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Abstract—The cooperative spectrum sensing in cognitive radio come close enough to perform sensing over correlated fading
(CR) environments is generally modelled as a distributed binary scenarios due to the non-isotropic scattering model, dimee
hypothesis testing problem. However, modelling of the system in distribution of Angle of Arrival (AoA) is more likely to be

presence of correlated multipath-fading is an important issue. . . .
It deals with complex dependencies of large number of random non-uniform [13]. Spatially close SUs are likely to be aftat

variables. Earlier developments on decision fusion consider corre- by the same environmental conditions and may suffer from
lated local decisions [1]-[3], correlated shadowing [4]-[6], sgl common errors. Therefore sensing over spatially corrélate
correlation [7] and independent Rayleigh fading [8] channels. fading channels is quite practical.

This paper presents a new likelihood ratio test (LRT) based In Centralized Cooperative Spectrum Sensing (CCSS), a

fusion rule using normal factor graph (NFG) and Sum-Product- . . g
Algorithm (SPA) model for cooperative spectrum sensing in pres- central unit called fusion centre (FC) collects hard-segsi

ence of correlated multipath-fading channels. The proposed ap- (local decisions) or soft-sensing observations (local sestis-
proach requires exact channel statistics instead of instantanes tics) from CRs, identifies the available spectrum (whitecgpa
channel state information (CSI). It leads to Neyman-Pearson (N and broadcasts this information to all CRs or directly colstr
P) Crli.te”a ?asﬁd Optig‘a' Sﬁ”Sri]“g' VYe. ass“";et SdUS fre ?#ig_rt‘edCR traffic. It is simple to implement but not immune to node
in a linear fashion and each channel is correlated only with its _. : . )

adjacent channels with identical fading correlation cogfficients. failure. The work presentgd !n th'? paper 1s congentrated on
In this respect, we derive a new tri-variate Rayleigh probability CCSS over correlated fading in white space of radio spectrum
density function using Miller's [9] approach. Moreover, closed CCSS may be viewed as distributed detection (using mul-
form solutions for local probabilities of detection and false tiple detectors) with an FC. A detailed survey on distrilute
alarm are also derived by assuming that all SUs perform energy getection schemes has been presented in [14]. Though LRT

detection, experience identical signal-to-noise ratios (SNRs) wiiic . . . . .
make real-ime computations simple. The decision fusion is rule is optimal for data fusion, there is no closed form solut

performed using SPA as message passing strategy over the NFG available for coupled local best thresholds with globairapt
Simulation results are provided to validate the performance of decision [15]. However, if prior knowledge about PU’s sibna

the proposed approach. is not available, the energy detection (ED) method is ogtima
for detecting zero-mean constellation signals [16]. Tfoeee
energy detection based local sensing with identical datisi
rules is a popular model for getting global optimal soluson

In fixed spectrum allocation process, a particular frequenand frequently used in many distributed detection problems
band is restricted to the licensed users of the band. HoweverLRT based data fusion at FC is implemented using either
it has been observed that the most licensed spectrum is oftésyman-Pearson (N-P) criterion (maximization of probability
under-utilized (sparse in frequency), even one frequeranydb of detection subject to a constraint on probability of false
is not used continuously (sparse in time) and simultangousllarm) orBayes criterion (minimization of probability of error)
in all geographical locations (sparse in space) [10]. ThefEr]. Other known sub-optimal fusion rules are AND, OR,
facts may be exploited in spectrum crisis situations. Cagni VOTING [18] for ideal SU-FC (reporting) channels, Chair-
radio network (CRN) [11], based ddynamic Spectrum Access  Varshney rule for high SNR [19], equal gain combiner (EGC)
(DSA) technique, is emerging as a possible solution to thier medium SNR, maximum ratio combining (MRC) for low
problem of inefficient use of allocated licensed spectrum. ENR [20]. However, all the sub-optimal fusion rules gengral
this method, the unlicensed or secondary users (SUs) areaalsume independent fading channels with statisticallgped-
lowed to sense the spectrum periodically, identify the Bpet dent local decisions.
holes i.e. absence of PUs in that band and opportunisticallyThe problem with correlated local decisions was already
utilize it. It is also calledopportunistic spectrum access. studied in different forms. Aalo and Viswanathan [1] coesid

