

Using Physical Layer Clock Recovery to Augment
Application Layer Time Synchronization

S. M. Usman Hashmi, Imran Shafi, Jamil Ahmad and Syed Ismail Shah

Abstract—Achieving same notion of time remains an important
task for most distributed systems. Time synchronization requires a
unique combination of high accuracy (µsec level) and energy
efficiency. Several application layer protocols have been developed
to meet these requirements. This article propose that the physical
layer clock recovery process can provide application layer clock drift
estimate and the application layer clock can be corrected with the
help of this estimate. This eliminates the need of application layer
time synchronization protocol i.e. the cross layer approach reduces
the number of message exchanges required by application layer for
time synchronization which leads to energy conservation. It argues
that such a cross layer approach can provide a more accurate
frequency offset estimation, or alternatively can achieve greater
energy savings, for a given accuracy, by reducing the message
exchanges. Analysis of proposed method provides concrete bounds
on achieved improvement. Experimental evaluation showed that
physical layer clock drift can be used to correct application layer clock
drift as they are identical.

Index Terms—Time synchronization, clock recovery, wireless
sensor network, cross layer time synchronization, energy efficient
time synchronization, frequency offset estimation, distributed
systems

I. INTRODUCTION

Distributed systems need a shared notion of causality to

enable coordination. In cyber physical and sensor networks,

due to interaction with physical processes governed by time

dependent laws, the causality notion is strengthened to

establish a synchronized notion of time which can have

microsecond precision requirements [18], [19], [20]. Thus,

systems can now localize intruders, determine projectile

trajectories and even establish accurate movements [14].

Establishing this shared notion of time remains a challenge.

The notion of time in any computing device is kept by using an

oscillator that produces a periodic signal at known frequency.

The signal is then used to increment a hardware counter, with

time derived as a simple multiplicative factor of the known

frequency [28]. This approach of keeping time has two

fundamental limitations.

First, with systems initialized at different time, the global

value of time will be different. This absolute difference

between system clocks is called the phase offset. The second

limitation arises from the variation in the “known” frequency,

due to environmental and manufacturing differences, of the

oscillator and is known as the frequency offset. Thus even

when different clocks calculate and compensate for the phase

offset, a different notion of the time increment causes the

clocks to drift apart over time [14].

Researchers have found several ways in which to

compensate for both these limitations [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10], [18], [19], [20], [21]. Phase offset is calculated

with message exchanges, with several novel mechanisms

taking care of the uncertainties. Frequency offset can be

eliminated by using stable but expensive oscillator. A more

traditional, and low cost, approach is to estimate the

frequency offset using regression techniques on the results of

several message exchanges. A significant amount of research

in frequency estimation has gone into making it more accurate

while using lesser number of message exchanges, thus

conserving energy.

Our key insight is the observation that physical layer symbol

recovery already compensates for frequency offset using

feedback and feed forward time synchronization system [11],

[16], [17], [29], [31], [32], [33]. Feedback systems adjust the

synchronization parameters using the error signal in a

recursive manner and can operate at symbol rate and higher

then symbol rate. Error feedback system uses different types

of interpolations, timing error detectors, loop filters and

interpolation controllers to achieve physical layer time

synchronization. The clock recovery process includes in itself

information to estimate the frequency offset.

This article argue here that not only can this approach

estimate the frequency offset accurately, it can use this

estimate to significantly improve the application layer

frequency offset calculation. The contribution of this paper

are, thus, threefold: (i) It present the key idea that physical

layer clock recovery can be used to estimate frequency offset

(Section III) (ii) It experimentally evaluate the estimation using

physical layer signal and compare it with application layer

mechanism (Section IV) (iii) It provide energy efficiency of the

model and theoretical bounds that shows the minimum

possible variance of the timing frequency error (Section V).

II. RELATED WORK

Time synchronization is a very important aspect of wireless

distributed networks. WSN make use of time synchronization

for sensor data fusion or any coordination in the network.

Clock precision and accuracy varies with requirements of

different WSN. Critical metrics of time synchronization in any

CLOCK REC AUGMENTS APP LAYER TIME SYNC 2

WSN can be precision, efficiency, lifetime, cost, scope and

availability. Precision of a clock refers to the maximum error

that a clock can have in a network with respect to the master

clock. Efficiency corresponds to the time, energy and

computations required to perform the synchronization. Energy

efficiency is a major requirement and one way to concur is to

have a synchronization protocol with very few computations.

The simpler the protocol, higher the energy efficiency and

longer the battery life. Energy efficiency can also be increased

by decreasing the number of data transmissions required for a

node to work properly in the network. Time synchronization in

less number of transmission also decreases the energy

requirements. Lifetime of the synchronization refers that how

often time synchronization should be done. Increasing lifetime

of synchronization improves energy efficiency but effects the

precision and accuracy of the synchronizing clocks. Cost is

another major factor, as there is a requirement of very large

number of devices/sensors in a network. Technology

advancements are improving cost factor. Scope and availability

corresponds to the coverage issues.

Every network, whether it is wired or wireless, needs clock

synchronization. There are different protocols available for the

wired and wireless network synchronization at application

layer. Network Time Protocol (NTP) is most widely used in

wired networks for time synchronization [18] among different

protocols. NTP creates a hierarchical tree of time servers.

Primary server synchronizes with the global clock and

distributes the time information to the secondary servers and

then to the clients. Secondary servers are also called backup

servers, as they act as backup for the primary servers. NTP tries

to ensure an extremely accurate clock and that’s why primary

servers usually equipped with atomic clock. Precision Time

Protocol (PTP) uses a master-slave architecture for the

distribution of clock among the nodes of wired network. The

master node provides the time information to the slave nodes.

