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Abstract—The cooperative spectrum sensing in cognitive radio
(CR) environments is generally modelled as a distributed binary
hypothesis testing problem. However, modelling of the system in
presence of correlated multipath-fading is an important issue.
It deals with complex dependencies of large number of random
variables. Earlier developments on decision fusion consider corre-
lated local decisions [1]–[3], correlated shadowing [4]–[6], spatial
correlation [7] and independent Rayleigh fading [8] channels.

This paper presents a new likelihood ratio test (LRT) based
fusion rule using normal factor graph (NFG) and Sum-Product-
Algorithm (SPA) model for cooperative spectrum sensing in pres-
ence of correlated multipath-fading channels. The proposed ap-
proach requires exact channel statistics instead of instantaneous
channel state information (CSI). It leads to Neyman-Pearson (N-
P) criteria based optimal sensing. We assume SUs are aligned
in a linear fashion and each channel is correlated only with its
adjacent channels with identical fading correlation coefficients.
In this respect, we derive a new tri-variate Rayleigh probability
density function using Miller’s [9] approach. Moreover, closed
form solutions for local probabilities of detection and false
alarm are also derived by assuming that all SUs perform energy
detection, experience identical signal-to-noise ratios (SNRs) which
make real-time computations simple. The decision fusion is
performed using SPA as message passing strategy over the NFG.
Simulation results are provided to validate the performance of
the proposed approach.

I. I NTRODUCTION

In fixed spectrum allocation process, a particular frequency
band is restricted to the licensed users of the band. However,
it has been observed that the most licensed spectrum is often
under-utilized (sparse in frequency), even one frequency band
is not used continuously (sparse in time) and simultaneously
in all geographical locations (sparse in space) [10]. These
facts may be exploited in spectrum crisis situations. Cognitive
radio network (CRN) [11], based onDynamic Spectrum Access
(DSA) technique, is emerging as a possible solution to the
problem of inefficient use of allocated licensed spectrum. In
this method, the unlicensed or secondary users (SUs) are al-
lowed to sense the spectrum periodically, identify the spectrum
holes i.e. absence of PUs in that band and opportunistically
utilize it. It is also calledopportunistic spectrum access.

In cooperative sensing, information from multiple SUs are
jointly used to detect the absence of primary user’s (PU)
signal (spectrum holes). It combats many random factors
like multipath, shadowing by exploiting the spatial diversity
among the CRs. It also enhances the accuracy, reliability, and
performance of spectrum sensing at the cost of complexity
[6], [12]. However, spatial correlations among SUs (or CRs)
affect the performance of cooperative sensing. Correlations
among the CRs may also vary due to their mobility. They may

come close enough to perform sensing over correlated fading
scenarios due to the non-isotropic scattering model, sincethe
distribution of Angle of Arrival (AoA) is more likely to be
non-uniform [13]. Spatially close SUs are likely to be affected
by the same environmental conditions and may suffer from
common errors. Therefore sensing over spatially correlated
fading channels is quite practical.

In Centralized Cooperative Spectrum Sensing (CCSS), a
central unit called fusion centre (FC) collects hard-sensing
(local decisions) or soft-sensing observations (local test statis-
tics) from CRs, identifies the available spectrum (white space)
and broadcasts this information to all CRs or directly controls
CR traffic. It is simple to implement but not immune to node
failure. The work presented in this paper is concentrated on
CCSS over correlated fading in white space of radio spectrum.

CCSS may be viewed as distributed detection (using mul-
tiple detectors) with an FC. A detailed survey on distributed
detection schemes has been presented in [14]. Though LRT
rule is optimal for data fusion, there is no closed form solution
available for coupled local best thresholds with global optimal
decision [15]. However, if prior knowledge about PU’s signal
is not available, the energy detection (ED) method is optimal
for detecting zero-mean constellation signals [16]. Therefore
energy detection based local sensing with identical decision
rules is a popular model for getting global optimal solutions
and frequently used in many distributed detection problems.

LRT based data fusion at FC is implemented using either
Neyman-Pearson (N-P) criterion (maximization of probability
of detection subject to a constraint on probability of false
alarm) orBayes criterion (minimization of probability of error)
[17]. Other known sub-optimal fusion rules are AND, OR,
VOTING [18] for ideal SU-FC (reporting) channels, Chair-
Varshney rule for high SNR [19], equal gain combiner (EGC)
for medium SNR, maximum ratio combining (MRC) for low
SNR [20]. However, all the sub-optimal fusion rules generally
assume independent fading channels with statistically indepen-
dent local decisions.

