated
that no selective vasodilator was yet available. However,

endothelium-derived relaxing factor nitric oxide (NO) has
been shown to act as a pulmonary vasodilator (Leeman er
al. 1994). Thus, NO is currently used for inhalation
treatment of PH in some intensive care units (Muller et
al. 1996, Nakagawa et al. 1997), often with moderately
beneficial results (Mariani et al. 1996, Nakagawa et al
1997). Moreover, potentially serious side effects such as
formation of methemoglobin (Iwamoto et al 1994,
Offner et al. 1996), DNA breakage, and endothelial and
airway epithelial injury by its metabolite, peroxynitrite,
have been reported (Beckman et al. 1990, Gow et al.
1998). There is thus a good reason to turn the attention to
endogenous lung neuropeptides of which many have
vasoactive effects on the pulmonary circulation. This is
further supported by the notion that pulmonary vascular
pressure is primarily regulated locally within the lung
(Daly and Hebb 1966, Laros 1971).

Pulmonary vasoconstrictor and dilator peptides

A number of endogenous lung peptides have
pressor effects on the pulmonary circulation. Among
these are: endothelin-1 (ET-1), angiotensin II (AIl),
arginine vasopressin (AVP), substance P (SP), and
peptide tyrosine Y (PYY). On the other hand, examples
of peptides that reduce Pps are calcitonin gene-related
peptide (CGRP), adrenomedullin (ADM), atrial
natriuretic peptide (ANP), vasoactive intestinal peptide
(VIP), ET-3, and somatostatin;4. While other endogenous
lung peptides may also have vasoactive properties, the
ones named here are the most studied. Moreover, ET-1 is
the most potent constrictor and CGRP and ADM are the
most potent vasodilator peptides. Therefore, special
attention will be given to these three endogenous,
pulmonary regulatory peptides. Homeostasis of Ppa
requires harmony in the balance between ET-1 and
CGRP in particular, and also in the net balance between
all pressor and depressor peptides within the pulmonary
circulation (Fig. 1). The changes in this balance upon
hypoxia and other agents, and its effects on the
pulmonary circulation, are summarized below together
with a selection of relevant references.

Pulmonary vasoconstrictor peptides

Endothelins (ETs)

ET-1 is a potent 21 amino acid vasoconstrictor
peptide in the systemic and pulmonary circulation, and it
also has mitogenic effects on vascular endothelium and

smooth muscle (Yanagisawa er al. 1988). ETs are
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produced by vascular endothelial cells (Yanagisawa et al.
1988) and also by alveolar type II pneumocytes
(Markewitz et al. 1995), they are released to the
pulmonary circulation, and also have paracrine function.
Furthermore mRNAs encoding ETs have been detected in
rat pulmonary nerves and ganglia using autoradiography
(McKay et al. 1991) or in situ hybridization (Keith IM,
unpublished data), and in airway neuroendocrine cells
(Giaid et al. 1991). Mast cells have also been shown to
synthesize ET-1, and release ET-1 independent of
degranulation (Ehrenreich et al. 1992). Three structurally
related isoforms ET-1, ET-2, and ET-3 have been
described. Several G-protein-coupled ET receptor
subtypes exist (Inoue et al. 1989, Sakurai ef al. 1992) and
have been reported in pulmonary arteries (Cardell et al.
1992, guinea pig). The ET, receptor binds preferably to

\/

ET-1 and ET-2 rather than ET-3 (Arai ef al. 1990, bovine
lungs), with the highest affinity for ET-1 (100 times
higher than that for ET-3). ETg binds non-selectively to
ET-1, ET-2 and ET-3 (Sakurai ef al. 1990, rat lungs) and
appears to mainly recognize the C-terminal structure.
Pulmonary ET-1 binding sites are mostly located on
alveolar capillary endothelial cells (Furuya er al. 1992),
and ET-1 and ET-2 binding sites have been reported on
the smooth muscle of human pulmonary artery sections
(McKay et al. 1991). ['**I]ET-1 binding using BQ123
(ETs specific blocker) and “Ala-ET-1 also showed
pulmonary blood vessels rich in ET,, whereas the lung
parenchyma displayed ETy receptors (Nakamichi et al.
1992). Moreover, the observation that tissue mast cells
carry ET, receptors suggests that ET-1 can autoregulate
its own release from these cells (Ehrenreich ef al. 1992).

20

Fig. 1. Peptidergic regulation of the pulmonary circulation can be likened by a scale tipping toward increase (left side)

or decrease (right side) of the intrapulmonary vascular pressure, here exemplified in the rat. Upregulation of
transcription and/or translation of ET-1 and the ET receptor, or downregulation or inhibited release of CGRP,3; or
generation of inhibitory CGRP fragments, would shift the weight toward the left resulting in raised intrapulmonary
pressure, perhaps pulmonary hypertension. On the other hand, overexpression of CGRP .37 or ADM, or blockade of the
ET, receptor, would shift the weight toward the right resulting in reduction in pulmonary pressure. Ultimately, the net
effect of numerous pressor and depressor peptides, and their interactions, determines the pulmonary pressure.

