Inaam IlahiInformation Technology University · Department of Engineering
Inaam Ilahi
Master of Science
About
14
Publications
3,926
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
277
Citations
Introduction
Additional affiliations
July 2020 - present
September 2019 - June 2020
Education
September 2018 - September 2020
September 2013 - August 2017
Publications
Publications (14)
In recent years, advancements in machine learning (ML) techniques, in particular, deep learning (DL) methods have gained a lot of momentum in solving inverse imaging problems, often surpassing the performance provided by hand-crafted approaches. Traditionally, analytical methods have been used to solve inverse imaging problems such as image restora...
Deep Reinforcement Learning (DRL) has numerous applications in the real world thanks to its ability to achieve high performance in a range of environments with little manual
oversight. Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications (e.g., smart grids, t...
In response to various privacy risks, researchers and practitioners have been exploring different paradigms that can leverage the increased computational capabilities of consumer devices to train machine (ML) learning models in a distributed fashion without requiring the uploading of the training data from individual devices to central facilities....
In response to various privacy risks, researchers and practitioners have been exploring different paradigms that can leverage the increased computational capabilities of consumer devices to train machine (ML) learning models in a distributed fashion without requiring the uploading of the training data from individual devices to central facilities....
Spurred by the recent advances in deep learning to harness rich information hidden in large volumes of data and to tackle problems that are hard to model/solve (e.g., resource allocation problems), there is currently tremendous excitement in the mobile networks domain around the transformative potential of data-driven AI/ML based network automation...
The anticipated increase in the count of IoT devices in the coming years motivates the development of efficient algorithms that can help in their effective management while keeping the power consumption low. In this paper, we propose LoRaDRL and provide a detailed performance evaluation. We propose a multi-channel scheme for LoRaDRL. We perform ext...
The performance of densely-deployed low-power wide-area networks (LPWANs) can significantly deteriorate due to packets collisions, and one of the main reasons for that is the rule-based PHY layer transmission parameters assignment algorithms. LoRaWAN is a leading LPWAN technology where LoRa serves as the physical layer. Here, we propose and evaluat...
Spurred by the recent advances in deep learning to harness rich information hidden in large volumes of data and to tackle problems that are hard to model/solve (e.g., resource allocation problems), there is currently tremendous excitement in the mobile networks domain around the transformative potential of data-driven AI/ML based network automation...
Recent advancements in deep learning has created a lot of opportunities to solve those real world problems which remained unsolved for more than a decade. Automatic caption generation is a major research field, and research community has done a lot of work on this problem on most common languages like English. Urdu is the national language of Pakis...
Deep Reinforcement Learning (DRL) has numerous applications in the real world thanks to its outstanding ability in quickly adapting to the surrounding environments. Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications (e.g., smart grids, traffic controls, and...