The problem with correlated local decisions was already
studied in different forms. Aalo and Viswanathan [1] consider
correlated noise and derived the fusion rule. Drakopoulos and
Lee [2] derive a fusion rule based on correlated local decision
rules. Kam et al. [3] presents another generalized form of the
optimal fusion rule for correlated local decisions. [6] suggests
a suboptimal fusion rule termed as linear-quadratic (LQ)
strategy by assuming dependent PU-SU channels and received
signals at SUs follow correlated log-normal distribution.[21]
considers spatial correlation coefficient based on (given or
estimated) location information. It is shown in [4], [5] that
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large number of closely located SUs may be less effective than
a small number of farther located SUs due to correlated fading
and shadowing. Spatial correlation based user selection inboth
multipath and shadow fading is presented in [7] by modifying
the space-time correlation model of [22] which assumes that
distance between the users are fixed. However, they have not
derived any closed form solutions for probabilities of detection
and false alarm.

Inference over probabilistic models [23] is often used for
computationally expensive, high dimension wireless com-
munication systems such as cooperative spectrum sensing.
It is an easier way of representing complex dependencies
among large number of random variables and finding the
exact marginal. Good message-passing algorithms like Pearl’s
Belief-Propagation (BP) algorithm, Sum-Product-Algorithm
(SPA) [24] with suitable graphical models are used for drawing
inference even when exact solution is intractable (NP-hard).
There are several well-known graphical models [23]: Bayesian
Network (BN), Markov Random Field (MRF), Tanner graph
(TG), and Factor graph (FG). FG/SPA setting [25] is efficient
for computing exact solutions of “marginalize product of
functions (MPF)” problems, where others fail and suitable
for model based design. According to Hammersley-Clifford
theorem [26], only joint distribution in the form of Gibbs
distribution (e.g. Gaussian, exponential) may form the asso-
ciated MRF. There is no such restriction on FG. Besides, FGs
are more general than others (any BN, MRF or TG can be
encoded as FG with no increase in its representation size [27]).
Therefore we adopt FG, precisely Forney-style (normal) factor
graph (NFG) [24], as our probabilistic graphical model. NFG
is a simplified version of general FG, where functions and
variables are represented by nodes and edges respectively.

The main challenge here is propermodelling of correlated
channels without using the location information of CRs to get
the closed form analytical solutions for performance evalua-
tion. It results in multivariate analysis. Jointpdf of bivariate
Nakagami-m and Rayleigh distributions are given in [28].
Multivariate Nakagami-m distribution with exponential corre-
lation matrix is discussed in [29] with the help of [9]. Jointpdf
of trivariate Nakagami-m distribution with arbitrary covariance
matrix is presented in [30], [31]. [31] also extends the concept
to quadrivariate case and state that end-around case (SU1 is
also correlated withSUK) is intractable. Multivariate Rayleigh
distribution is also investigated extensively in [32]. It involves
conditional and unconditional independence of large number
of random variables in a large CRN. Therefore message
passing based inference algorithms over probabilistic graph-
ical model may be a better approach for complex networks.
FG/SPA based approach to cooperative spectrum sensing was
first addressed by [33]. The probability of detection and LRT
statistic are reformulated in [8] by considering exact channel
statistics over independent Rayleigh fading channels. In this
paper, we develop analytical models for CCSS scheme by
assuming PU-SU (sensing) as spatially correlated and SU-FC
(reporting) channels as independent multipath fading channels.
We compute the inferences using SPA over the normal factor
graph. Therefore we try to connect two active research area,
namely inference methods in graphical models and distributed
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Fig. 1. Block diagram for system model of Centralized Cooperative Spectrum
Sensing (CCSS) technique with K secondary users (sensors) and one primary
user. Final decision is taken by the fusion centre.

detection methods over correlated multipath fading channels
in CR scenario. Main contributions in the present paper are,

• Factor graph based modelling of cooperative spectrum
sensing in spatially correlated multipath fading channels.

• Analysis of cooperative spectrum sensing for multipath
fading environment by assuming correlation between
adjacent channels (in a linear alignment of SUs).