In cooperative sensing, information from multiple SUs are correlated noise and derived the fusion rule. Drakopoufuk a
jointly used to detect the absence of primary user's (PWge [2] derive a fusion rule based on correlated local degisi
signal (spectrum holes). It combats many random factangdes. Kam et al. [3] presents another generalized form ef th
like multipath, shadowing by exploiting the spatial divers optimal fusion rule for correlated local decisions. [6] gagts
among the CRs. It also enhances the accuracy, reliability, a2a suboptimal fusion rule termed as linear-quadratic (LQ)
performance of spectrum sensing at the cost of complex#jrategy by assuming dependent PU-SU channels and received
[6], [12]. However, spatial correlations among SUs (or CRsjgnals at SUs follow correlated log-normal distributi¢®l]
affect the performance of cooperative sensing. Correalatioconsiders spatial correlation coefficient based on (given o
among the CRs may also vary due to their mobility. They magstimated) location information. It is shown in [4], [5] tha

I. INTRODUCTION



large number of closely located SUs may be less effective tha e , »
a small number of farther located SUs due to correlated ¢adin e R
and shadowing. Spatial correlation based user selectibatm [su  [stds « «[UZ] U ]e o o [SUc]  fsur
multipath and shadow fading is presented in [7] by modifying T fifj-\ SN
the space-time correlation model of [22] which assumes that ez
distance between the users are fixed. However, they have not
derived any closed form solutions for probabilities of d#itmn ‘ Correlated ‘ ‘ Independent ‘
and false alarm. - PU—SU Channels- - {477 SU-FC Channels - -
Inference over probabilistic models [23] is often used for %gu }\ ‘ ‘ Plnfun) ‘
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among large number of random variables and finding the re

exact marginal. Good message-passing algorithms Iikd’@e
Belief-Propagation (BP) algorithm, Sum-Product-Alglonit
(SPA) [24] with suitable graphical models are used for dreyvi
inference even when exact solution is intractable (NPhard
There are several well-known graphical models [23]: Baymesi
Network (BN), Markov Random Field (MRF), Tanner graph hiclhi
(TG), and Factor graph (FG). FG/SPA setting [25] is efficient ©

for computing exact solutions of “marginalize product Oﬁg. 1. Block diagram for system model of Centralized CoofeeSpectrum
functions (MPF)” problems, where others fail and suitablgensing (CCSS) technique with K secondary users (senswisjree primary
for model based design. According to Hammersley-Cliffordser- Final decision is taken by the fusion centre.

theorem [26], only joint distribution in the form of Gibbs

distribution (e.g. Gaussian, exponential) may form theoass

ciated MRF. There is no such restriction on FG. Besides, Fagtec'uon me'Fhods over correlgted .mult|path fading chianne
N CR scenario. Main contributions in the present paper are,

are more general than others (any BN, MRF or TG can be ) .
Factor graph based modelling of cooperative spectrum

encoded as FG with no increase in its representation sife [27 * A ! ) -
Therefore we adopt FG, precisely Forney-style (normaffac sensing in spatially correlated multipath fading channels

graph (NFG) [24], as our probabilistic graphical model. NFG « Analysis of cooperative spectrum sensing for multipath
is a simplified version of general FG, where functions and fading environment by assuming correlation between
variables are represented by nodes and edges respectively. ~ adjacent channels (in a linear alignment of SUs).

The main challenge here is propeodelling of correlated  « Derivation of a new trivariate Rayleigh pdf.
channels without using the location information of CRs tb ge . Derivation of a LRT based new fusion rule over correlated
the closed form analytical solutions for performance exalu Rayleigh fading channels.