Homeostasis is achieved when these agents are in balance. See the list of abbreviations.

studies with ET-1 infusion
demonstrated an initial transient vasodilation followed by

long-lasting

Functional
constriction. At resting pulmonary
vasomotor tone in vitro rat lungs showed vasoconstriction
(Lippton et al. 1991a), and vasodilation occurred while
pulmonary vascular tone was enhanced with U-46619 and

acute hypoxia (Lippton ef al. 1991b, Eddahibi et al. 1991,
Hasunuma et al. 1990). Also, infusion of low ET-1
concentrations is more likely to cause pulmonary
vasodilation whereas higher doses induce dose-dependent
vasoconstriction. Hence the ET-1 effect is sensitive to
both pre-load and ET-1 concentration. However, ET-1's
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vasodilatory effect was abolished by chronic hypoxia
(Eddahibi et al. 1993). In fact, lungs from chronically
hypoxic rats treated with ET-1 showed enhanced pressor
effects compared to normoxic rats (Hasunuma et al.
1990, Tjen-A-Looi et al. 1996). In addition, Elton et al.

(1992) showed increased ET-1 mRNA in lung tissue and’

right atrium after 48 h of hypoxia (10 % O,), and Li and
coworkers (1991, 1994a) implicated increased ET,
receptors in the pathogenesis of HPH. ET-1's role in HPH
was further supported by Stelzner et al. (1992) who found
doubled lung ET-1 levels and tripled prepro-ET-1 mRNA
in normoxic fawn-hooded rats with idiopathic PH as
compared with normotensive Sprague Dawley rats.
Findings of concomitant increases in gene transcript
levels for ET-1, and the ET4 (and also ETg) receptors in
lung tissue and pulmonary arteries during chronic
hypoxia, but not in the great vessels or systemic
circulation, indicate a selective pulmonary effect (Li et al.
1994b). Moreover, patients with PH have increased
expression of endothelin-1 and its mRNA in endothelial
cells of the pulmonary vasculature (Giaid er al. 1993,
Cacoub er al. 1997), and also increased immunoreactivity
for endothelin converting enzyme, which converts big
ET-1 to the active ET-1 (Giaid 1998). Increased
pulmonary artery ET-1 levels were also reported in
COPD patients with PH, but not in those who did not
develop PH (Celik and Karabiyikoglu 1998). Reduced
lung clearance of ET-1, noted among patients with PH,
may also contribute to the increased ET-1 levels and
concomitant PH (Dupuis et al. 1998).

-The role of endogenous ET-1 in HPH has also
been demonstrated by prevention, reversal, or blunting of
HPH development in rats treated with the selective ET,
receptor blockers BQ123 (Li ef al. 1994a, Tjen-A-Looi et
al. 1996), BMS-182874 and TBC112-51 (Holm 1997,
Holm et al. 1998), and CI-1020 (Haleen et al. 1998), or
intravenous ET antiserum (0.25 pl/rat’h, Tjen-A-Looi et
al. 1996) during the hypoxic exposure. In addition to its
vasoconstrictive function, ET-1 is also known to exert
mitogenic effects on vascular smooth muscle (Komuro et
al. 1988), which is antagonized by BQ123 (Ohlstein ef al.
1992). Also, ET-1 mediates enhanced vascular
permeability via the ET, receptor as shown in the heart
(Filep et al. 1992). On the other hand, ET-1's dilatory
effect was shown to be mediated by ETy receptors since
the effect was abolished with the selective ETg antagonist
BQ-788 (Holm 1997). Furthermore, in a study of
congenital diaphragmatic hernia in fetal, full-term rats,
Okazaki and colleagues (1998) found that mRNA levels

were increased for ET-1 and ET,, but not ETg, compared
with normal controls, even though these rats were unborn
and had not yet been breathing. These observations
together clearly demonstrate a role of ET-1 in HPH,
acting via ET, receptors, and suggest that ET-1 is also
involved in other etiologies of PH.

Angiotensin II (All)

All is a potent pressor peptide of the renin-
angiotensin system, and is derived from conversion of Al
to All by angiotensin converting enzyme (ACE), located
in caveolae of the pulmonary vascular endothelium. Most
of AIl’s biological functions have been ascribed to the
AT, réceptor. For example, rats treated intravenously
with the AT, receptor antagonist, GR138950C, during
7 days of exposure to hypoxia developed less HPH and
remodeling compared with controls given saline (Zhao ef
al. 1996a), suggesting a role of AIl in the early
pathogenesis of HPH. Furthermore, in patients with HPH
secondary to COPD, endogenous AlI levels were lowered
by ACE receptor blockade with captopril (Boschetti ez al.
1985). In these patients, the expected vasodilatory effect
was only obtained in conjunction with oxygen therapy,
perhaps aided by ACE-induced increase in bioavailability
of bradykinin, a potent vasodilator in the lung (Che and
Bevan 1981). In another rat study, the ACE inhibitor,
quinapril, reduced the development of HPH when given
from onset of hypoxia, and partially reversed established
HPH (Nong et al. 1996). It was concluded that AIl’s
effects were primarily due to inhibition of vascular
smooth muscle cell proliferation and/or growth. This is
supported by the observation that AIl stimulates
proliferation of human pulmonary artery smooth muscle
cells via the AT, receptors (Morrell et al. 1998).