• Derivation of a new trivariate Rayleigh pdf.
• Derivation of a LRT based new fusion rule over correlated

Rayleigh fading channels.
This paper is structured as follows: Section II explains the

notations and assumptions used in the article, the basic system
model, and problem formulation of CCSS over correlated
fading channels. The system analysis, analytical solutions i.e.
derivation of local probability of detection, probabilityof
false alarm, LR-based fusion rule are presented in Section III.
Simulation results are presented in Section IV. Finally, section
V concludes the paper with future research path directions.

II. CCSS SYSTEM MODEL OVER CORRELATED FADING

Imperfect channel knowledge affects the performance of co-
operative spectrum sensing scheme. Therefore proper system
modelling is very important for its practical applications. The
block diagram of CCSS system is shown in Fig.1. The system
consists of one PU,K secondary users and one FC at one
place. All SUs are simultaneously sensing the state of PU.
We assume, SUs are located in 1-D linear alignment.

A. Notations and Assumptions

Throughout this paper,K is a positive integer,vK1 denotes
the set{v1, ..., vK}, upper-scored variable~vi denotes vector
{vi1 , ..., viN } over N sampling intervals fori-th SU, ∼ ui
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denotes inversion of binary symbolui, P (x) denotes prob-
ability density function (pdf), andF (x) denotes cumulative
distribution function (CDF). Channel coefficientshi, ri are
Rayleigh and noise sampleswi, ni are Gaussian distributed
random variables (RVs) respectively.CN denotes complex
Gaussian and no distinction is considered between RVs and
their values.fD denotes maximum Doppler frequency.

We are interested in TV band (500-700 MHz). In this
band, coherence bandwidth (Bc) > signal bandwidth (Bs)
and therefore frequency-selective fading is less likely. Hence,
only slow, flat-fading channels are considered throughout this
article. It is assumed that the sensing duration (Ts) is much
shorter than the averagebusy-to-idle and idle-to-busy state
transition periods of the PU. Otherwise, sensing outcomes will
not be meaningful for the corresponding utilization period. It is
also assumed that the correlation among the mobile CR users
do not change significantly during the sensing process i.e.
Ts < Tc ≈ 0.5

fD
, where,Tc = coherence time for isotropic/non-

isotropic scattering [34]. We assume that PU is memory-
less and no prior knowledge is available about PU’s traffic
characteristic i.e.a priori probabilities of transmitted signal
s is unknown. Also consider, SUs are transmitting at same
power relative to PU (as interweave DSA model) and energy
detector is used at each SU for local decision. Throughout
the article, it is considered that each SU is performinghard-
local sensing. The local decisions are arriving at FC in a
synchronous manner i.e. they are based on a common clock
and arrive at some predetermined instants. As a special case
we formulate our problem by assuming thatsensing channels
are spatially correlated only with its immediate neighbours and
reporting channels are assumed to be statistically independent.

B. Problem Formulation

According to the CCSS model of Fig.1, all SUs are mon-
itoring the same frequency at which PU is transmitting. The
baseband-equivalent signal(s), wheres ∈ {0, 1}N , transmit-
ted by the PU and propagated to thei-th SU over a correlated
(only with immediate neighbours), frequency non-selective,
slow Rayleigh fading channel (~hi|~hi−1,~hi+1), where hi is
Rayleigh distributed RV with parameterσi i.e.hi ∼ R(σi) and
σ2
i is the variance of component Gaussian random variables

from which the Rayleigh variable(hi) is generated. Hence,
the i-th SU observes a complex baseband equivalent signal
(~xi) over correlated fading channels as,

~xi = (~hi|~hi−1,~hi+1)s+ ~wi (1)

wherewi ∼ CN(0, σ2
wi
) i.e. ~wk is statistically independent,

circularly symmetric complex Gaussian (CSCG) distributed.
At i-th SU, the signal is mapped onto local decisionui. The
mapping employs energy detector (γi(~xi