tion. It results in multivariate analysis. Joipdf of bivariate  This paper is structured as follows: Section Il explains the
Nakagamim and Rayleigh distributions are given in [28].notations and assumptions used in the article, the basiersys
lation matrix is discussed in [29] with the help of [9]. Jopulf  fading channels. The system analysis, analytical solstian

of trivariate Nakagamin distribution with arbitrary covariance gerivation of local probability of detection, probabilitgf
matrix is presented in [30], [31]. [31] also extends the @pic faise alarm, LR-based fusion rule are presented in Section |
to quadrivariate case and state that end-around G858 &  simulation results are presented in Section IV. Finallgfise
distribution is also investigated extensively in [32].dvolves

conditional and unconditional independence of large numbe|| ccssS s'sTEM MODEL OVER CORRELATED FADING
of random variables in a large CRN. Therefore message

passing based inference algorithms over probab|I|st|<phlg;rakosperative spectrum sensing scheme. Therefore propemsyste

ical model may be a better approach for complex networks:. . . . . L
y PP P modelling is very important for its practical applicatiorishe

FG/SPA based approach to cooperative spectrum sensing was, . . o
first addressed by [33]. The probability of detection and LRY#OCK. diagram of CCSS system is shown in Fig.1. The system
consists of one PUK secondary users and one FC at one

statistic are reformulated in [8] by considering exact mntplace. All SUs are simultaneously sensing the state of PU.

statistics over independent Rayleigh fading channelshis . X .
paper, we develop analytical models for CCSS scheme %\)l/e assume, SUs are located in 1-D linear alignment.

assuming PU-SU (sensing) as spatially correlated and SU-FC ) _

(reporting) channels as independent multipath fading cbisn A Notations and Assumptions

We compute the inferences using SPA over the normal factorThroughout this papei is a positive integery™ denotes
graph. Therefore we try to connect two active research arélae set{vi,...,vx }, upper-scored variablg; denotes vector
namely inference methods in graphical models and disgtbut{v; ,...,v;, } over N sampling intervals fori-th SU, ~ wu;
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Imperfect channel knowledge affects the performance of co-



denotes inversion of binary symbal, P (x) denotes prob- channel and characterized B(y;|u;), wherey; denotes the
ability density function (pdf), and¥ () denotes cumulative received signal at FC fromth SU. Therefore ovei-th BSC
distribution function (CDF). Channel coefficients, r; are with crossover probabilitf«;), the received signal at FC is,

Rayleigh and noise samples;, n; are Gaussian distributed i .
random variables (RVs) respectively N denotes complex Yi = Ui W'th probab|llt.¥ 1—oy @)
Gaussian and no distinction is considered between RVs and =~ u; With probability «;

their values.fp denotes maximum Doppler frequency. . ) _
We are interested in TV band (500-700 MHz). In thi%Nhere'u’ € {0,1}. In i-th AWGN channel with independent

band, coherence bandwidttB() > signal bandwidth B.) additive noisen; ~ CN(O,cr?“), the received signal at FC is,
and therefore frequency-selective fading is less likelgnee, Yi = Ui + ng (3)
only slow, flat-fading channels are considered throughloist t o ) ) ]
article. It is assumed that the sensing duratit) (s much Consequently, in-th independent Rayleigh fading with ~
shorter than the averagausy-to-idie and idie-to-busy state 1%(9r), the received signal at FC is,

transition periods of the PU. Otherwise, sensing outcomilts w
not be meaningful for the corresponding utilization peribds
also assumed that the correlation among the mobile CR us&hgrefore the spectrum sensing problem may be modelled as
do not change significantly during the sensing process iinary hypothesis testing with null and alternative hyjgsts,

T, < T, =~ %, where, T, = coherence time for isotropic/non-

isotropic scattering [34]. We assume that PU is memorydo: Primary user isidle or not active i.e. s =0 and

less and no prior knowledge is available about PU’s traffidi: Primary user is busy or activei.e. s =1

characteristic i.ea priori probabilities of transmitted signal

s is unknown. Also consider, SUs are transmitting at sanfgternatively, it becomes a binary hypothesis testing
power relative to PU (as interweave DSA model) and energyoblem to decide whether or not the mean received power
detector is used at each SU for local decision. Throughotit SU is higher than the expected power (threshold). It is
the article, it is considered that each SU is performiiagd- assumed that SUs use the spectrum whenever they detect
local sensing. The local decisions are arriving at FC in & spectral hole (white space). The constraint in our system
synchronous manner i.e. they are based on a common clodk the probability of interference with PU’s transmission
and arrive at some predetermined instants. As a special chgethe probability of erroneous decision about the presen
we formulate our problem by assuming tisahsing channels of PU. Therefore for efficient utilization of spectrum, the
are spatially correlated only with its immediate neightsoamd System design needs to minimize the probability of missed
reporting channels are assumed to be statistically independegigtection {,,) or maximize the probability of detectior()
subject to the constraint that probability of false alarRy)(