Arginine vasopressin (AVP)

AVP is known to raise systemic blood pressure
upon a sudden drop in pressure, and Pp could also rise as
a result. AVP’s main pressor effect in the lung could be
through its ability to dose dependently induce expression
of prepro-ET-1 mRNA (Imai et al. 1992). However, in
rats with HPH, AVP has also been found to lower Ppy
indirectly by releasing ANP from the left atrium (Jin et
al. 1989), and by reducing cardiac output (Nyhan ez al.
1986).

Substance P (SP)
SP is a ubiquitous neuropeptide, also located in
(capsaicin-

pulmonary perivascular sensory nerves
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sensitive C-fibers) together with CGRP (Cadieux et al.
1986, Ju er al. 1987). Lung SP levels in rats were
elevated 1-3 weeks after monocrotaline administration
(Lai et al. 1996). The SP elevation could have resulted
from a documented reduction in levels of neutral
endopeptidase 24.11 (NEP), the enzyme responsible for
SP degradation (Lai et al. 1996). Elevated lung SP and
reduced NEP were also noted in chronic intermittent
hypoxia (Lai et al. 1995). However, SP is generally not
considered a significant player in pulmonary pressure
regulation, but it is essential in plasma protein
extravasation (Gamse and Saria 1985) leading to
perivascular pulmonary edema typical for HPH.

Somatostatingg (SOM,g)

SOM is most known for its localization to
pancreatic islet 3-cells, and has also been reported in
pulmonary neuroendocrine cells and nerves (Dayer et al
1985). Exogenous SOM,; was found to have an
exacerbating effect on HPH in rats (Tjen-A-Looi et al.
1992). The mechanism for this -action is not known,
however, reduced lung tissue levels of the pulmonary
vasodilator CGRP were associated with SOM,;z infusion
in the hypoxic rats. SOM exerts similar regulatory effects
in other organ systems.

Peptide tyrosine Y (PYY)

PYY is a tyrosine-rich 36 amino acid member of
the pancreatic polypeptide family. It has potent
vasoconstrictive effects on some systemic vascular beds
(Lundberg et al. 1982, Zukowska-Grojec et al. 1986), but
has been little studied in the lung. Keith and Ekman
(1990) demonstrated distinct PY'Y-like immunoreactivity
in solitary neuroendocrine cells of the airway epithelium.
Many of these cells were uniquely situated in alveolar
ducts, i.e. in the gas-exchanging (respiratory) portion of
.the lung, suggesting local action restricted to the alveolar
parenchyma and its capillaries. Immunoreactive PYY
levels were doubled in lung tissue of rats with HPH,
whereas blood levels were significantly reduced (Keith
and Ekman 1992). Moreover, lung tissue and blood PYY
levels among 50 normoxic and chronically hypoxic rats
(17-21 days, 10 % O,) correlated highly (p<0.001) with
time in hypoxia and typical indicators of HPH, e.g. right
ventricular pressure (reflects Pp,), lung weight, right
ventricle to left ventricle plus septum weight ratio,
percentage of capillaries with elastic lamina, and density
of elasticized capillaries (Keith and Ekman 1992). Blood
levels correlated inversely with these parameters, and
also correlated highly with pulmonary artery medial

thickness. These data suggest the possibility of an
indirect or direct role for PYY associated with HPH.

Pulmonary vasodilator peptides

Calcitonin gene-related peptide (CGRP)

The 37 amino acid polypeptide CGRP is the
most potent endogenous vasodilator peptide known to
date (Brain et al. 1985, Wimalawansa 1996, van Rossum
et al. 1997). It also counteracts hypoxia-induced tissue
remodeling (e.g. right ventricular hypertrophy) associated
with HPH (Tjen-A-Looi et al. 1992). There are two forms
of CGRP, a and B, which differ in only 3 amino acids in
humans and 2 in rats. aCGRP is derived from tissue
specific, alternative mRNA splicing of the calcitonin
gene (calcitonin being predominant in thyroidal C-cells)
(Amara et al. 1982, Rosenfeld er al. 1983), and the
B form is produced by a separate gene located on the
same chromosome. aCGRP is prevalent in the lung and
occurs in the sensory neural network, whereas BCGRP is
common in intestinal neurons (Mulderry et al. 1988).
CGRP-like immunoreactivity is localized in nerve fibers
of the airway mucosa and around vascular smooth muscle
(Cadieux et al. 1986, Tjen-A-Looi et al. 1998).
Moreover, CGRP and its mRNA have been localized in
the perikarya of intrapulmonary ganglia and in
neuroendocrine cells of the airway epithelium (Keith ef
al. 1991). These neuroendocrine epithelial cells have
been shown to function as airway oxygen sensors that
respond to altered airway oxygen content (Lauweryns et
al. 1977, Youngson et al. 1993) by modulating local
pulmonary vascular tone. CGRP is therefore strategically
localized, interconnecting neuroendocrine cells, airway
epithelium and local vasculature in a local microcircuit
(Tjen-A-Looi et al. 1998), and facilitating regional
distribution of blood.