2)) to compute the
total symbol energy=

∑N
n=1 ‖xi(n)‖2 for symbol-by-symbol

detection or average symbol energy= 1
N

∑N
n=1 ‖xi(n)‖2 for

sequence detection.‖.‖: denotes Euclidean norm. Allui’s are
transmitted to a fusion center (FC) where the final decision (u)
is derived. The channel between each SU and FC is assumed
to be noisy. It may be binary symmetric channel (BSC) or
additive white Gaussian noise (AWGN) or Rayleigh faded

channel and characterized byP (yi|ui), whereyi denotes the
received signal at FC fromi-th SU. Therefore overi-th BSC
with crossover probability(αi), the received signal at FC is,

yi = ui with probability 1− αi

=∼ ui with probability αi

}

(2)

where,ui ∈ {0, 1}. In i-th AWGN channel with independent
additive noiseni ∼ CN(0, σ2

ni
), the received signal at FC is,

yi = ui + ni (3)

Consequently, ini-th independent Rayleigh fading withri ∼
R(σri), the received signal at FC is,

yi = uiri + ni (4)

Therefore the spectrum sensing problem may be modelled as
binary hypothesis testing with null and alternative hypotheses,

H0: Primary user is idle or not active i.e. s = 0 and
H1: Primary user is busy or active i.e. s = 1

Alternatively, it becomes a binary hypothesis testing
problem to decide whether or not the mean received power
at SU is higher than the expected power (threshold). It is
assumed that SUs use the spectrum whenever they detect
a spectral hole (white space). The constraint in our system
is the probability of interference with PU’s transmission
i.e. the probability of erroneous decision about the presence
of PU. Therefore for efficient utilization of spectrum, the
system design needs to minimize the probability of missed
detection (Pm) or maximize the probability of detection (Pd)
subject to the constraint that probability of false alarm (Pf )
≤ pre-defined threshold (τ ). It becomes simple, one-side trial,
Neyman-Pearson hypothesis testing problem [17].

III. SYSTEM ANALYSIS OF CCSSOVER SPATIALLY

CORRELATED MULTIPATH FADING CHANNELS

It is well recognized that proper analysis of a system
depends on its exact probabilistic model. The CCSS model
defined in section-II largely depends on different channel
conditions considered between PU-SU and SU-FC. In many
practical CR applications (e.g. vehicular and pedestrian)fading
channels may be correlated when CRs come close enough.
Therefore consideration of correlated fading channel is very
relevant to the context of spectrum sensing in CR network.
We consider multivariate Rayleigh distribution [9] to model
the correlated scenario. As discussed earlier, PU-SU channels
are suffering from slow, frequency-flat, correlated Rayleigh
fading i.e. one channel is correlated with only its immediate
neighbours. Moreover, the received signals (yi) at FC from
i-th SU may be written as eq.(2) for BSC, eq.(3) for AWGN,
or eq.(4) for Rayleigh faded SU-FC channels respectively.

A. Probability Model of the Detection Problem

In this section, we try to solve this distributed detection
problem by passing messages over NFG using SPA. The
complex envelope of the received signal at input of the
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PU-SU channels are correlated andhard local decisions are employed. The
graph is shown for only three PU-SU-FC channels.

demodulators of SUs are corrupted by multiplicative Rayleigh
fading (~hi) and AWGN (~wi). Now, we have to find likeli-
hood functions,P (yK1 |s = 0) and P (yK1 |s = 1), where
yK1 = {y1, ...., yK}, to compute the LRT statistic. There-
fore a detection problem is mapped to Bayesian inference
problem by finding the likelihoods. The joint probability
distribution, P (s, hi, hi−1, hi+1, xi, ui, ri, yi) represents the
correlated CCSS model fori-th PU-SU-FC channel of Fig.1.
The likelihood function,P (yi|s), may be computed as follows,
∫

P (s, hi, hi−1, hi+1, xi, ui, ri, yi)driduidxidh
i+1
i−1=P (s, yi)

P (yi|s)=
∫

P (hi, hi−1, hi+1, xi, ui, ri, yi|s)driduidxidh
i+1
i−1 (5)

where,P (hi, hi−1, hi+1, xi, ui, ri, yi|s) is the joint distribu-
tion of interest and it may be further factorized as,

P (ri)P (yi|ui, ri)P (ui|ti)P (ti|s, hi)

P (hi|hi−1, hi+1)P (hi−1, hi+1) (6)

where, ti = |~xi|2, hi already depends onhi−1,hi+1 and all
are independent ofs. Therefore forhard local decisions,

P (hK
1, x

K
1, u

K
1, r

K
1, y

K
1 |s)=

K
∏

i=1

P (yi|ui, ri)P (ui|ti)P (ti|s, hi)