< pre-defined threshold{. It becomes simple, one-side trial,

Neyman-Pearson hypothesis testing problem [17].
According to the CCSS model of Fig.1, all SUs are mon-

itoring the same frequency at which PU is transmitting. The
baseband-equivalent signal), wheres € {0,1}", transmit-
ted by the PU and propagated to thth SU over a correlated ) , .
(only with immediate neighbours), frequency non-selegtiv [t iS Well recognized that proper analysis of a system
slow Rayleigh fading Channﬂﬁ(lﬁi—hﬁiﬂ), where h; is depends_ on |ts_exact probabilistic model. The CCSS model
Rayleigh distributed RV with parameter i.e. h; ~ R(o;) and deflngq in sect_|on—ll largely depends on different channel
o2 is the variance of component Gaussian random variabfg@ditions considered between PU-SU and SU-FC. In many
from which the Rayleigh variabléh,) is generated. Hence, Practical CR applications (e.g. vehicular and pedestiiuiing

the i-th SU observes a complex baseband equivalent sigfdANNels may be correlated when CRs come close enough.
() over correlated fading channels as Therefore consideration of correlated fading channel iy ve

L R relevant to the context of spectrum sensing in CR network.
@y = (hilhi—1, hit1)s + W; (1) We consider multivariate Rayleigh distribution [9] to mbde
. . - . the correlated scenario. As discussed earlier, PU-SU @sinn
where w; ~ C’N(O,a?ﬂi) i.e. wy is statistically independent,

. i i o ffering f I f -l I Raytei
circularly symmetric complex Gaussian (CSCG) d|str|bute$re suffering from slow, frequency-flat, correlated Raghe

, . . . ading i.e. one channel is correlated with only its immesliat
AL Hh SU, the signal is mapped 0”“3 2Ioca| decisign The neighbours. Moreover, the received signajs) @t FC from
mapping employs energy detectoy; ;")) to compute the

X 3 i-th SU may be written as eq.(2) for BSC, eq.(3) for AWGN,
total symbol energy-= 2on=1 lzi(m)|| flor s;llvmbol—by—sygmbol or eq.(4) for Rayleigh faded SU-FC channels respectively.
detection or average symbol energyx; > ., ||zi(n)||” for

sequence detectiofj.||: denotes Euclidean norm. All;’s are . )

transmitted to a fusion center (FC) where the final decisign (A Probability Model of the Detection Problem

is derived. The channel between each SU and FC is assumebh this section, we try to solve this distributed detection
to be noisy. It may be binary symmetric channel (BSC) groblem by passing messages over NFG using SPA. The
additive white Gaussian noise (AWGN) or Rayleigh fadedomplex envelope of the received signal at input of the

Yi = uiry + 1y 4)

B. Problem Formulation

IIl. SYSTEM ANALYSIS OF CCSSOVER SPATIALLY
CORRELATED MULTIPATH FADING CHANNELS
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Fig. 2. NFG for joint distributionP (h{*,z1*,ui*,r1*,y1* |s), where adjacent . A . N b R
PU-SU channels are correlated amatd local decisions are employed. The (2a) i i N
graph is shown for only three PU-SU-FC channels. n ve v

