Inaki Iturbe-Ormaetxe

Inaki Iturbe-Ormaetxe
Monash University (Australia) · Institute of Vector-borne Disease

PhD Chemistry

About

87
Publications
21,370
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,083
Citations

Publications

Publications (87)
Article
Full-text available
Wolbachia is an endosymbiotic bacterium that can restrict the transmission of human pathogenic viruses by Aedes aegypti mosquitoes. Recent field trials have shown that dengue incidence is significantly reduced when Wolbachia is introgressed into the local Ae. aegypti population. Female Ae. aegypti are anautogenous and feed on human blood to produce...
Article
Background: The w Mel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and subsequently shown to reduce transmission of dengue and other pathogens, under both laboratory and field conditions. Here we describe the entomological outcomes of w Mel Wolbachia mosquito releases in two small communities in Nha Trang City...
Article
Background: The w Mel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and subsequently shown to reduce transmission of dengue and other pathogens, under both laboratory and field conditions. Here we describe the entomological outcomes of w Mel Wolbachia mosquito releases in two small communities in Nha Trang City...
Article
The global fight against mosquito-borne viral diseases has in recent years been bolstered by the introduction of the endosymbiotic bacteria Wolbachia to vector populations, which in host mosquitoes supresses the transmissibility of several viruses. Researchers engaged on this front of the battle often need to know the Wolbachia infection status of...
Article
Full-text available
Background: The World Mosquito Program uses Wolbachia pipientis for the biocontrol of arboviruses transmitted by Aedes aegypti mosquitoes. Diagnostic testing for Wolbachia in laboratory colonies and in field-caught mosquito populations has typically employed PCR. New, simpler methods to diagnose Wolbachia infection in mosquitoes are required for l...
Article
Full-text available
Background : A number of new technologies are under development for the control of mosquito transmitted viruses, such as dengue, chikungunya and Zika that all require the release of modified mosquitoes into the environment. None of these technologies has been able to demonstrate evidence that they can be implemented at a scale beyond small pilots....
Article
Full-text available
Background The leishmaniases are important neglected diseases caused by Leishmania spp. which are transmitted by sand flies, Lutzomyia longipalpis being the main vector of visceral leishmaniasis in the Americas. The methodologies for leishmaniasis control are not efficient, causing 1.5 million reported cases annually worldwide, therefore showing th...
Article
Full-text available
Background : A number of new technologies are under development for the control of mosquito transmitted viruses, such as dengue, chikungunya and Zika that all require the release of modified mosquitoes into the environment. None of these technologies has been able to demonstrate evidence that they can be implemented at a scale beyond small pilots....
Article
Full-text available
Background : A number of new technologies are under development for the control of mosquito transmitted viruses, such as dengue, chikungunya and Zika that all require the release of modified mosquitoes into the environment. None of these technologies has been able to demonstrate evidence that they can be implemented at a scale beyond small pilots....
Article
Full-text available
Wolbachia pipientis from Drosophila melanogaster (wMel) is an endosymbiotic bacterium that restricts transmission of human pathogenic flaviviruses and alphaviruses, including dengue, Zika, and chikungunya viruses, when introduced into the mosquito vector Aedes aegypti. To date, wMel-infected Ae. aegypti have been released in field trials in 5 count...
Data
wMel and wMelCS lines are bidirectionally compatible in Ae. aegypti. Bidirectional compatibility between wMel and wMelCS lines was determined by crossing Wolbachia-infected females and males from each line, with control CI crosses performed between uninfected female mosquitoes (WT) and Wolbachia-infected males of each line. Bars are the mean percen...
Data
All raw data are available within S1 Data. (XLSX)
Data
Methods used to generate S1 Fig. are described in S1 Methods. (DOCX)
Article
Full-text available
Author summary Wolbachia are bacteria that live inside insect cells. In insects that act as viral vectors, Wolbachia can suppress virus transmission to new hosts. Wolbachia have been experimentally introduced into Aedes aegypti mosquito populations to reduce the transmission of dengue, Zika, and other arboviruses that cause human disease. Wolbachia...
Article
Dengue fever is the most common mosquito transmitted viral infection afflicting humans, estimated to generate around 390 million infections each year in over 100 countries. The introduction of the endosymbiotic bacterium Wolbachia into Aedes aegypti mosquitoes has the potential to greatly reduce the public health burden of the disease. This approac...
Article
Full-text available
Theory predicts unified sex ratios for most organisms, yet biases may be engendered by selfish genetic elements such as endosymbionts that kill or feminize individuals with male genotypes. Although rare, feminization is established for Wolbachia-infected Eurema butterflies. This paradigm is presently confined to islands in the southern Japanese arc...
Article
Full-text available
Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40-75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significant...