P (hi|hi−1, hi+1)P (hi−1, hi+1)P (ri) (7)

Fig.2 shows the factor graph, while two adjacent PU-SU
channels are correlated. It contains cycles. Therefore it does
not guarantee the convergence of SPA [24]. The graph shown
in Fig.2 can be free from cycle by exploiting the assumption of
correlation between adjacent channels. The Fig.3 is the cycle
free version of Fig.2. It greatly simplifies our operation for
obtaining exact marginals using SPA. We cannot run SPA
over the FG of Fig.3 as long as we know the distribution
of P (hi|hi−1, hi+1) and P (hi−1, hi+1) in eq.(7). Let us
consider the following assumptions for multivariate Rayleigh
distribution based modelling of correlated fading scenario. The
covariance matrix is considered in the form of Toeplitz matrix.
Let, hi−1, hi andhi+1 are jointly Rayleigh distributed random
variables with covariance matrix,
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Fig. 3. Normal factor graph after removing the cycles. The graph is shown
only for K = 3 PU-SU-FC channels.

where,σ2
i is the variance of the component Gaussian RVs of

i−th Rayleigh RV andρ is the identical correlation coefficient
between any two adjacent Rayleigh RVs. According to [ [9],
eq.(2.1)], with appropriate substitution of the parameters, the
tri-variate Rayleigh pdf may be written as, (steps are omitted
due to space limit)

P (hi−1, hi, hi+1)=
8hi−1hihi+1

Ωi−1ΩiΩi+1α
e

{

−
hi

2

αΩi
−

(1−ρ2)
α

(

hi−1
2

Ωi−1
+

hi+1
2

Ωi+1

)}

I0

[(

2ρ

α
√

Ωi−1Ωi

)

hi−1hi

]

I0

[(

2ρ

α
√

ΩiΩi+1

)

hihi+1

]

(8)

where,Ωi = 2σ2
i , α = (1 − 2ρ2), and I0(.) is the modified

Bessel function [35] of first kind with zero-th order. Marginal
distribution of(hi−1, hi+1) may be obtained from eq.(8) using
[ [36], 2.15.20, eq.(8)] as,

P (hi−1, hi+1) =

∫ ∞

0

P (hi−1, hi, hi+1) dhi

= Di

∫ ∞

0

hie
−

hi
2

C I0 (Aihi) I0 (Bihi) dhi

=
CDi

2
e

(

C(A2
i+B2

i )

4

)

I0

(

AiBiC

2

)

(9)

Marginal distribution ofP (hi) is obtained using [ [36], 2.15.5,
eq.(4)] with appropriate substitution of the parameters as,

P (hi) =

∫ ∞

0

P (hi−1, hi, hi+1) dhi−1 dhi+1

=
8hie

−
h2
i

αΩi

αΩi−1ΩiΩi+1

∫ ∞

0

hi+1I0 (Bi+1hi+1) e
−ph2

i+1 dhi+1

×
∫ ∞

0

hi−1I0 (Ai−1hi−1) e
−qh2

i−1 dhi−1

=
2αhi

Ωi(1− ρ2)2
e
−
{

1−3ρ2

αΩi(1−ρ2)

}

h2
i , as1F1

(

1; 1;Kz2
)

=e(Kz2)

(10)
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Therefore conditional distribution,

P (hi|hi−1, hi+1) =
P (hi−1, hi, hi+1)

P (hi−1, hi+1)

=
2hi

C
e

{

−
C(A2

i+B2
i )

4 −
h2
i

C

}

I0 (Aihi) I0 (Bihi)

I0
(

AiBiC
2

) (11)

where,p= 1−ρ2

αΩi+1
, q= 1−ρ2

αΩi−1
, Ai−1=

2ρhi

α
√

Ωi−1Ωi

, Ai=
2ρhi−1

α
√

Ωi−1Ωi

,

Ai+1 = Aihi = Ai−1hi−1, Bi−1 = Bihi = Bi+1hi+1,
Bi =

2ρhi+1

α
√

ΩiΩi+1

, Bi+1 = 2ρhi

α
√

ΩiΩi+1

, C = ρΩi and Di =

8hi−1hi+1

αΩi−1ΩiΩi+1
exp

{

− 1−ρ2

α

(

h2
i−1

Ωi−1
+

h2
i+1

Ωi+1

)}

, and 1F1(.; .; .) is
confluent hypergeometric function [ [35], 13.1].