Fig. 3. Normal factor graph after removing the cycles. The lyriapshown
demodulators of SUs are corrupted by multiplicative Rayiei only for K= 3 PU-SU-FC channels.
fading (ﬁi) and AWGN ;). Now, we have to find likeli-
hood functions,P(y¥|s = 0) and P(yf|s = 1), where
yt* = {y1,...,yx}, to compute the LRT statistic. There-where,s? is the variance of the component Gaussian RVs of
fore a detection problem is mapped to Bayesian inferengeth Rayleigh RV ang is the identical correlation coefficient
problem by finding the likelihoods. The joint probabilitybetween any two adjacent Rayleigh RVs. According to [ [9],
distribution, P(s, h;, hi—1, hit1, zi,ui, 73, y;) represents the eq.(2.1)], with appropriate substitution of the paransténe
correlated CCSS model farth PU-SU-FC channel of Fig.1. tri-variate Rayleigh pdf may be written as, (steps are omitted
The likelihood function P(y;|s), may be computed as follows, due to space limit)

i+1__
/P(svhiahifl,hiJrlvxivuivrivyi)driduidxidhz_lfp(sayi) Shi hh P g (R he?
i—110104-1 e afy; a Q1 Qit1
Qi—1QiQi+1OZ

2p '
<CV\/QZT1+1> hzhz+1‘| 8)

A P(hi—1,hi  hiv1)=
Plyls)= /P(h@ hot hiss 2 s v il dradugda,dhi ™) (5)

IO IO

2p
Where,P(hi, hi,l,hi+1,xi,ui,ri,yi|s) is the jOint distribu- (a\/m> hi—1h;
tion of interest and it may be further factorized as,
2 a = (1 —2p%), and I(.) is the modified

P(ri) P(yi|ui, mi) P(uq|t:) P(ti|s, hi) where,; = 202,
P(hi|hi—1,hiv1)P(hi—1,hiy1) (6) Bessel function [35] of first kind with zero-th order. Margin

) distribution of(h;_1, h;+1) may be obtained from eq.(8) using
where, t; = |z;[", h; already depends oh;_1,hi1 and all [ [3g], 2.15.20, eq.(8)] as,

are independent of. Therefore forhard local decisions,

K o0
P el ufs el yls) =T [P ilus, ) Pluslti) P(tils, hi) Plhiz1 hivt) = /O Plhi-1;hi; hivr) dhs
i=1 ¢S] h.2
P(hilhi—1, hig1)P(hi—1, hip1) P(r;) @) = Di/ hie” < Io (Ash;) Io (Bihi) dh;
0
Fig.2 shows the factor graph, while two adjacent PU-SU CD; (C(A?4+B?>> A, B;C
channels are correlated. It contains cycles. Therefore@dsd =5 Iy ( 5 ) 9)

not guarantee the convergence of SPA [24]. The graph shown
in Fig.2 can be free from cycle by exploiting the assumptibn o ) o ) ) )
correlation between adjacent channels. The Fig.3 is thie CyE/Iargmal _dlstr|but|on_ ofP(h;) IS ob_tamed using [[36], 2.15.5,
free version of Fig.2. It greatly simplifies our operatiorr fo€0-(4)] with appropriate substitution of the parameters as
obtaining exact marginals using SPA. We cannot run SPA -

over the FG of Fig.3 as long as we Know the distributiorp hi) :/ P(hi_1, by, hisr) dhiy dhisa

of P(hi|hi_1,hi+1) and P(hi—17hi+l) n eq(?) Let us 0

consider the following assumptions for multivariate Ragte $h ,% o

distribution based modelling of correlated fading scemafhe :#/ hiv1lo (Bisihitt) e PPt dhyyy
covariance matrix is considered in the form of Toeplitz rixatr aQ;flgiQiH 0

Let, h;—1, h; andh;4; are jointly Rayleigh distributed random % / hi1o (Aiyhi1) e—hi_ dhi_y

variables with covariance matrix, 0o B !

13,2
0ry  POi-10; 0 :%ef{wdiﬁ%}h? ,as 1k (151; K22) =K
M = |poi_10; o? PO20; 41 Ql(l - P ) (10)
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2
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Therefore conditional distribution, C. Analytical Solutions for Correlated Rayleigh Channels