Master node is synchronized with grand master node attached

to time reference such as Global Positioning System (GPS). GPS

is a satellite navigation system that provides time and location

information and can be used as a time reference.

Wired network time synchronization protocols do not offer

very good results in wireless sensor networks because of the

different requirements i.e., energy efficiency, infrastructure,

end to end latency and reliability [19] etc. Using GPS in every

wireless node to maintain same time in the network is also not

favorable option, as it makes the inexpensive wireless nodes

more expensive and energy consuming. GPS communication

also requires line of sight with the satellite which may not be

available, depending of deployment environment. Time

synchronization in wireless networks can be done in three

different ways. Relative timing seems to be the simplest one,

as it only relies on the order of the events and do not maintain

an actual clock, but this can only be used in limited types of

wireless networks. Another way of synchronizing is that each

node has the information about its frequency and phase offset

with other nodes and can synchronize their clock values. This

approach is mostly deployed by many of the time

synchronization protocols. Global synchronization, another

method of synchronization, tries to maintain a global clock

throughout the network. This synchronization approach is very

rarely used.

Many protocols are available for the time synchronization at

the application layer for any wireless network. Reference

Broadcast Synchronization (RBS) protocol can be used in

wireless distributed network for time synchronization that

pursues to decrease non-deterministic latency using receiver-

to receiver synchronization [20], [19], [27]. Wireless node

sends reference broadcast beacons to its neighbors using

physical layer broadcasts and compute the non-determinism

of packet send time, access time and propagation time,

depending only on the packet receive time. This reference

broadcast packet can be used to synchronize a set of receivers

with one another [20]. RBS maintains a table that contains the

local clock values of each node in the network. RBS relates the

local clocks of node with each other using table and let the

clocks run without correction.

In [28] the Romer’s protocol uses an innovative time

transformation algorithm for achieving clock synchronization.

It uses message delay, which is estimated by the lower bound

and the upper bound round trip time to compare the utmost

difference between two communicating nodes and

consequently synchronize them [20]. Romer’s protocol also

uses the same principle as RBS to let the clocks run untethered.

Continuous clock synchronization protocols spread the

correction of clock over a finite interval. The local clock time is

corrected by gradually speeding up or slowing down the clock

rate [19]. It provides the minimal message complexity, fault

tolerance [14], [15], [19] and avoids unpredictable

instantaneous corrections of clock values.

Timing-sync Protocol for Sensor Networks (TPSN) is a

sender-receiver based synchronization protocol designed for

WSN. TPSN creates tree of the nodes and synchronize them in

two phases namely, level discovery phase and synchronization

phase. In level discovery phase a tree of node is created by

assigning a level to each node. Level discovery phase also

defines the master node or root node. In synchronization

phase all nodes synchronize with its upper level nodes and

eventually synchronize to root node.

Flooding Time Synchronization Protocol (FTSP) [21] seems to

be a most promising application layer protocol used for time

synchronization. FTSP provides good bandwidth efficiency and

robust to wireless node failures. FTSP transmits it time stamp

periodically to all of the nodes in the wireless network and

these nodes correct their application layer clock by comparing

the time stamps. Using FTSP, a master node can synchronize

CLOCK REC AUGMENTS APP LAYER TIME SYNC 3

every node in its range by using a single radio message time-

stamped at both the master and the receiving nodes.

Protocols discussed by [20] and [19] are network wide time

synchronization protocols that can hold large node density.

Delay Measurement Time Synchronization which is an energy

efficient protocol but less accurate than the RBS [27] protocol.

Probabilistic Clock Synchronization extends RBS by providing

probabilistic bounds on the accuracy of clock synchronization.

Time-Diffusion Protocol (TDP) based on a diffusion of messages

involving all the nodes in the synchronization process. All of the

above protocols [18], [27], [28], [12], [13] can be used for

application layer clock synchronization in any wireless

distributed network (e.g. Wireless Sensor Network) [20], [19]

depending on the environment and requirements because

each has its own merits and demerits.

Time synchronization at physical layer does offer a very

broad literature. It refers to symbol timing recovery [32], [33],

[31] and extracting the phase and frequency of transmitter’s

timing clock at the receiver end [32], [33], [31], [30]. Timing

synchronization can be done using feedforward or feedback

systems [31]. Feedback systems adjust the synchronization

parameters using the error signal in a recursive manner and

can operate at higher then symbol rate as well as symbol rate

[30]. Error feedback system uses different types of

interpolations, timing error detectors, loop filters and

interpolation controllers to achieve different synchronization

schemes.

Interpolation required to compute interpolant from given

number of symbols, which is the output of matched filter, can

be done in various ways where the polynomial interpolation

and polyphase filterbank interpolation are common. Special

cases of polynomial interpolation are linear, quadratic and

cubic interpolation which can also be computed using farrow

structure [32], [33], [31]. Linear interpolation requires two

samples to compute the interpolant whereas quadratic and

cubic interpolation requires three and four samples

respectively. Increase in number of samples used for

interpolation increases accuracy but makes the timing

recovery system computationally expensive and complex.

Farrow structure used for interpolation offers less

computations and hence feasible from implementation point

of view.

Reference [32], [33] and [31] describe different types of

timing error detectors (TED) that can be used to produce error

signal. Maximum likelihood timing error detector (ML-TED)

uses the slope of the symbols and apply sign correction to get

the error signal. Zero crossing timing error detector (ZC-TED)

only operates at two samples per symbol [32], [33]. Gardner

timing error detector (G-TED) is non-data-aided version of ZC-

TED.

Phase lock loops (PLL) tracks the phase and frequency error

and its parameters can be controlled to adjust the acquisition

time and tracking performance. PLL is the main component of

many synchronization systems. PLLs are differentiated on the

order of the filter used in the design. Proportional plus

integrator loop filter can be used to track phase and frequency

error.