CGRP..;; belongs to a superfamily of closely
related peptides (Wimalawansa 1997) of which both o
and P forms, calcitonin; ;,, and ADM,, all derive from
the human chromosome 11, whereas amylin;3; is
generated from chromosome 12 (Christianson et al
1990). Calcitonin;.3;, ADM;.5, and amylin, 37 share both
structural and functional homology with CGRP, although
less potent, and are further related to the insulin
superfamily of peptides which may all have diverged
from an ancestral gene during evolution. The N-terminal
end holds the agonistic properties, which depend upon an
intact disulfide bridge between two cystein residues in
positions 2 and 7 (Nuki et al. 1994), and YArg is
important for receptor interactions (Mimeault ef al.
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1993). The most homology among the members of the
superfamily having vasodilator effects (e.g. CGRP, ADM
and amylin) is within the sequence 1-13. On the other
hand, the C terminal CGRP sequence 8-37 is a
competitive antagonist with high affinity for the CGRP!
receptor (Chiba et al. 1989). Other, shorter C-terminal
fragments were also found to have antagonistic properties
(Rovero et al. 1992). All known members of the CGRP
superfamily are believed to interact with seven-
transmembrane domain G-protein receptors.

The effects of CGRP are mediated by binding to
specific receptors that are positively coupled to adenylyl
cyclase (Aiyar et al. 1997). Originally, two types of
CGRP receptors were identified, namely the CGRPI
receptor, characterized by high affinity binding to the
selective antagonist ligand, CGRPs.3;, and the CGRP2
receptor, characterized by binding to the selective, linear
agonistic analog diacetoamidomethylcysteine CGRP
(Cys(ACM2,7)CGRP) (Aiyar et al. 1996). To date,
several receptors have been claimed to be CGRP1
receptors by cloning studies and functional assays. The
canine orphan receptor RDC-1 was originally cloned
from dog thyroid ¢cDNA (Libert et al. 1989), and later
identified as a CGRP1 receptor (Kapas and Clark 1995).
The RDC-1 gene is expressed in normal tissues and
transformed cells of neural origin (Collum et al. 1992),
and may play a critical role in fetal development of
neuronal tissues. In addition, a calcitonin-receptor-like
receptor (CRLR) sequence was initially cloned in rat lung
(Njuki er al. 1998). Stolarsky-Fredman and coworkers
(1990) identified a tissue specific enhancer in the rat
calcitonin/CGRP gene, which could improve receptor
function in neurons and endocrine cells. Later, Muff and
coworkers (1998) reported that certain proteins, named
receptor activity modifying proteins (RAMPs), could
modify the function of the CRLR. Cloning experiments
were performed, and three biological functions for
RAMPs were described. These functions
transport of CRLR to the cellular plasma membrane,
definition of the specific RAMP pharmacology, and
regulating the CRLR’s state of glycosylation (Fraser ef
al. 1999). In cell cultures, co-expression of RAMP1 with
CRLR was found to result in novel CGRP1 receptors,
while RAMP2 and RAMP3 presents the CRLR at the cell
surface as an ADM receptor (McLatchie et al. 1998,
Fraser et al. 1999). Using RT-PCR on extracted total
mRNA from rat lung, Qing and Keith (2000) detected
gene expression of RDC-1, CRLR, and RAMP2,

involve

suggesting that the pulmonary vasodilator ADM may also
have a role in regulation of pulmonary vascular tone.
CGRP effectively dilates precontracted systemic
and pulmonary arteries in vitro (McCormack et al. 1989,
Martling et al. 1994) by acting on CGRP! receptors
(Tjen-A-Looi et al 1992, Aiyar et al 1996,
Wimalawansa 1996, Han et al. 1997). CGRP has one
endothelium-dependent mode of action (Chen and Guth
1995), but also dilates some systemic arteries, and the
pulmonary circulation, independent of endothelial factors
such as nitric oxide (McCormack et al. 1989, Samuelson
and Jernbeck 1991, Tjen-A-Looi et al. 1992, Martling et
al. 1994). Mannan and coworkers (1995) reported, that in
hypoxic rats, CGRP’s :
vasodilatory action was reduced and that CGRP binding
sites were upregulated. This is consistent with the finding

endothelium-dependent

of elevated CGRP levels in airway neuroendocrine cells
in hypoxic rats, which suggests reduced release from
pulmonary sources (Springall ef al. 1988).