Plhilhi 1, hiss) = P(hi—1,hi, hit1) This section presents detail analytical explanations for
=L T P(hi_1,hit1) computing the probability of detection, probability of dal
on, {7C(A$4+B?)7g} Io (Ashi) To (Bihs) alarm and LRT statistics for local sensors as well as system
=0 e 1 (AB.C (11) level over the above correlated channel model. Givens=
0 (T) (hi‘hi—lvhi—&-l)s + Wi, t’L = |I7|2 Where’wi ~ CN(O7U1%JZ)
where,p— 1—p? 4= 1-p® 4 2phi __2phis and, h; is defined previously with correlation coefficient
T el Trai e 00,0, T a0 Now, underH, : z; = w; ass = 0 and therefore
A, = A:h, = A"—lh’—l B,_1 = B:h, = B'.+1h,+1 ’ ) 0 - o= Wi = ) ’
B&_l whin gL aph oo T @~ ON(0,07,). Thusz; is complex Gaussian undéfy.
T /g L T a0’ i * 7 ConsiderN number of samples as sensing interval. We may
ghi,&hgl exp _1-p? 8?71 + gfﬂ i and 7y (.;.;.) is conclude that, the unconditional pdf of under H, follows
af2; 182211 a i—1 i1 ! AR . P . .
confluent hypergeometric function [ [35], 13.1]. chi-sguare distribution with2N degrees of freedom [35] and

corresponding CDF of; under Hy with local thresholdr; is,
B. Computation of Messages in Factor Graph Model .
In NFG (probability) functions are represented by nodes and Tig N1 e’%ii
variables or group of variables are represented by assdciat £ (tilHo) =[ P(ti|Ho)dt; :/ —aNon
. ti<T; 0 (Uwz) 2NT(N)
edges of the nodes. Therefore, number of computations be-

come approximately half of general FG. Now applying the 1 /”tiN’l X e_ﬁv‘:dt_ B Y(N, ﬁ) 1)
SPA as message computation rule [24], intermediate mes-  T(N) J, (202.)" ‘T T(N)

sages are computed and passed between the nodes of the

graph. The message propagation follows single step naghere,y(N,z)= [(tV~'e~'dt andT(N)=(N — 1)! are in-

ral scheduling. The desired likelihood8(yX|s = 0) and complete gamma and complete gamma functions respectively
P(yK|s = 1), are computed as marginals by executing SP&5]. The probability of false alarm may be written a3, =

over the factor graph of Fig.3. According to SPA, as the N, Z)
graph has no cycle, computation of messages starts from [p(;|H,)dt; =1—/P(ti|Ho)dti 1 ' 202, (15)
leaf nodes P(hi_1,hit1), P(r;)) and half edge ) (edge > ti<rs L(N)

connected to only one node) and proceed from node to nod@cording to eq.(12), message undés may be written as,
The message Mp(,,)—r,) from leaf node P(r;)) to the

connecting edge (variable),, is the marginal value of that Mp, v o ., =P(yilui = 0)(1 — Py,) + P(yi|u; = 1) Py,

function (node) w.r.t. the variable. For half edge, the ragss Y(N, 5%
(My, —, p(y;|u:,r)) from the edge to the node is initialized with :P(y¢|1)+[P(y¢|0)—P(yi|1)]#=P(yi|Ho) (16)
1. Every message is computed only once. First compute all ['(N)

incoming messages to any intermediate node. Then, multigytherwise, undet; : z; = h;s + w; = h; + wy, [setting,
incoming messages with the marginal value of that node.w.xt— 1], where P(h;) follows eq.(10). The unconditional pdf
the variable associated with the outgoing edge (sum of tBes; under H; may be obtained using Bayesian approach of
functions for all associated variables except the outgoiftg [37] i.e. marginalizing the conditional pd#(z;|h;; Hy), of

is the outgoing message from the function node to the variall, over unknown parametér;. Therefore pdf ofz; under H,
edge. Following are the messages, indeea, ..., 6, 7), with  js computed as,

dotted arrows on the corresponding edges of the graph iB.Fig.