Data
Flowchart showing numbers of Aedes aegypti analysed for susceptibility to DENV infection after exposure to patient-derived blood meals. (TIF)
Data
Marginal multiple linear regression models for viral load (log10 copies/ml) in abdomens and salivary glands depending on covariates. Only infected abdomen or salivary glands were included. Results indicate that both Wolbachia strains significantly reduce the concentration of DENV in respective infected tissues. Coef = Regression coefficients, CI =...
Data
Localisation of wMel (red) and wAlbB (green) in the Midgut epithelia, Thoracic ganglia, Salivary gland and Malpighian tubules of the superinfected Ae. aegypti line. (TIF)
Data
Baseline patient characteristics for the 41 successful infectious feeds performed using viremic human blood. (DOCX)
Article
Full-text available
Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40-75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significant...
Article
Full-text available
The endosymbiotic bacterium Wolbachia pipientis infects many species of insects and has been transinfected into the mosquito Aedes aegypti (L.), the primary vector of dengue virus (DENV). Recently, it has been shown that Wolbachia blocks the replication and transmission of RNA viruses, such as DENV, in a number of mosquito species including Ae. aeg...
Article
Full-text available
Background: Introduced Wolbachia bacteria can influence the susceptibility of Aedes aegypti mosquitoes to arboviral infections as well as having detrimental effects on host fitness. Previous field trials demonstrated that the wMel strain of Wolbachia effectively and durably invades Ae. aegypti populations. Here we report on trials of a second stra...
Chapter
Full-text available
This publication emphasises that: • Certain micro-organisms are currently used (or have the potential to be used) in a variety of products and applications such as biofertilisers, plant protection products, biofuel production, bioremediation, cleaners, detergents as well as in the control of disease transmission. • To date, there have been few use...
Article
Full-text available
In prokaryotes, small noncoding RNAs (snRNAs) of 50-500 nt are produced that are important in bacterial virulence and response to environmental stimuli. Here, we identified and characterized snRNAs from the endosymbiotic bacteria, Wolbachia, which are widespread in invertebrates and cause reproductive manipulations. Most importantly, some strains o...
Article
Full-text available
The wMel infection of Drosophila melanogaster was successfully transferred into Aedes aegypti mosquitoes where it has the potential to suppress dengue and other arboviruses. The infection was subsequently spread into two natural populations at Yorkeys Knob and Gordonvale near Cairns, Queensland in 2011. Here we report on the stability of the infect...
Article
Full-text available
Recent releases have been carried out with Aedes aegypti mosquitoes infected with the wMelPop mosquito cell-line adapted (wMelPop-CLA) strain of Wolbachia. This infection introduced from Drosophila provides strong blockage of dengue and other arboviruses but also has large fitness costs in laboratory tests. The releases were used to evaluate the fi...
Article
Full-text available
Most strains of the widespread endosymbiotic bacterium Wolbachia pipientis are benign or behave as reproductive parasites. The pathogenic strain wMelPop is a striking exception, however: it over-replicates in its insect hosts and causes severe life-shortening. The mechanism of this pathogenesis is currently unknown. We have sequenced the genomes of...
Article
Full-text available
Wolbachia blocks dengue virus replication in Drosophila melanogaster as well as in Aedes aegypti. Using the Drosophila model and mutations in the Toll and Imd pathways, we showed that neither pathway is required for expression of the dengue virus-blocking phenotype in the Drosophila host. This provides additional evidence that the mechanistic basis...
Article
Full-text available
Background The endosymbiont Wolbachia pipientis causes diverse and sometimes dramatic phenotypes in its invertebrate hosts. Four Wolbachia strains sequenced to date indicate that the constitution of the genome is dynamic, but these strains are quite divergent and do not allow resolution of genome diversification over shorter time periods. We have s...
Article
Full-text available
Wolbachia, a maternally transmitted endosymbiont of insects, is increasingly being seen as an effective biological control agent that can interfere with transmission of pathogens, including dengue virus. However, the mechanism of antiviral protection is not well understood. The density and distribution of Wolbachia in host tissues have been implica...
Article
Full-text available
Background Strains of the endosymbiotic bacterium Wolbachia pipientis are extremely diverse both genotypically and in terms of their induced phenotypes in invertebrate hosts. Despite extensive molecular characterisation of Wolbachia diversity, little is known about the actual genomic diversity within or between closely related strains that group ti...
Article
Full-text available
Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing populati...
Article
Full-text available
Genetic manipulations of insect populations for pest control have been advocated for some time, but there are few cases where manipulated individuals have been released in the field and no cases where they have successfully invaded target populations. Population transformation using the intracellular bacterium Wolbachia is particularly attractive b...
Article
Full-text available