Endogenous CGRP exerts a protective role in
HPH, and circulating levels of immunoreactive CGRP are
reduced in rats with HPH, correlating with the time-
dependent rise in Ppy (Keith and Ekman 1992, Tjen-A-
Looi ef al. 1992), thus allowing constrictors such as ET-1
to act unopposed (Helset et al. 1995, Tjen-A-Looi ef al.
1996). Moreover, HPH in rats can be ameliorated,
prevented, and partially reversed with exogenous rat-
oCGRP infusion depending on the timing of CGRP
infusion (Tjen-A-Looi et al. 1992, Keith er al. 19935).
Although in vitro work on guinea pig hearts failed to
demonstrate agonistic effects by N-terminal CGRP
fragments (Giuliani et al. 1992), the fragments CGRP
1-14, 1-13, and 1-8 were found to confer a degree of
protection against HPH (Keith and Qing 1999). The
protective role of endogenous, native CGRP was
demonstrated by exacerbated HPH upon blocking of the
CGRP1 receptor with CGRPg3; infusion, or
immunoprecipitation of circulating endogenous CGRP by
infusion of CGRP antiserum (Tjen-A-Looi et al. 1992).
Precipitation of native CGRP further elevated Pp, in HPH
rats, but was less effective in doing so compared with
in vivo CGRP1 receptor blocking with CGRP3.37, which
elevated Pp, further by 18 % (Tjen-A-Looi et al. 1992).
This suggests the presence of another pulmonary
vasodilator not immunoreacting with the CGRP
antiserum but acting on the same receptor, for example,
ADM.

CGRP’s  protective  effect was  further
emphasized by Champion and coworkers (1999), who
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employed adenovirus-mediated transfer of the prepro-
CGRP gene to the lungs of mice before exposure to
chronic hypoxia (10 % O,, 16 days) thus overexpressing
CGRP. This resulted in increased CGRP and cAMP
levels, reduced pulmonary vascular resistance, decreased
right mass, and pulmonary vascular
remodeling as compared with HPH controls. Of special
interest is the finding that the elevated lung CGRP levels
also attenuated Pp4 responses to the pressor peptides ET-1
and AIL

The fact that both N- and C-terminal fragments
bind to the CGRP receptor with distinct effects on the
pulmonary circulation suggests that inhibitory fragments,
generated by enzymatic cleavage, could compete with
native CGRP and its agonistic fragments, thereby
reducing CGRP’s moderating effects on the pulmonary
circulation. Moreover, using an isolated rat lung
preparation, Janssen and Tucker (1994) showed that
CGRP’s attenuating effect on hypoxic pulmonary
vasoconstriction could also involve suppression of the
pressor response to All.

ventricular

Adrenomedullin (ADM)

Another member of this superfamily, ADM,.s,,
is primarily produced by the adrenal medulla and also by
vascular endothelium and the lung. Like CGRP, ADM
has specific binding sites within the lung, and both
increase cellular cAMP in vascular smooth muscle
(Eguchi et al. 1994). ADM reduces systemic blood
pressure and has a vasodilatory effect on the pulmonary
vasculature (De Witt ef al. 1994). In the fetal human lung,
ADM:-like immunoreactivity was localized to bronchial
epithelial intensity
gestational age, and was also present in lung vascular

cells in which increased with
endothelium, whereas bronchial immunoreactivity was
absent after the onset of breathing and in adults (Marinoni
‘et al. 1999). This pattern suggests a significant role of
ADM in late fetal life, perhaps facilitating pulmonary
vasodilation at the time of birth. Moreover, exogenous
ADM causes dose-dependent increases in pulmonary
blood flow in fetal sheep (De Vroomen et al. 1997), and
reduces monocrotaline-induced PH in rats (Yoshihara et
al. 1998). The mechanisms involved in ADM’s effects in
the fetal sheep lung depend largely on NO release and
partly on activation of ATP-gated potassium channels
(Katp), and do not involve a CGRP receptor (Takahashi
et al. 1999). In human patients under 20 years of age with
primary and secondary PH, plasma ADM-like
immunoreactivity was significantly elevated with
significant pulmonary uptake (Yoshibayashi er al. 1997).

Chronic hypoxia also elevates ADM levels (Zhao et al.
1996b) and likewise, in adults with PH secondary to
mitral stenosis, plasma ADM levels were proportional to
the degree of pulmonary hypertension (Ppa, total vascular
and total pulmonary resistance) (Nishikimi et a/. 1997).
These elevated ADM levels are taken as a compensatory
rise to offset the increased Pp,, also supported by a net
reduction of plasma ADM across the lung.

ADM and CGRP were found to interact with an
abundant, seven transmembrane domain receptor related
to the calcitonin receptor, resulting in the expected
elevated intracellular cAMP (Han et al. 1997). Inhibition
of binding by CGRP;.;; suggests competition at a type
CGRP1 receptor that is expressed in high levels in the
pulmonary vascular endothelium (Eguchi et al. 1994).