B. Computation of Messages in Factor Graph Model

In NFG (probability) functions are represented by nodes and
variables or group of variables are represented by associated
edges of the nodes. Therefore, number of computations be-
come approximately half of general FG. Now applying the
SPA as message computation rule [24], intermediate mes-
sages are computed and passed between the nodes of the
graph. The message propagation follows single step natu-
ral scheduling. The desired likelihoodsP (yK1 |s = 0) and
P (yK1 |s = 1), are computed as marginals by executing SPA
over the factor graph of Fig.3. According to SPA, as the
graph has no cycle, computation of messages starts from
leaf nodes (P (hi−1, hi+1), P (ri)) and half edge (yi) (edge
connected to only one node) and proceed from node to node.
The message (MP (ri)→ri ) from leaf node (P (ri)) to the
connecting edge (variable),ri, is the marginal value of that
function (node) w.r.t. the variable. For half edge, the message
(Myi→P (yi|ui,ri)) from the edge to the node is initialized with
1. Every message is computed only once. First compute all
incoming messages to any intermediate node. Then, multiply
incoming messages with the marginal value of that node w.r.t.
the variable associated with the outgoing edge (sum of the
functions for all associated variables except the outgoing). It
is the outgoing message from the function node to the variable
edge. Following are the messages, indexed(1, 2, ..., 6, 7), with
dotted arrows on the corresponding edges of the graph in Fig.3.
Doted arrows show the flow of the messages for computing
the marginal values. Therefore intermediate and final messages
for correlated channel model are shown in Appendix A.

The marginal ofs on i−th branch, i.e.g(s(i)), is computed
from the final messages of interest as follows:

g(s(i)) =

∫

ti

∫

hi

MP (ti|s,hi)→s ×Ms→P (ti|s,hi)dhi dti

= P (yi|0)
∫ τi

0

P (ti|s)dti + P (yi|1)
∫ ∞

τi

P (ti|s)dti (12)

where,τi = local threshold. Therefore the desired likelihood
function in cooperative spectrum sensing scenario are obtained
from the marginal distributions ofs and computed as the
accumulated final messages (product over all the branches)
over the edges from eq.(12) as follows,

P (yK1 |s) =
K
∏

i=1

g(s(i)) (13)

C. Analytical Solutions for Correlated Rayleigh Channels

This section presents detail analytical explanations for
computing the probability of detection, probability of false
alarm and LRT statistics for local sensors as well as system
level over the above correlated channel model. Given,xi =
(hi|hi−1, hi+1)s + wi, ti = |xi|2 where,wi ∼ CN(0, σ2

wi
)

and,hi is defined previously with correlation coefficientρ.
Now, under H0 : xi = wi as s = 0 and therefore,

xi ∼ CN(0, σ2
wi
). Thus xi is complex Gaussian underH0.

ConsiderN number of samples as sensing interval. We may
conclude that, the unconditional pdf ofti underH0 follows
chi-square distribution with2N degrees of freedom [35] and
corresponding CDF ofti underH0 with local thresholdτi is,

F (ti|H0) =

∫

ti<τi

P (ti|H0)dti =

∫ τi

0

ti
N−1 × e

−
ti

2σ2
wi

(σwi)
2N2NΓ(N)

dti

=
1

Γ(N)

∫ τi

0

ti
N−1 × e

−
ti

2σ2
wi

(

2σ2
wi

)N
dti =

γ(N, τi
2σ2

wi

)

Γ(N)
(14)

where,γ(N,x)=
∫ x

0
tN−1e−tdt and Γ(N)=(N − 1)! are in-

complete gamma and complete gamma functions respectively
[35]. The probability of false alarm may be written as,Pfi =

∫

ti>τi

P (ti|H0)dti=1−
∫

ti<τi

P (ti|H0)dti =1−
γ(N, τi

2σ2
wi

)

Γ(N)
(15)

According to eq.(12), message underH0 may be written as,

M
P (ti| ~hi,s)→s

=P (yi|ui = 0)(1− Pfi) + P (yi|ui = 1)Pfi

=P (yi|1)+[P (yi|0)−P (yi|1)]
γ(N, τi

2σ2
wi

)

Γ(N)
=P (yi|H0) (16)