Doted arrows show the flow of the messages for computing oo

the marginal values. Therefore intermediate and final ngessa P(xi|Hy) = [m P(zilhi; Hi)P(hi)dh;

for correlated channel model are shown in Appendix A. (hi—w)?  n2
The marginal ofs on i—th branch, i.eg(s(), is computed ~ _ 20 /oohie_{ 203, +T} dh,;
from the final messages of interest as follows: Qiy/2m02, (1 - %) Jo
@2 2
(7,) _ . . 20—11); _2<ré, T Zq _ I
s\ = Mpi.1s.h)—ss X My Js.n AR dt; = =W w141 - , 17
g(s*) /tT . P(t;]s,hi)— —P(t;]s,hi) RS\/ﬁe +{ +erf (Uwi\/ﬁ>} R3/75° RL  (17)
= P(yll()) ; P(ti|8)dti + P(yl|1) Z—P(tl|s)dt2 (12) where, L = a917£13;£)2), R— L+iai,i ,andS = 521(17132)2. As

> ) ; a
where, 7; = local threshold. Therefore the desired likelihoodi=|:|” and channel with unit poweri([h;’] = 207 = 1),
function in cooperative spectrum sensing scenario arérmata USing methods of transformation of variables and plugging
from the marginal distributions of and computed as the ¢ =1 in eq.(17) we get,
accumulated final messages (product over all the branches)
1
over the edges from eq.(12) as follows, P(t:i|Hy) = Qﬁ[P”i‘Hl(‘/E) 4 Py im, (—VE)]
K 1
P(yﬂs): g(s(i)) (13) :720““ {% 72”:@- _1 -# ( Vi ) 18
iI:II RS\/% i € +R3/256 eTf O, /TR ( )
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The CDF oft; under H; and thereforeP,, is obtained by
integrating eq.(18) as follows,

o
©
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As, t;, follows eq.(18) undet{; with 2N degrees of freedom (analytical ation) of R cich faded
(1,22) . . Fig. 4. ROC curves (analytical vs. simulation) of correlaRalleigh fade
and er(z) = ’YFQ 1r) as [ [35] 6.5. 16] F'na”y' reqU|red PU-SU channels with independent SU-FC channkls= 10, N = 5.

likelihood ratio test (LRT) statistic becomes,

y1 K| Hy) ﬁP yilui=0)(1 — Py,) + P(yi|us=1)Py, 1

y¥|Hop) P(yi|lui=0)(1 — Py,) + P(yi|lu; =1) Py, 0.9t
(20)
Let us consider that each SU-FC channel is independent
Rayleigh fading with AWGN i.e.y; = ru; + n;, where
n;~CN (0,02 ) andr; is Rayleigh distributed with unit power

L %)
2

1/L

E[r;2] = 1). Therefore P(y;|u; = 0) = ———e **% and
(B[ y

2mo2

Lyl )=

i=1

o
©

o
3

0.6r —+&— Independent fading
—— Correlated fading

0.5f

Probability of detection @

0.4

(yl\ul—l) foIIows eq.(17) by replacing:; with yi, hi With
r; and o2, with o2 . It is obvious that instantaneous CSlI is 03
not reqwred to computé’d (eq.(19)) andPy, (eq.(15)) , only . ‘ ‘ ‘ ‘
channel statistics are required. Corresponding LRT siatis 0 02 pmbab?,'ﬁyoffmsé’;a,m@ 08 '
is obtained by putting those valueB,, and Py, in eq. (20)

ThereforeL(y{) depends only on channels StatIS@ o2 Fig.5. Comparison of ROC curves for correlated and indeperayleigh
andp. If all SU’s have same local threshold and experlence tfgled PU-SU channels with independent SU-FC chanigls: 10, N = 5.
same channel condition, thetf = o2, 02, =03, 05, = 02,
and we can writePy, = Py, Py, = Py. We are unable to
provide the intermediate steps of all calculations in trapegr

due to the page limit.