Reference [32], [33], [31] discusses some interpolation

controls that can be used with the feedback synchronization

systems. Modulo-1 counter interpolation control is used

where interpolants are required after every fixed number of

samples. Interpolation control can also be recursive.

Cross layer approach presented in this paper saves the
computation and communication required for the application
layer timing offset. It computes the physical layer timing
frequency offset and apply it to application layer which saves
energy required to transfer time stamps. Next section
discusses the details of the proposed model.

III. SYSTEM MODEL

Application layer clocks are usually timers that counts the

oscillations of crystal and maintains two registers to define

that how many oscillations of crystal is equal to one application

layer clock tick [19]. Clock used for symbol timing

synchronization at physical layer also counts the oscillations of

the same quartz crystal. Both the clocks at the physical layer

and application layer are derived from the oscillation of quartz

crystal, as the devices with one hardware oscillator

implements every clock within that device as

𝐶(𝑡) = 𝑘 ∫ 𝜔(𝑡)𝑑𝑡 + 𝐶(𝑡0)
𝑡

𝑡0

 (1)

Where t is real-time, ω(t) is angular frequency of oscillator and

k is the constant of proportionality [28] and this fact is

exploited to perform the cross layer synchronization.

Time synchronization at physical layer is discussed in detail by

[32], [33], [31] and [30]. In [31] many symbol timing

synchronization systems are discussed with different

modulation schemes, interpolators, timing error detectors,

loop filters and interpolation control. One such symbol timing

synchronization system is shown in Fig. 1.

Fig. 1. Symbol timing synchronization system for physical layer

CLOCK REC AUGMENTS APP LAYER TIME SYNC 4

This synchronization system, shown in above figure, is for

binary pulse amplitude modulation (PAM) and based on zero-

crossing timing error detector (ZCTED) using a piecewise

parabolic interpolator, proportional plus integrator loop filter

and modulo-1 counter interpolation control. This

synchronization system is for physical layer clock recovery

process. It is designed to track and compensate for the phase

and frequency error of the clock. The output of the matched

filter x(nT) is fed to piecewise parabolic interpolator for kth

interpolant which is defined as

𝑥 ((𝑚(𝑘) + 𝜇(𝑘))𝑇)

= (
𝜇(𝑘)3

6
−

𝜇(𝑘)

6
) 𝑥((𝑚(𝑘) + 2)𝑇)

− (
𝜇(𝑘)3

2
−

𝜇(𝑘)2

2
− 𝜇(𝑘)) 𝑥((𝑚(𝑘) + 1)𝑇)

+ (
𝜇(𝑘)3

2
− 𝜇(𝑘)2 −

𝜇(𝑘)

2
+ 1) 𝑥(𝑚(𝑘)𝑇)

− (
𝜇(𝑘)3

6
−

𝜇(𝑘)2

2
+

𝜇(𝑘)

3
) 𝑥((𝑚(𝑘) − 1)𝑇)

(2)

Where m(k) is basepoint index and µ(k) is the fractional

change and these two values are computed by modulo 1

counter interpolation control and fed to interpolator.

The output of the interpolator is processed by ZCTED

operating at 2 samples/symbol which tries to find the zero

crossing in the eye diagram [32], [33], [31] and give zero error

when perfectly aligned. The timing error signal is given by

𝑒(𝑘) = 𝑥 ((𝑘 − 1
2⁄)𝑇𝑠 + �̂�) [𝑎(𝑘 − 1) − 𝑎(𝑘)] (3)

Where a(k) and a(k−1) are symbol decisions for binary PAM

𝑎(𝑘 − 1) = 𝑠𝑔𝑛{𝑥((𝑘 − 1)𝑇𝑠 + �̂�)} (4)

𝑎(𝑘) = 𝑠𝑔𝑛{𝑥(𝑘𝑇𝑠 + �̂�)} (5)

The output of the loop filter, with constants K1 and K2, is fed

to modulo 1 interpolation control to compute the estimate of

fractional change and basepoint index. K1 and K2 can be

computed using Kp and K0 (loop gains), Bn (noise bandwidth),

Ts (symbol time), T (sample time),𝑁 =
𝑇𝑠

𝑇
 and loop parameter

ξ [32], [33], [31]. Tracking performance and acquisition time of

the synchronization system depends on the above parameters

of loop filter. The loop parameters K1, K2, Kp, K0 and ξ are

related to noise bandwidth Bn as KpK0K1 =
4ξBn

ξ+
1

4ξ

 and

KpK0K2 =
4Bn

2

(ξ+
1

4ξ
)

2 .The acquisition time TLOCK of the PLL

depends on the time required to track phase TPL and

frequency offset TFL as TLOCK ≈ TFL + TPL . Now TFL and TPL

are directly related to the noise bandwidth and that’s why the

loop parameters will have an impact over the acquisition time

that is required to track the phase (TPL ≈
1.3

Bn
) and frequency

offset(TFL ≈ 4
(∆f)2

Bn
3). Where ∆f is the frequency offset.

Modulo-1 counter interpolation control uses the output of
loop filter ν(n) to find the basepoint index m(k) and
fractional interval µ(k). The fractional interval is computed

using the modulo-1 counter η values and the following

equation.

𝜂(𝑛 + 1) = (𝜂(𝑛) − 𝑊(𝑛)))𝑚𝑜𝑑1 (6)

Where𝑊(𝑛) =
1

𝑁
+ 𝜈(𝑛). Whenever the value of η underflows

then n = m(k) Now to find the fractional interval µ(k) for the

computed basepoint index m(k) we have

𝜇(𝑚(𝑘)) =
𝜂(𝑚(𝑘))

𝑊(𝑚(𝑘))
 (7)

µ(k) and m(k) is now used to compute the next interpolant.