Yeasts associate with numerous insects, and they can assist the metabolic processes within their hosts. Two distinct yeasts were identified by PCR within the planthopper Perkinsiella saccharicida, the vector of Fiji disease virus to sugarcane. The utility of both microbes for potential paratransgenic approaches to control Fiji leaf gall (FLG) was a...
Article
Full-text available
Mosquito-borne diseases such as malaria, dengue fever and filariasis cause an enormous health burden to people living in tropical and subtropical regions of the world. Despite years of intense effort to control them, many of these diseases are increasing in prevalence, geographical distribution and severity, and options to control them are limited....
Article
Wolbachia are inherited intracellular bacteria that infect a broad range of invertebrate hosts. They commonly manipulate host reproduction in a variety of ways and thereby favour their invasion into host populations. While the biology of Wolbachia has been extensively studied at the ecological and phenotypic level, little is known about the molecul...
Article
Genes encoding for proteins containing ankyrin (ANK) repeats are particularly abundant in the genomes of the bacteria Wolbachia pipientis, ubiquitous endosymbionts that infect a wide range of arthropods and filarial nematodes. ANK genes are relatively rare in prokaryotes, including related α-proteobacteria, yet the Wolbachia strain that infects Dro...
Article
Full-text available
Mosquito-borne diseases such as dengue fever, chikungunya or malaria affect millions of people each year and control solutions are urgently needed. An international research program is currently being developed that relies on the introduction of the bacterial endosymbiont Wolbachia pipientis into Aedes aegypti to control dengue transmission. In ord...
Article
Most genome sequencing projects using intracellular bacteria face difficulties in obtaining sufficient bacterial DNA free of host contamination. We have developed a simple and rapid protocol to isolate endosymbiont DNA virtually free from fly and mosquito host DNA. We purified DNA from six Wolbachia strains in preparation for genome sequencing usin...
Article
Full-text available
Wolbachia are maternally inherited intracellular bacterial symbionts that are estimated to infect more than 60% of all insect species. While Wolbachia is commonly found in many mosquitoes it is absent from the species that are considered to be of major importance for the transmission of human pathogens. The successful introduction of a life-shorten...
Article
Full-text available
Author Summary Wolbachia are bacteria that infect millions of insect species worldwide. Wolbachia aren't infectious, but are maternally inherited symbionts passed from mother to offspring. To infect a host population, Wolbachia behave as reproductive parasites and alter the host reproductive system in a manner that increases infected female reprodu...
Article
Full-text available
The alpha-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host's reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations....
Article
Full-text available
The extent and biological relevance of horizontal gene transfer (HGT) in eukaryotic evolution remain highly controversial. Recent studies have demonstrated frequent and large-scale HGT from endosymbiotic bacteria to their hosts, but the great majority of these transferred genes rapidly become nonfunctional in the recipient genome. Here, we investig...
Article
Full-text available
The horizontal transfer of the bacterium Wolbachia pipientis between invertebrate hosts hinges on the ability of Wolbachia to adapt to new intracellular environments. The experimental transfer of Wolbachia between distantly related host species often results in the loss of infection, presumably due to an inability of Wolbachia to adapt quickly to t...
Article
Wolbachia pipientis are obligate endosymbionts that infect a wide range of insect and other arthropod species. They act as reproductive parasites by manipulating the host reproduction machinery to enhance their own transmission. This unusual phenotype is thought to be a consequence of the actions of secreted Wolbachia proteins that are likely to co...
Article
Full-text available
alpha-DsbA1 is one of two DsbA homologues encoded by the Gram-negative alpha-proteobacterium Wolbachia pipientis, an endosymbiont that can behave as a reproductive parasite in insects and as a mutualist in medically important filarial nematodes. The alpha-DsbA1 protein is thought to be important for the folding and secretion of Wolbachia proteins i...
Article
The long-established view of Wolbachia as reproductive parasites of insects is becoming complicated as an increasing number of papers describe a richer picture of Wolbachia-mediated phenotypes in insects. The search for the molecular basis for this phenotypic variability has been greatly aided by the recent sequencing of several Wolbachia genomes....
Article
Full-text available
The use of transcriptional profiles for predicting mosquito age is a novel solution for the longstanding problem of determining the age of field-caught mosquitoes. Female mosquito age is of central importance to the transmission of a range of human pathogens. The transcriptional age-grading protocol we present here was developed in Aedes aegypti, p...
Article
Full-text available
Age is a critical determinant of an adult female mosquito's ability to transmit a range of human pathogens. Despite its central importance, relatively few methods exist with which to accurately determine chronological age of field-caught mosquitoes. This fact is a major constraint on our ability to fully understand the relative importance of vector...