Amylin (islet amyloid polypeptide, IAPP)

This is a 37-aminoacid peptide, co-synthesized
and secreted with insulin from pancreatic islet B-cells
(Nakazato et al. 1990). Beside its effects on insulin and
glucose metabolism, amylin also has systemic
vasodilatory properties (Brain et al 1990). Amylin
binding sites have been identified in rat lung membranes,
where amylin was 100 times more effective in displacing
15_amylin binding compared with CGRP (Bhogal ef al.
1992, Wang et al 1991), suggesting a potential,
independent role in the pulmonary circulation. The
differential CGRP/amylin receptor binding in the lung
suggests no competition between these two vasodilators
(Aiyar et al. 1995).

Table 1. Pulmonary artery pressures (Pp,) after chronic
infusion of amylin (10 pg/rat/h) in rats kept in hypobaric
hypoxia (10 % O, for 8 days)

Treatment Group Pps (mm Hg)
Hypoxia+ rdAmylin (n=2) 255+2.1
Hypoxia Control  (n=35) 31.5+£23
Normoxia Control (n=35) 203+ 1.7

Data are means + standard deviations, sample size is
given in parentheses. All groups are significantly
different from one another using the Student-Newman-
Keuls test for multiple comparisons at p<0. 05.

Preliminary work in collaboration with S.J.
Wimalawansa suggests that intravenous rat amylin
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infusion during chronic hypobaric hypoxia in rats
mitigates the hypoxia-induced rise in Ppy (Table 1)
compared with saline infused hypoxic controls, probably
through vasodilation.

Atrial natriuretic peptides (ANP, BNP, CNP)

Natriuretic peptides can affect pulmonary
vascular pressure directly by vasodilation (Thompson et
al. 1994) and indirectly by lowering plasma volume
through increased sodium excretion (Hirata et al. 1992).
ANP elicits vasorelaxation and inhibits vascular smooth
muscle proliferation, thereby partially reversing the
cardiopulmonary changes associated with HPH
(Thompson and Morice 1996). Part of ANP’s effect is on
pulmonary resistance vessels (Thompson and Morice
1995). Elevated ANP levels in the hypoxic lung have
been reported (Thompson et al. 1994). Both ANP and
BNP were elevated in plasma from patients with mitral
stenosis (Nikishimi ez al. 1997). These two peptides have
pulmonary vasorelaxant activity in humans (Cargill and
Lipworth 1995). CNP does not appear to have a
significant role in the pulmonary vessels. Inhibition of the
metabolic enzyme NEP may enhance the effects of ANP
by further increasing lung ANP content, thus improving
ANP binding which is reduced in hypoxic lung vessels.
The protective effect of endogenous ANP against PH was
illustrated in mice by Klinger and coworkers (1999) who
found that gene-targeted disruption of the proANP gene
caused pulmonary hypertension in both normoxia and

hypoxia. -

Somatostatin,y (SOM,,)

While SOM,; potently exacerbates HPH in rats,
the isoform SOM;, has been shown to significantly
ameliorate HPH in rats (Tjen-A-Looi et al. 1992). This
disparity in action on the pulmonary circulation is not
surprising, as the two isoforms have separate receptors,
and opposite effects have been reported in other organ
systems such as neurons (Wang ef al. 1989). However, in
a similar study using the SOM,, analog angiopeptin, an
inhibitor of cellular proliferation in several vascular
injury models, Sidney and colleagues (1996) did not find
a Ppy effect in normoxic or chronically hypoxic rats.
However, angiopeptin completely abolished the pressor
responses to injected All in isolated perfused lungs from
chronically hypoxic rats, but not in those from normoxic
rats. Although angiopeptin is a longer lasting analog, it
was used at a much lower dose compared to the SOMy, in

older rats, which could account for the difference in
efficacy between SOM4 and angiopeptin.

Endothelin-3 (ET-3)

ET-3 has been shown to exert potent, dose-
dependent vasodilatory effects in the pulmonary
circulation of rats (Crawley er al. 1992), and completely
reversed hypoxic vasoconstriction in vitro (isolated
blood-perfused lungs). However, the response to ET-3
was biphasic, with sustained contraction at doses tenfold
higher than those causing dilatation. The vasodilation was
dependent upon NO, but not Karp, and ET-3 has been
shown to actively release NO in bovine artery endothelial
cells (Warner e al. 1992). Interestingly, NO release in
turn depressed ET-1 release. ETgp-receptors have also
been shown to mediate NO release in the adrenal medulla
(Mathison and Israel 1998). ET-3's
vasodilatory effect in the pulmonary circulation is
abolished by chronic hypoxia, suggesting loss of another
vasodilator mechanism in hypoxia (Eddahibi ef al. 1993).