Using the above iterative synchronization system, the

variations of fractional change µ can be used to compute the

actual frequency offset. Different methods for computation of

frequency offset are illustrated by [32], [33], [31], [30]. The

frequency offset is computed here using the slope of the

fractional change and new sampling rate can be given by the

equation below to achieve time synchronization at the physical

layer.

𝑓𝑠 = (2 + 𝑚)𝑓𝑑 (8)

Where fs is new sampling rate, fd is symbol rate and m is the

slope of the fractional change.

Time synchronization at application layer can simply be

modeled as transmission of master node time stamp to other

nodes and correction of phase and frequency when using FTSP.

FTSP is a very widely used time synchronization protocol at

application layer because of the benefits offered by it. Master

node wraps its time stamp in a message and transmit this

message to all receivers in the distributed network. This

message instruct the receivers to note their clock values and

compare it with the time stamp received to perform

synchronization.

Fig. 2. Timing synchronization at application layer.

CLOCK REC AUGMENTS APP LAYER TIME SYNC 5

Fig. 2 shows time synchronization at application layer using

FTSP protocol in a network of two receivers. Master node

broadcasts its time stamp to both receivers. On the reception

of time stamps, these receivers compare their clock values to

the received one and hence synchronized. Synchronization

accuracy can be increased by increasing number of time stamp

broadcasts. Increasing broadcasts however reduces the energy

efficiency of the synchronization protocol.

Single time stamp broadcast can only help for the phase

correction. Multiple time stamp broadcasts are required to get

frequency synchronization. Frequency error can be calculated

by finding the slope of the line created by the time stamps. A

simple method to find the slope or frequency error fe is

𝑓𝑒 =
𝑦𝑛 − 𝑦1

𝑥𝑛 − 𝑥1

 (9)

Where yn and y1 are the nth and 1st timestamps of the

receiver A, x n and x1 are the nth and 1st timestamps of the

receiver B. Least Square (LS) estimate can give a better

estimate of frequency error. LS estimate can be applied to the

timestamps exchanged to get the estimate of straight line.

Unlike the first method, LS uses all the timestamps to compute

the slope and hence more accurate. The slope of the line is

frequency offset at the application layer. Timestamps are used

as data points in LS estimate and error is minimized between

data points and the straight line, given by

𝑒 = ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑁

𝑖=1

 (10)

Where yi are data points and 𝑦�̂� are points of computed straight

line given by y = mx+c and to find m and c the least square

estimate of a straight line is

[
𝑚
𝑐

] = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (11)

Where X and Y corresponds to the timestamps of receiver A

and receiver B.

Time synchronization has to be done at physical layer and

application layer of any distributed wireless networks.

Whenever the time needs to be synchronized at two different

nodes, it starts from the synchronization at physical layer and

then synchronize at the application layer. The model proposed

in this paper, shown in Fig. 3, enlightens that the heart of both

layer’s clock is quartz crystal. Once the synchronization at the

physical layer is achieved, frequency offset of physical layer

clock can be applied to the application layer clock which saves

energy required to synchronize at the application layer.

The nodes using the cross layer time synchronization shown

in Fig. 3 is assumed to be synchronized in phase or phase

synchronization can be achieved by using any application layer

protocol like FTSP once or a simple cross layer packet including

one timestamp can also provide the time phase

synchronization.

Fig. 3. Cross-Layer Time synchronization

Fig. 4. Flowcharts of time synchronization at different layers

To elaborate the cross layer approach, flowcharts are shown

in Fig. 4. At physical layer, symbol timing recovery is applied,

frequency offset is estimated and applied to physical layer

clock. At application layer timestamps are broadcasted,

frequency offset is estimated and applied to application layer

clock. In cross layer design, symbol timing recovery is applied,

frequency offset is estimated and applied to physical layer

clock as well as application layer clock.

IV. EXPERIMENTATION

Experimentation setup for the proposed model is done using

two TMS320C6713 DSP Starter Kits (DSKs) [35]. The

experimentation consists of two synchronization systems, one

CLOCK REC AUGMENTS APP LAYER TIME SYNC 6

at the physical layer and one at the application layer. The

frequency offset computed at both layers comes out to be

same which shows that the physical layer frequency offset can

be used to adjust the application layer clock. Keeping this in

mind, an experimental setup is created that uses two DSKs

connected together as shown in Fig. 5.

Fig. 5. Experimental setup

DSK A acts as a transmitter and DSK B acts as a receiver. Both

DSKs needs to be synchronized in time. DSK A uses binary Pulse

Amplitude Modulation (PAM) with symbols +1 and −1.

Symbols are generated with a symbol rate of 4000

symbols/sec. The sampling rate is set to be 16000

samples/sec. The samples per symbol are computed to be four

and total samples are 22000. Binary PAM symbols are up-

sampled by four and pulse shaped using a square root raise

cosine with fifty percent excess bandwidth and transmitted

over the channel to DSK B. DSK B initialize its processing by

match filtering the data. Matched filter uses the square root

raise cosine with fifty percent excess bandwidth. Symbols are

down sampled to two samples/symbol and fed to the system

shown in Fig. 1 for time synchronization at the physical layer.

Time synchronization at DSK B involves piecewise parabolic

interpolator, zero crossing timing error detector, proportional

plus integrator loop filter and modulo 1 decrement counter

interpolation control. The parameters that are needed for the

loop filter for acquisition and tracking efficiency are 𝐵𝑛𝑇𝑠 =

0.005, 𝜉 =
1

√2
, 𝐾𝑝 = 2.7, 𝐾0 = −1, 𝑁 = 2 . A graph of the

fractional interval is obtained and shown in Fig. 6. The slope of

the fractional interval increases with time showing the positive

frequency offset. So there exist frequency offset between the

clocks of DSK A and DSK B.