obtained from eq.(17) and eq.(19) and the solid curve repre-
sents the Monte Carlo simulation of the same. It shows that,
theoretical and Monte Carlo simulation of ROC for corretate
PU-SU and independent SU-FC channels are matching.
IV. SIMULATION RESULTS Fig.5 represents the comparison of ROC curves between
In this section simulation results are presented to evalugorrelated and independent PU-SU Rayleigh fading channels
the proposed cooperative sensing scheme. Some of thentlevéth independent Rayleigh faded SU-FC channels. Top curve
simulation parameters are given below: represents independent and lower one represents codrelate
Number of SUs K) is considered as 10 and number oscenario. It shows that, ROC curve for independent PU-SU
sensing samples\)) is 5.2 = —10dB for PU-SU channels; channels performs better than correlated case. Therefere w
Assume Rayleigh fading with unit power i.e? = 0.5, may conclude that ROC performance increases as the effect
p = 0.8 as correlation coefficient between two adjacent PU-Sof correlation decreases.
channelsp2 = —10dB when SU-FC channels are AWGN or
Rayleigh fading. We have also considered normalized signal V. CONCLUSION
power throughout our simulation. It is considered thatlafl t The problem of centralized cooperative spectrum sensing
SUs are experiencing same channel conditions. The receigeer correlated Rayleigh fading channels in CRN is addoesse
operating characteristic (ROC) curve is defined by proligbil in this paper. We have presented LRT based new fusion rule
of detection £;) vs probability of false alarmKy). We are which requires only statistical characteristics of theelgss
generating correlated Rayleigh RVs of equal correlatiogecachannels between PU-SU-FC. The effect of correlated and
using the method described in [38]. independent Rayleigh fading over sensing and reporting-cha
Fig.4 characterizes the ROC curve of the cooperative sp@&els are considered respectively. We have derived comelspo
trum sensing at FC for correlated PU-SU channels withg closed form solutions for local probabilities of detent
frequency non-selective fading and SU-FC as independéft;) and false alarm ;). We have also derived a new tri-
Rayleigh fading. Average SNR is 10dB i.e2 = 02 = variate Rayleigh pdf (eq.(8)) considering identical ctatien

—10dB. The dashed curve indicates the analytical ROC curbetween adjacent channels using Miller's [9] approach.



Factor graphs provide a natural graphical description @fi] J. Mitola and G. Maguire, “Cognitive radio: making softve radios
the factorization of a global function into product of local
functions. Analysis based on SPA over normal factor graphlsz]
has been used to achieve near-optimal detection of codperat
spectrum sensing in CR environment. It is obvious that col!
siderable amount of gain in computational complexity may be
achieved and the model is suitable for complex situation. [14]

In the present work, we have focused on correlated PU-SU

channels. More complex channel conditions, e.g. both PU-344; 3

more personal,Persn Com, |EEE, vol. 6, no. 4, pp. 13-18, Aug. 1999.
D. Bera, S. Pathak, and |. Chakrabarti, “A normal factaph approach
for co-operative spectrum sensing in cognitive radio,"dommunica-
tions (NCC), 2012 National Conference on, Feb. 2012, pp. 1-5.

J. Fuhl, J.-P. Rossi, and E. Bonek, “High-resolution 8irection-of-
arrival determination for urban mobile radiofntennas and Propaga-
tion, IEEE Transactions on, vol. 45, no. 4, pp. 672-682, 1997.

R. Viswanathan and P. Varshney, “Distributed detettiath multiple
sensors: Part-i. fundamental®Ffoceedings of the |EEE, vol. 85, no. 1,
pp. 54-63, Jan. 1997.

. Tsitsiklis, “Problems in decentralized decision nmakand computa-

and SU-FC channels as correlated, can be focussed as futuretion,” Ph.D. dissertation, Dept. Elec. Eng. Comput. Sci. shchusetts

work. Development of fusion rules for soft decisions may)als[
be interesting future works.
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MESSAGEPASSING ONFACTOR GRAPH (FIG.3) [18]
(D) My, Py, ju;) =1 and(7) My pe ;.5 =1 1]

(20)Mp(r;)—r; = Mri s Py;fus,r) = P(r3)
(2b)MP(hi717hi+1)_>(hi71ah'H»l) [20]

= M(h'i—l7hi+1)_’P(hi|hi—l hit1) =P(hi-1,hit1)
[21]

(B)Mp(yi\ui,m)—)Ui:Mw—'P(uiltﬁ
:/P(yi|ui,ri)P(m) d?"i = P(yi|ui)

() Mp ()t =M; P11, 5)

= P(yz\uz = O)I(ti < 7'1') + P(yi\ui = 1)I(ti > 7'1‘)

(22]

(5)Mp(hi‘hi—1 vhi+1)_’hi:Mhi_’P(ti‘hiﬁb') Ei}
:/P(hivli—l, hi1)P(hi—1, hit1)dhi—1dhiz1=P(h;) (25]
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t; Jhy
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