Wong and coworkers (1995) used the ETg
agonists *Ala-ET-1 and IRL 1620 to examine the effects

of the ETgy receptor in the pulmonary circulation of

Furthermore,

newborn lambs. At rest, no hemodynamic effects were
seen with “Ala-ET-1 and only limited decrease in Ppp
occurred with high doses of IRL 1620. However, during
U46619-induced PH, both agonists produced selective
dose-dependent decreases in Ppy which were dependent
upon endothelial NO release and activation of Karp. The
ETg receptor has also been implicated as a mediator of
autocrine ADM secretion (Jougasaki et al. 1998), and
could thereby exert vasodilation indirectly.

Vasoactive intestinal peptide (VIP)

VIP was first detected in the gastrointestinal
tract, and has since been shown to exert smooth muscle
relaxation throughout the body. In the lung, VIP is found
in perivascular nerves, and VIP receptors were found in
human lung membranes (Robberecht ef al. 1988). This
peptide has been shown to cause both bronchial and
pulmonary artery vasodilation (Martling ef al. 1990).
Moreover, elevated VIP levels were reported in plasma of
acutely hypoxic dogs (10 % O,, 30 min) that showed
decreased PaO, and increased Pps (Li et al 1990).
Results from this study suggest that VIP was released
both systemically and from the lung during hypoxia,
perhaps as a compensatory response to elevated Ppa.
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Peptide Interactions

While these peptides mainly exert direct effects
on the pulmonary circulation, they may also act indirectly
by interaction with one another, and with other agents.
For example, ET-1 interacts with many agents, which
could potentially result in indirect effects on the
pulmonary circulation. Valentin and coworkers (1991)
found that ET-1 infusion to nephrectomized rats
(2 ng/kg/min, 45 min), increased significantly plasma
levels of immunoreactive ANP. Interaction between ET
and ANP has also been reported in cardiovascular and
endocrine functions by Ota et al. (1992). ET-1-induced
vascular contractility was found to be mediated by All,
while in turn, All, and also AVP, induce endothelial
prepro-ET-1 1992). Such
interactions could propagate and amplify already
detrimental effects of ET-1.

The ET-1 vasoconstrictor effect is potentiated by
5-hydroxytryptamine through a synergistic mechanism
associated with thromboxane A, release (Yang et al.
1992). Several interactions are also documented between
ET-1 and the vasodilatory NO. For example, ET-1's
precapillary vasoconstriction in lungs from rats with

expression (Imai et al

chronic HPH was counteracted by endogenous NO
(Muramatsu ef al. 1997), and ET-1 enhanced NO-induced
apoptosis of vascular smooth muscle cells in culture, after
binding to ETg receptors (Nakahashi et al 1998).
Morever, in proliferating endothelial cell monolayers,
ET-1 mRNA transcripts and protein rose fourfold,
whereas levels of endothelial constitutive NO synthase
(ecNOS) mRNA transcripts and protein declined twofold,
suggesting reciprocal regulation of these two agents
(Flowers et al. 1995). Interaction between constrictor and
dilator effects of ET is also suggested by increased
pulmonary prepro-ET-1 and concomitant decrease in ETg
receptor mRNA associated with chronic intrauterine PH
in fetal lambs (Ivy et al. 1998).

The ETg receptor has wide ranging, beneficial
interactions in that it mediates NO/cGMP formation in
the adrenal medulla (Mathison and Israel 1998), and has
an autocrine role in the secretion of adrenomedullin
(Jougasaki et al 1998). Under certain conditions it also
binds ET-1, resulting in constriction. Among other
interactions in vasodilation are ADM-induced release of
NO, Karp activation, and CGRP-induced NO activation
in sensory neurons (Chen and Guth 1995). Also, the
renin-angiotensin

system interacts with natriuretic

peptides.

ET-CGRP interaction

A functional interplay may also exist between
ET-1 and CGRP. It was noted that acute alveolar hypoxia
increased pulmonary ET-1 release but decreased release
of CGRP (Helset et al 1995). Tjen-A-Looi and
coworkers (1996) further illustrated this relationship in a
study on HPH in rats which showed that continuous
infusion of ET-1 to the pulmonary circulation did not
alter levels of immunoreactive lung tissue CGRP in
normoxic rats, whereas ET antiserum and the ET,
antagonist BQ123 elevated lung CGRP. In this study, left
ventricular blood CGRP levels were decreased in
normoxia by ET-1 (14 days) associated with normoxic
PH, and increased with ET antiserum infusion. In chronic
hypoxia, ET-1 (2 pmol/kg/min) caused an increase in
lung CGRP at 14 days, and ET antiserum elevated lung
and blood CGRP levels after 3, 7, and 14 days
concomitant with lessened Pp,.

Moreover, in a study on effects on the systemic
circulation, infusion of exogenous ET-1 caused chronic
hypertension, as in the pulmonary circulation, and the rise
in systemic pressure was prevented by the ACE inhibitor
captopril (Mortensen and Fink 1992). This suggests that
ET-1-induced hypertension may involve the renin-
angiotensin system.