The slope of the fractional interval is used to compute the

frequency offset. LS estimate is used to find the slope of the

fractional interval. This estimate improves by increasing the

number of symbols transmitted as shown in the Fig. 7. LS is

applied to the fractional interval graph using different number

of transmitted symbols. The result shows that estimate of

frequency offset improves in accuracy by increasing the

number of transmitted symbols. The physical layer offset over

22000 symbols is found to 1.3139 ppm.

Clock jitter of DSK B is found by taking the histogram of the

variations in clock and comes out to be Gaussian as shown in

Fig. 8. These clock variation are also visible in Fig. 6 and hence

this fractional interval results can be used to visualize the clock

jitter.

Fig. 6. Timing error and fractional interval over 22000 symbols

Fig. 7. Physical Layer frequency offset computed for various number of
symbols transmitted

DSK A transmits its time stamps to DSK B. On the reception

of time stamp message, DSK B also note down its clock value.

A total of twenty two timestamps are transmitted from DSK A

to DSK B. These timestamps are used to compute the

frequency offset at the application layer. Application layer

frequency offset is estimated using LS estimate on the

timestamps. Fig. 9 corresponds to the application layer clocks

of DSK A and DSK B running untethered.

Clock 1 is the clock of DSK A and clock 2 is the clock of DSK

B. LS estimate is used to estimate the frequency offset of the

application layer clocks. The slope of the line shown in Fig. 9

corresponds to the frequency offset of the application layer

clocks running on DSK A and DSK B. Fig. 10 shows the

application layer frequency offset between the clocks of DSK A

and DSK B computed using different number of timestamps.

CLOCK REC AUGMENTS APP LAYER TIME SYNC 7

The frequency offset is computed here using two to twenty

two number of timestamps and as shown, increasing number

of time stamp increases the accuracy of the computed

frequency offset.

Fig. 8. Clock jitter

Fig. 9. Application Layer frequency clocks of DSK A and DSK B estimated using
LS

The application layer clock offset comes out to be 1.4557 ppm

for twenty two timestamps which is nearly same as the

physical layer offset that is 1.3139 ppm.

Fig. 11 shows a comparison of the physical layer frequency

offset and application layer frequency offset. The frequency

offset at the application layer and at physical layers converges

to nearly same value. If accuracy needs to be improved then

more number of timestamps are required to converge the

frequency offset to the physical layer frequency offset. This

comparison shows that the frequency offset at both the layers

of nodes is same as expected and the physical layer frequency

offset can be applied to application layer clocks for the

correction of clock frequency. This approach saves the amount

of energy required to distribute timestamps and compute

frequency offset at the application layer, as physical layer
frequency offset can be applied at application layer.

Fig. 10. Application Layer frequency offset computed using various number of
timestamps

Fig. 11. Comparison of Application Layer and Physical Layer frequency
offset

V. MATHEMATICAL ANALYSIS

Cross-layer design helps to make any distributed system

energy efficient. In this section energy efficiency of the

proposed cross layer design is analyzed.

Energy at the application layer is the energy required to

transmit timestamps. A timestamp transmission corresponds

to one packet transmission and the energy required to

transmit one packet is the same amount of energy required to

transmit one timestamp. Keeping this in mind, energy at the

application layer can be written as,

𝐸𝐴𝑃𝑃 = 𝐸𝑃 × 𝑁𝑃 (12)

CLOCK REC AUGMENTS APP LAYER TIME SYNC 8

Where EAPP is the energy at application layer, EP is the energy

required to transmit one packet and NP is the number of

packets or timestamps required to achieve frequency error

correction at application layer clock. Equation 12 shows that

increasing number of packets will increase the energy

requirements at the application layer whereas the accuracy of

frequency offset computation increases. Energy required per

packet can defined in terms of total bits in a packet and total

bits in a sample as,

𝐸𝑃 =
𝑁𝑏

𝑁𝑚

× 𝐸𝑆 (13)

Where Nb are the bits in one packet or time stamp, Nm are

the bits in one sample and ES is the energy required to transmit

one sample. Nb holds a direct relation to EP which means that

increasing bits in a packet will increase the energy required per

packet. Nm holds inverse relation to EP reveals that decrease in

number of bits per sample will increase energy requirement.

Using equation 12 and 13, application layer energy can be

written as,

𝐸𝐴𝑃𝑃 =
𝑁𝑃𝑁𝑏

𝑁𝑚

× 𝐸𝑆 (14)

Above equation shows that application layer energy will

increase with the increase in energy required to transmit one

sample, number of packets and number of bits per packet.

Energy at the physical layer can be defined using energy

required to transmit one symbol and total number of symbols

need to be transmitted,

𝐸𝑃𝐻𝑌 = 𝐸𝑠𝑦𝑚 × 𝑁𝑠𝑦𝑚 (15)

Where EPHY is the energy at physical layer, Esym is the energy

required to transmit one symbol and Nsym are the total

symbols. Increase in symbol energy or symbols will increase

the energy requirement at physical layer. Esym can be defined

as,

𝐸𝑠𝑦𝑚 =
𝑁𝑏𝑠𝑦𝑚𝑁𝑏

𝑁𝑚

× 𝐸𝑆 (16)

Where Nbsym are the number of bits in one symbol. Analyzing

above equation yields that energy per symbol also have a

direct relation with sample energy and inverse relation with

bits in one sample. Whereas increase in bits per symbol

increases energy required to transmit one symbol. The above

equation can be utilized to compute the energy required to

transmit one symbol when bits in one symbol, bits in one

packet, bits in one sample and energy required to transmit one

sample are known. Using equation 15 and 16, energy at the

physical layer can be written as,

𝐸𝑃𝐻𝑌 =
𝑁𝑠𝑦𝑚𝑁𝑏𝑠𝑦𝑚

𝑁𝑚

× 𝐸𝑆 (17)

Above equation shows that physical layer energy will

increase with the increase in energy required to transmit one

sample, number of symbols and number of bits per symbol.