Otherwise, underH1 : xi = his + wi = hi + wk, [setting,
s = 1], whereP (hi) follows eq.(10). The unconditional pdf
of xi underH1 may be obtained using Bayesian approach of
[37] i.e. marginalizing the conditional pdf,P (xi|hi;H1), of
xi over unknown parameterhi. Therefore pdf ofxi underH1

is computed as,

P (xi|H1) =

∫ ∞

−∞

P (xi|hi;H1)P (hi)dhi

=
2α

Ωi

√

2πσ2
wi

(1− ρ2)2

∫ ∞

0

hie
−

{

(hi−xi)
2

2σ2
wi

+
h2
i

L

}

dhi

=
2σwi

RS
√
2π

e
−

x2
i

2σ2
wi +

{

1+erf

(

xi

σwi

√
2R

)}

xi

R3/2S
e
−

x2
i

RL (17)

where,L= αΩi(1−ρ2)
1−3ρ2 , R=

L+2σ2
wi

L
, andS =

Ωi(1−ρ2)
2

α
. As

ti=|xi|2 and channel with unit power (E[hi
2] = 2σ2

i = 1),
using methods of transformation of variables and plugging
Ωi = 1 in eq.(17) we get,

P (ti|H1) =
1

2
√
ti
[Pxi|H1

(
√
ti) + Pxi|H1

(−
√
ti)]

=
2σwi

RS
√
2π

t
− 1

2
i e

−
ti

2σ2
wi +

1

R3/2S
e
−

ti
RL erf

( √
ti

σwi

√
2R

)

(18)
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The CDF of ti underH1 and thereforePdi
is obtained by

integrating eq.(18) as follows,

Pdi = 1− F (ti|H1) = 1−
∫

ti<τi

P (ti|H1) dti = 1−
√
2σwi

RS
√
π

∫ τi

0

t
− 1

2
i e

−
ti

2σ2
wi dti+

1

R3/2S

∫ τi

0

e
−

ti
RL erf

( √
ti

σwi

√
2R

)

dti

=1−L

S

{

erf

( √
τi

σwi

√
2

)

− 1√
R
e
−

τi
RL erf

( √
τi

σwi

√
2R

)}

=1−
(

1− 2ρ2
)2

(1−ρ2) (1−3ρ2)

{

γ(N, τi
2σ2

wi

)

Γ(N)
− 1√

R
e
−

τi
RL

γ(N, τi
2Rσ2

wi

)

Γ(N)

}

(19)

As, tk follows eq.(18) underH1 with 2N degrees of freedom
and erf(x) =

γ( 1
2 ,x

2)

Γ( 1
2 )

as [ [35], 6.5.16]. Finally, required
likelihood ratio test (LRT) statistic becomes,

L(yK
1 )=

P (yK
1 |H1)

P (yK
1 |H0)

=
K
∏

i=1

P (yi|ui=0)(1− Pdi) + P (yi|ui=1)Pdi

P (yi|ui=0)(1− Pfi) + P (yi|ui=1)Pfi

(20)
Let us consider that each SU-FC channel is independent
Rayleigh fading with AWGN i.e.yi = riui + ni, where
ni∼CN(0, σ2

ni
) andri is Rayleigh distributed with unit power

(E[ri
2] = 1). ThereforeP (yi|ui = 0) = 1√

2πσ2
ni

e
−

yi
2

2σ2
ni and

P (yi|ui=1) follows eq.(17) by replacingxi with yi, hi with
ri and σ2

wi
with σ2

ni
. It is obvious that instantaneous CSI is

not required to computePdi
(eq.(19)) andPfi (eq.(15)) , only

channel statistics are required. Corresponding LRT statistic
is obtained by putting those values,Pdi

and Pfi in eq.(20).
ThereforeL(yK1 ) depends only on channels statisticsσ2

wi
, σ2

ni

andρ. If all SU’s have same local threshold and experience the
same channel condition, thenσ2

i = σ2, σ2
wi

= σ2
w, σ2

ni
= σ2

n,
and we can writePdi

= Pd, Pfi = Pf . We are unable to
provide the intermediate steps of all calculations in this paper
due to the page limit.