SOM-CGRP interaction

Tjen-A-Looi and coworkers (1992) noted that
chronic iv. infusion of SOM,s to the pulmonary
circulation of chronically hypoxic rats elevated lung
tissue CGRP and SOM (10fold), but did not change blood
CGRP levels. In contrast, SOM,; infusion reduced lung
tissue CGRP, but did not change blood levels. In this
study, hypoxia alone reduced blood CGRP and SOM
compared with normoxic controls, and CGRP infusion
restored normoxic blood SOM (and CGRP) levels. These
findings suggest that a reciprocal interplay could be in
effect between SOMs and CGRP.

It is clear that chronic hypoxia is a potent
stimulus for changes in the bioavailability of lung
neuropeptides. Whether airway hypoxia is caused by low
FiO,, restrictive lung disorders, hypoventilation, or
monocrotaline, the results are similar. For example, in
chronic hypoxia there is an increase in lung ET-1, All,
and SP, and a reduction of CGRP. Moreover, COPD and
congenital diaphragmatic hernia are also associated with
increased ET-1 levels, and monocrotaline treatment is
associated with increased ET-1, tachykinins (e.g. SP), and
ADM. Receptor density, binding affinity, and turnover,
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and peptide half-life, are other important factors that
affect regulation of the pulmonary circulation. For
example, abnormal net balance between pulmonary
release of ET-1 and its clearance was detected in subjects
with primary pulmonary hypertension and this was
chronic infusions of

improved by epoprostenol

(prostacyclin) (Langleben et al. 1999).

Peptide metabolism

Peptide metabolism is regulated by a variety of
enzymes. For example, ET-1 is generated through
cleavage of big ET-1 by endothelin converting enzyme
(ECE-1 and ECE-2) and All from Al by ACE. Moreover,
catabolism of the active forms is accomplished by
proteases such as NEP (ET-1, SP, ANP and enkephalin)
{Turner and Murphy 1996, Thompson et al. 1994, Winter
et al. 1991). Proteases also degrade airway VIP (Tam et
al. 1990). Tryptase from SP-activated mast cells of
human airways degrades CGRP (Walls e al. 1992), thus
attenuating CGRP’s vasodilatory activity. Because
perivascular mast cells of the airways typically increase
in numbers with hypoxic exposure (Tucker ef al. 1977),
the tryptase effect could potentially be amplified. Also,
lower levels or absence of NEP in plexiform lesions of
primary pulmonary hypertension (Cohen et al. 1998)
results in elevated peptide levels, and could contribute to
these lesions. Likewise, abundant expression of ECE-1 is
present in diseased pulmonary vessels, which may
contribute to higher ET-1 levels and the pathogenesis of
arteriopathy and PH (Giaid 1998). Thompson and
colleagues (1994) showed that short-term inhibition of
NEP in rats with established HPH caused regression of
established vascular remodeling, even though ANP levels
did not rise significantly over those of hypoxic controls.
This suggests that additional beneficial factors, also
metabolized by NEP, could be in effect.

Conclusions

Impaired vasodilation has been postulated to
play a key role in pulmonary hypertension (Weir 1978,
Mclntyre et al. 1995, Brett et al. 1996). Because vascular
contractility is left intact (Mcintyre et al 1995),
vasodilatory factors, some endothelium-dependent, may
be amiss (Brett et al. 1996). Therefore, constrictive
agents take over in lack of counteracting dilators.
Moreover, considering the many documented interactions

among particular peptides and between peptides and other
agents, the pulmonary circulation is modulated at
different levels, for example, directly by the balance
between ET-1 and CGRP, and indirectly by the net
effects from a web of additional, interacting factors.
Although many reports presented here suggest causal
relationships between peptides and measured effects, the
possibility of such concomitant changes being merely
incidental must be considered. It is apparent that a great
deal of redundancy is in place in the intricate balance
between vasoconstrictors and dilators, making clear
results and analyses difficult. However, the increased
collective knowledge of the interactions between lung
peptides under various conditions, and their net effects, is
taking us one step closer to understanding how the
pulmonary circulation is regulated. The search for an
effective, lung selective treatment of PH will likely
benefit from exploring the imbalance and restoring
between
intrapulmonary pressure.

balance these native modulators of

List of abbreviations

ACE angiotensin converting enzyme

ADM adrenomedullin

AVP arginine vasopressin

All angiotensin I

ANP, BNP, CNP  atrial natriuretic peptides A, B, C

AVP arginine vasopressin

CGRP calcitonin gene-related peptide

COPD chronic obstructive pulmonary
disease

CRLR calcitonin-receptor-like receptor

ECE endothelin converting enzyme

ET endothelin

- HPH hypoxia-induced pulmonary
hypertension

Katp ATP-gated potassium channels
NEP neutral endopeptidase
NO nitric oxide
PH pulmonary hypertension
Ppa pulmonary artery pressure
PYY peptide tyrosine Y
RAMP receptor activity modifying protein
SOM somatostatin
SP substance P

VIP vasoactive intestinal peptide
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