Using this equation, total physical layer energy required to

transmit the complete packet can be computed.

Energy efficiency of the proposed cross layer design can be

defined as a ratio of energies at the application layer and

physical layer,

𝐸𝑒𝑓𝑓 =
𝐸𝐴𝑃𝑃

𝐸𝑃𝐻𝑌

 (18)

Where E eff is the cross layer energy efficiency that provides

the relation of application layer energy to physical layer

energy. Using equation 14 and 17 in 18 gives,

𝐸𝑒𝑓𝑓 =

𝑁𝑃𝑁𝑏

𝑁𝑚
× 𝐸𝑆

𝑁𝑠𝑦𝑚𝑁𝑏𝑠𝑦𝑚

𝑁𝑚
× 𝐸𝑆

 (19)

or

𝐸𝑒𝑓𝑓 =
𝑁𝑃𝑁𝑏

𝑁𝑠𝑦𝑚𝑁𝑏𝑠𝑦𝑚

 (20)

Equation 20 shows that energy efficiency will increase if

number of packets increases. Similarly decreasing number of

symbols also ensure increase in energy efficiency. This

equation has the significance importance in computing the

cross layer energy efficiency.

Cross layer design ensures usage of one packet to

synchronize at physical layer as well as application layer. The

packet must have enough symbols so that the receiver can

lock the timing frequency offset. This packet also have a time

stamp of the sender so that receiver can also synchronize in

timing phase. The number of symbols in this packet can be

found by exploiting the fact that application layer clock jitter

and physical layer clock jitter is same because both have same

hardware clock. The Cramer-Rao Lower Bound (CRLB) is the

minimum possible variance of the timing frequency error at

the physical layer which is given by 21 for the PAM systems

[31].

1

𝑇2
𝐶𝑅𝐿𝐵(𝜏) =

1

8𝜋2 𝜉

1

𝐸𝑆

𝑁0

 (21)

Where T is the symbol time, CRLB(τ) is the variance when

timing frequency error τ is estimated, ξ is the loop parameter

and ES is the symbol energy. If R is the symbol rate then

equation 21 can be written as

CLOCK REC AUGMENTS APP LAYER TIME SYNC 9

𝐶𝑅𝐿𝐵(𝜏) =
1

8𝜋2 𝜉𝑅2

1

𝐸𝑆

𝑁0

 (22)

To estimate the timing frequency offset at the application

layer, LS approach can be applied to N time stamps t[n]. It

gives the minimum LS error which is variance [34]

𝑣𝑎𝑟(𝑡) = ∑(𝑡[𝑛] − 𝑡̅)2 −
(∑ 𝑛𝑡[𝑛]𝑁−1

𝑛=0 −
𝑁
2

(𝑁 − 1)𝑡̅)
2

𝑁(𝑁2 − 1)
12

𝑁−1

𝑛=0

(23)

 As the cross layer design suggest that variance of clocks at
both layers is same, hence equating 22 and 23 gives

1

8𝜋2 𝜉𝑅2

1

𝐸𝑆

𝑁0

= ∑(𝑡[𝑛] − 𝑡̅)2

𝑁−1

𝑛=0

−
(∑ 𝑛𝑡[𝑛]𝑁−1

𝑛=0 −
𝑁
2

(𝑁 − 1)𝑡̅)
2

𝑁(𝑁2 − 1)
12

(24)

The above equation can be written in term of symbol rate

as

𝑅 =
1

𝜋 √

𝑁(𝑁2 − 1)

2
3

𝜉
𝐸𝑆
𝑁0

𝐴
 (25)

Where,

 𝐴 =
𝑁(𝑁2−1)

12
∑ (𝑡[𝑛] − 𝑡 ̅)2𝑁−1

𝑛=0 − (∑ 𝑛𝑡[𝑛]𝑁−1
𝑛=0 −

𝑁

2
(𝑁 − 1)𝑡 ̅)

2

Equation 25 shows that the synchronization accuracy given

by N timestamps at the application layer can be achieved

using cross layer design with symbol rate R. The required

symbol rate decreases by increasing symbol to noise energy
𝐸𝑆

𝑁0
 and number of time stamps N as shown in Fig. 12.

Fig. 12. Required symbol rate for cross layer approach

Fig. 13. Required symbols for cross layer packet

Now if total transmission time is TT, then number of symbols

NSYM in one cross layer packet can be computed as,

𝑁𝑆𝑌𝑀 = 𝑅 × 𝑇𝑇 (26)

Using equation 25 and 26 we have

𝑁𝑆𝑌𝑀 =
𝑇𝑇

𝜋 √
𝑁(𝑁2 − 1)

2
3

𝜉
𝐸𝑆
𝑁0

𝐴
 (27)

Number of symbols required in cross layer packet decreases

by increasing the
𝐸𝑆

𝑁0
 which is shown in Fig. 13.

Equation 27 gives the number of symbols in one cross layer

packet that are required for timing frequency synchronization

which achieves the accuracy of application layer time

synchronization using N time stamps. Fig. 14 shows the

relation of number of time stamps at the application layer and

total symbols required in one cross layer packet.

Fig. 14. Required symbols for cross layer packet with respect to time stamps
used at application layer

CLOCK REC AUGMENTS APP LAYER TIME SYNC 10

Fig. 15 shows the structure of the cross layer packet.