IV. SIMULATION RESULTS

In this section simulation results are presented to evaluate
the proposed cooperative sensing scheme. Some of the relevant
simulation parameters are given below:

Number of SUs (K) is considered as 10 and number of
sensing samples (N ) is 5.σ2

w = −10dB for PU-SU channels;
Assume Rayleigh fading with unit power i.e.σ2

i = 0.5;
ρ = 0.8 as correlation coefficient between two adjacent PU-SU
channels;σ2

n = −10dB when SU-FC channels are AWGN or
Rayleigh fading. We have also considered normalized signal
power throughout our simulation. It is considered that all the
SUs are experiencing same channel conditions. The receiver
operating characteristic (ROC) curve is defined by probability
of detection (Pd) vs probability of false alarm (Pf ). We are
generating correlated Rayleigh RVs of equal correlation case
using the method described in [38].

Fig.4 characterizes the ROC curve of the cooperative spec-
trum sensing at FC for correlated PU-SU channels with
frequency non-selective fading and SU-FC as independent
Rayleigh fading. Average SNR is 10dB i.e.σ2

w = σ2
n =

−10dB. The dashed curve indicates the analytical ROC curve
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Fig. 4. ROC curves (analytical vs. simulation) of correlatedRayleigh faded
PU-SU channels with independent SU-FC channels.K = 10, N = 5.
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Fig. 5. Comparison of ROC curves for correlated and independent Rayleigh
faded PU-SU channels with independent SU-FC channels.K = 10, N = 5.

obtained from eq.(17) and eq.(19) and the solid curve repre-
sents the Monte Carlo simulation of the same. It shows that,
theoretical and Monte Carlo simulation of ROC for correlated
PU-SU and independent SU-FC channels are matching.

Fig.5 represents the comparison of ROC curves between
correlated and independent PU-SU Rayleigh fading channels
with independent Rayleigh faded SU-FC channels. Top curve
represents independent and lower one represents correlated
scenario. It shows that, ROC curve for independent PU-SU
channels performs better than correlated case. Therefore we
may conclude that ROC performance increases as the effect
of correlation decreases.

V. CONCLUSION

The problem of centralized cooperative spectrum sensing
over correlated Rayleigh fading channels in CRN is addressed
in this paper. We have presented LRT based new fusion rule
which requires only statistical characteristics of the wireless
channels between PU-SU-FC. The effect of correlated and
independent Rayleigh fading over sensing and reporting chan-
nels are considered respectively. We have derived correspond-
ing closed form solutions for local probabilities of detection
(Pd) and false alarm (Pf ). We have also derived a new tri-
variate Rayleigh pdf (eq.(8)) considering identical correlation
between adjacent channels using Miller’s [9] approach.
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Factor graphs provide a natural graphical description of
the factorization of a global function into product of local
functions. Analysis based on SPA over normal factor graphs
has been used to achieve near-optimal detection of cooperative
spectrum sensing in CR environment. It is obvious that con-
siderable amount of gain in computational complexity may be
achieved and the model is suitable for complex situation.

In the present work, we have focused on correlated PU-SU
channels. More complex channel conditions, e.g. both PU-SU
and SU-FC channels as correlated, can be focussed as future
work. Development of fusion rules for soft decisions may also
be interesting future works.

APPENDIX A
MESSAGEPASSING ONFACTOR GRAPH (FIG.3)

(1)Myi→P (yi|ui) = 1 and (7)Ms→P (ti|hi,s)=1

(2a)MP (ri)→ri = Mri→P (yi|ui,ri)=P (ri)

(2b)MP (hi−1,hi+1)→(hi−1,hi+1)

=M(hi−1,hi+1)→P (hi|hi−1,hi+1)=P (hi−1, hi+1)

(3)MP (yi|ui,ri)→ui
=Mui→P (ui|ti)

=

∫

P (yi|ui, ri)P (ri) dri = P (yi|ui)

(4)MP (ui|ti)→ti=Mti→P (ti|h,s)

= P (yi|ui = 0)I(ti < τi) + P (yi|ui = 1)I(ti > τi)

(5)MP (hi|hi−1,hi+1)→hi
=Mhi→P (ti|hi,s)

=

∫

P (hi|hi−1, hi+1)P (hi−1, hi+1)dhi−1dhi+1=P (hi)

(6)MP (ti|hi,s)→s=

∫

ti

∫

hi

P (ti|hi, s)× (5)× (4) dhi dti

=P (hi)

[

P (yi|0)
∫ τi

0

P (ti|s)dti + P (yi|1)
∫ ∞

τi

P (ti|s)dti
]

(21)
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