Fig. 15. Cross layer packet

The total symbols in one cross layer packet that can be used

for timing frequency synchronization as well as timing phase

synchronization can be written as

𝑇𝑆𝑌𝑀 = 𝑁𝑆𝑌𝑀 + 𝑃𝑆𝑌𝑀 (28)

where TSYM are total symbols, NSYM are the symbols used for

timing frequency synchronization and PSYM are the symbols

used for timing phase synchronization which are equal to the

number of symbols in one time stamp. Using equation 27 and

28 we have

𝑇𝑆𝑌𝑀 =
𝑇𝑇

𝜋 √

𝑁(𝑁2 − 1)

2
3

𝜉
𝐸𝑆
𝑁0

𝐴
+ 𝑃𝑆𝑌𝑀 (29)

VI. CONCLUSIONS

The cross layer time synchronization uses one packet to

synchronize in time phase and time frequency (drift) and that

eliminates the need of application layer time synchronization

protocol and hence it saves energy required for computations

and transmission of multiple timestamps exchange and proves

good for the energy constrained environments. The

experimentation results shows that the heart of both the

physical layer and application layer clock is hardware oscillator

(clock). The frequency offset (drift) at application layer and

physical layer is the same offset that occurs in hardware clock

as both of the mentioned clocks are derived from the hardware

clock. That’s why the frequency offset computed at the

physical layer is computed to be same as the frequency offset

at the application layer and can be corrected directly using

physical layer clock frequency offset. There will be no need to

use any multiple message exchange algorithm on the

application layer to set the application layer clock frequency

offsets. This cross layer design can be used in any distributed

wireless network like Wireless Sensor Network. This approach

can also estimate offsets in multi user case, such as

cooperative communication. Nodes don’t have to participate

in synchronization procedure sequentially for higher layer

synchronization and instead a cross layer approach can

estimate all offsets in simultaneous cooperative

synchronization.

VII. ACKNOWLEDGMENTS

Thanks to Almighty ALLAH, The Merciful, The Beneficent,

whose bountiful blessings and exaltation flourished our

thoughts and thrived our ambitions to have the cherish fruit of

my modest efforts in the form of this research. We offer our

humblest thanks from the core of my heart to the holy Prophet

(Peace be upon Him) who is forever a model of guidance and

knowledge for humanity. We feel great depth of obligation for

our loving parents and wife whose prayers have enabled us to

reach at this stage.

I (Usman Hashmi) owe a special debt of gratitude to my

reverend supervisor Dr. Qasim Mahmood Chaudhari for their

invaluable guidance, expert advices, cooperation, encouraging

attitude, positive criticism and healthy suggestions. I also wish

to record my sincere appreciations to Dr. Imran Shafi, Dr. Affan

Ahmed, Dr. Ismail Shah, Dr. Jamil Ahmed and Engr. Ammar
Ajmal for their support and guidance.

NOMENCLATURE

µ(k) Fractional interval

ω(t) Angular frequency of oscillator

τ Timing frequency error

ξ Loop parameter

a(k) Binary PAM kth symbol

e(k) Timing error signal

EP Energy required to transmit one packet

ES Energy required to transmit one sample

EAPP Energy at application layer

Eeff Energy efficiency

EPHY Energy at physical layer

Esym Energy required to transmit one symbol

fd Symbol rate

fe Frequency error

fs Sampling rate

m Slope of the fractional change

m(k) Basepoint index

Nb Bits per packet

Nm Bits per sample

NP Number of packets

Nbsym bits per symbol

NSYM Symbols used for timing frequency synchronization

Nsym Total symbols

PSYM Symbols used for timing phase synchronization

R Symbol rate

CLOCK REC AUGMENTS APP LAYER TIME SYNC 11

T Symbol time

TT Total transmission time

TSYM Number of symbols per cross layer packet

xi ith timestamp of receiver

yi ith timestamp of transmitter

REFERENCES

[1] Ardakani, S. P., Padget, J. and Vos, M. D., HRTS: A Hierarchical Reactive
Time Synchronization Protocol for Wireless Sensor Networks,Ad Hoc
Networks. Springer International Publishing, vol. 129, pp. 47-62 , 2014.

[2] Yildirim, K. and Kantarci, A., External Gradient Time Synchronization in
Wireless Sensor Networks, IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 3, pp. 633-641, 2014.

[3] Yildirim, KS. and Kantarci, A., Time Synchronization Based on Slow
Flooding in Wireless Sensor Networks, IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no.1, pp. 224-253, 2014.

[4] Goncalves, F. , Suresh, L., Pereira, RL., Trindade, J. and Vazao, T., Light-
Weight Time Synchronization For Wireless Sensor Networks, IEEE
Conference on Future Internet Communications (CFIC), pp. 18, 2013.

[5] Xu, M. and Xu, W., TACO: Temperature-Aware Compensation for Time
Synchronization in Wireless Sensor Networks, International IEEE
Conference on Mobile Ad-Hoc and Sensor Systems (MASS) , 2013.

[6] He, J., Chen, J., Cheng, P. and Cao, X., Secure Time Synchronization in
Wireless Sensor Networks: A Maximum Consensus Based Approach, IEEE
Transactions on Parallel and Distributed Systems, 2013.

[7] Kumar, S., Lee, Y. and Lee, SR., Time Synchronization in Wireless Sensor
Networks: Estimating Packet Delay, The 1st International Conference on
Convergence and it’s Application, vol. 24, pp. 68 - 71, 2013.

[8] Kumar, S., Chandra, AA., Sanjaa, B., Hur, K. and Lee, SR., Estimation of
Packet Delay Components for Time Synchronization in Wireless Sensor
Networks, Advanced Science and Technology Letters, vol.28, pp.104-109,
2013.

[9] Liu, J., Zhou, Z., Peng, Z., Cui, J.-H., Zuba, M. and Fiondella, L., MobiSync:
Efficient Time Synchronization for Mobile Underwater Sensor Networks,
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 2, pp.
406 - 416, 2013.

[10] Jiang, Y., Fan, Y. and Chen, X., Time Synchronization Protocol for Wireless
Sensor Networks with Node Monitoring, Journal of Information and
Computational Science, vol. 10, no. 4, pp. 1213 - 1220, 2013.

[11] Wu, Y.-C., Chaudhari, Q. and Serpedin, E., Clock Synchronization of
Wireless Sensor Networks, Signal Processing Magazine, IEEE, vol. 28, no.
1, pp. 124 - 138, 2011.

[12] Ferrari, F., Zimmerling, M., Thiele, L., and Saukh, O., Efficient network
flooding and time synchronization with Glossy, 10th International
Conference on Information Processing in Sensor Networks (IPSN),
Chicago, IL , 2011.

[13] Rahamatkar, S. and Agarwal, A., An Approach towards Lightweight,
Reference Based, Tree Structured Time Synchronization in WSN,
Advances in Computer Science and Information Technology, vol. 131, pp.
189-198, 2011.

[14] Ranganathan, P. and Nygard, K., Time synchronization in wireless sensor
network: A survey, International Journal of UbiComp, vol. 1 , no. 2, pp.
92-102, 2010.

[15] Lasassmeh, S. and Conrad, J., Time synchronization in wireless sensor
networks: A survey, in IEEE SoutheastCon 2010 (SoutheastCon), Concord,
NC, 2010.

[16] Rice, M., Digital communication: A discreet time approach, Prentice Hall,
2008.

[17] Chaudhari, Q. M., Serpedin, E., Suter, B. W., Kyoung-Lae, N., Novel Clock
Phase Offset and Skew Estimation Using Two-Way Timing Message
Exchanges for Wireless Sensor Networks, Communications, IEEE
Transactions, Vol. 55, No. 4, pp. 766-777, 2007.

[18] Chakrabortyy, I., Lynch, N., Fan, R. , Clock Synchronization for Wireless
Networks, Principles of Distributed Systems, Vol. 3544/2005 , No. 900,
2005.

[19] Buy, U., Kshemkalyani, A. D., Sundararaman, B., Clock Synchronization
for Wireless Sensor Networks: A Survey, Ad Hoc Networks, Vol. 3 , No. 3,
pp. 281-323, 2005.

[20] Li, Q., Rus, D., Global Clock Synchronization in Sensor Networks,
INFOCOM, Twenty-third Annual Joint Conference of the IEEE Computer
and Communications Societies, 2004.

[21] Maroti, M., Kusy, B., Simon, G., Ledeczi, A., The flooding time
synchronization protocol, SenSys ’04 Proceedings of the 2nd
international conference on Embedded networked sensor systems , New
York, USA, 2004.

[22] Liu, K., Thesis on Architectures for symbol timing synchronization,
Brigham Young University, 2004.

[23] Eskelinen, P. , Ono, S., Kihara, M., Digital Clocks for Synchronization and
Communications, Artech House, 2003.

[24] Veerarittiphan, C., Sichitiu, M. L., Simple, accurate time synchronization
for wireless sensor networks, Wireless Communications and Networking,
pp. 1266-1273, 2003.

[25] Ganeriwal, S., Kumar, R. and Srivastava, M. B., Timing-sync protocol for
sensor networks, in SenSys ’03 Proceedings of the 1st international
conference on Embedded networked sensor systems, New York, USA,
2003.

[26] Abdel-Ghaffar, H. S., Analysis of synchronization algorithms with time-
out control over networks with exponentially symmetric
delays,Communications, IEEE Transactions, vol. 50, no. 10, pp. 1652
1661, October 2002.

[27] Girod, L., Estrin, D., Elson, J., Fine-grained network time synchronization
using reference broadcasts, ACM SIGOPS Operating Systems Review -
OSDI 02: Proceedings of the 5th symposium on Operating systems design
and implementation, New York, USA, 2002.

[28] Romer, K., Time synchronization in ad hoc networks, MobiHoc 01
Proceedings of the 2nd ACM international symposium on Mobile ad hoc
networking and computing, New York, USA, 2001.

[29] Harris,F. J. and Rice, M., Multirate digital filters for symbol timing
synchronization in software defined radios,Selected Areas in
Communications, vol. 19, no. 12, pp. 2346 - 2357, December 2001.

[30] Moeneclaey, M., Fechtel, S. A., Meyr, H., Digital Communication
Receivers: Synchronization, Channel Estimation and Signal Processing
(2nd ed.) USA: Wiley-Interscience, 1998.

[31] D’Andrea, A. N., Mengali, U., Synchronization Techniques for Digital
Receivers (Applications of Communications Theory) (1st ed.) Pisa, Italy:
Springer, 1997.

[32] Gardner, F. M., Gardner, R.C., Interpolation in digital modems. I.
Fundamentals, Communications, IEEE Transactions, Vol. 41, No. 3, pp.
501-507, 1993.

[33] Erup, L., Gardner, F. M., Harris, R.A., Interpolation in digital modems. II.
Implementation and performance, Communications, IEEE Transactions,
Vol. 41, No. 6, pp. 998-1008, 1993.

[34] Kay, S. M., Fundamentals of Statistical Signal Processing, Estimation
Theory (1st ed.), Prentice Hall, 1993.

[35] TMS320C6713 DSP Starter Kit (DSK), Texas Instruments, 1995-2014.
[Online]. Available: http://www.ti.com/tool/tmdsdsk6713.

