Imad Laktineh

Imad Laktineh
Institut de Physique Nucléaire de Lyon | IPNL · Department of Physics

About

806
Publications
49,947
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,021
Citations
Citations since 2016
31 Research Items
2554 Citations
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400

Publications

Publications (806)
Preprint
Full-text available
With the HL-LHC upgrade of the LHC machine, an increase of the instantaneous luminosity by a factor of five is expected and the current detection systems need to be validated for such working conditions to ensure stable data taking. At the CERN Gamma Irradiation Facility (GIF++) many muon detectors undergo such studies, but the high gamma backgroun...
Article
PurposeThe Large Hadron Collider (LHC) at European Organization for Nuclear Research is planned to be upgraded to the high luminosity LHC. Increasing the luminosity makes muon triggering reliable and offline reconstruction very challenging. To enhance the redundancy of the Compact Muon Solenoid (CMS) Muon system and resolve the ambiguity of track r...
Preprint
Full-text available
The CALICE Semi-Digital Hadron Calorimeter technological prototype completed in 2011 is a sampling calorimeter using Glass Resistive Plate Chamber (GRPC) detectors as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototy...
Article
The CALICE Semi-Digital Hadronic CALorimeter (SDHCAL) is the first technological prototype in a family of high-granularity calorimeters developed by the CALICE Collaboration to equip the experiments of future lepton colliders. The SDHCAL is a sampling calorimeter using stainless steel for absorber and Glass Resistive Plate Chambers (GRPC) as a sens...
Preprint
Full-text available
The CALICE Semi-Digital Hadronic CALorimeter (SDHCAL) is the first technological prototype in a family of high-granularity calorimeters developed by the CALICE Collaboration to equip the experiments of future lepton colliders. The SDHCAL is a sampling calorimeter using stainless steel for absorber and Glass Resistive Plate Chambers (GRPC) as a sens...
Article
During the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb ⁻¹ . The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experimen...
Preprint
Full-text available
During the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb$^{-1}$. The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experi...
Article
The present RPC Link System has been servicing as one of the CMS subsystems since installation in 2008. Although the current Link System has been functioning well for the past 13 years, the aging of its electronic components and lack of radiation hard ASICs could present problems for future operations. Additionally, the needs to have a more robust...
Article
The expected radiation background in the CMS RPC system has been studied using the MC prediction with the CMS FLUKA simulation of the detector and the cavern. The MC geometry used in the analysis describes very accurately the present RPC system but still does not include the complete description of the RPC upgrade region with pseudorapidity 1.9 < |...
Article
A new generation of resistive plate chambers, capable of withstanding high particle fluxes (up to 2000 Hz · cm ⁻² ) and instrumented with precise timing readout electronics is proposed to equip two of the four high pseudorapidity stations of the CMS muon system. Double-gap RPC detectors, with each gap made of two 1.4 mm High Pressure Laminate elect...
Article
PurposeTo complement and ensure redundancy in the endcap muon system of the Compact Muon Solenoid (CMS) detector and to extend the Resistive Plate Chamber (RPC) system coverage, improved RPCs (iRPCs) with either orthogonal layer strips with one-end electronics or single layer strips with two-end electronics providing more precise time measurement w...
Article
As part of the Compact Muon Solenoid experiment Phase-II upgrade program, new resistive plate chambers will be installed in the region at low angle with respect to the beam collision axis, in order to improve the detection of muons with a low transverse momentum. High background conditions are expected in this region during the high-luminosity phas...
Article
During Phase-2 of the LHC, known as the High Luminosity LHC (HL-LHC), the accelerator will increase its instantaneous luminosity to 5 x 10(34) cm(-2) s(-1), delivering an integrated luminosity of 3000 fb(-1) over 10 years of operation starting from 2027. In view of the HL-LHC, the CMS muon system will be upgraded to sustain efficient muon triggerin...
Article
The CALICE Semi-Digital Hadronic CALorimeter (SDHCAL) prototype using Glass Resistive Plate Chambers as a sensitive medium is the first technological prototype of a family of high-granularity calorimeters developed by the CALICE collaboration to equip the experiments of future leptonic colliders. It was exposed to beams of hadrons, electrons and mu...
Article
The CMS experiment implements a two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High Level Trigger. To cope with the more challenging luminosity conditions, a new Level-1 architecture has been deployed during run II. This new architecture exploits in a better way the redundancy and comp...
Article
Resistive Plate Chambers have a very important role for muon triggering both in the barrel and in the endcap regions of the CMS experiment at the Large Hadron Collider (LHC). In order to optimize their performance, it is of primary importance to tune the electronic threshold of the front-end boards reading the signals from these detectors. In this...
Article
The CMS experiment recorded 177.75 fb −1 of proton-proton collision data during the RUN-1 and RUN-2 data taking period. Successful data taking at increasing instantaneous lumi-nosities with the evolving detector configuration was a big achievement of the collaboration. The CMS RPC system provided redundant information for the robust muon triggering...
Article
The CMS experiment has 1054 RPCs in its muon system. Monitoring their currents is the first essential step towards maintaining the stability of the CMS RPC detector performance. The current depends on several parameters such as applied voltage, luminosity, environmental conditions, etc. Knowing the influence of these parameters on the RPC current i...
Article
on behalf of the CMS collaboration A : The second LHC long shutdown period (LS2) is an important opportunity for the CMS Resistive Plate Chambers (RPC) to complete their consolidation and upgrade projects. The consolidation includes detector maintenance for gas tightness, HV (high voltage), LV (low voltage) and slow control operation. All services...
Preprint
Full-text available
The expected radiation background in the CMS RPC system has been studied using the MC prediction with the CMS FLUKA simulation of the detector and the cavern. The MC geometry used in the analysis describes very accurately the present RPC system but still does not include the complete description of the RPC upgrade region with pseudorapidity $1.9 <...
Preprint
Full-text available
The CALICE Semi-Digital Hadronic CALorimeter (SDHCAL) prototype using Glass Resistive Plate Chambers as a sensitive medium is the first technological prototype of a family of high-granularity calorimeters developed by the CALICE collaboration to equip the experiments of future leptonic colliders. It was exposed to beams of hadrons, electrons and mu...
Article
In the High Luminosity Large Hadron Collider (HL-LHC) program, during the next years, the instantaneous luminosity will increase up to 5 × 10 34 cm −2 s −1 which means a factor five higher than the nominal LHC luminosity. In that period, the present CMS Resistive Plate Chambers (RPC) system will be subjected to background rates higher than those fo...
Article
High-sensitivity double-gap phenolic resistive plate chambers (RPCs) are studied for the Phase-2 upgrade of the Compact Muon Solenoid (CMS) muon system at high pseudorapidity η. Whereas the present CMS RPCs have a gas gap thickness of 2 mm, we propose to use thinner gas gaps, which will improve the performance of these RPCs. To validate this propos...
Article
Full-text available
The high granularity of the CALICE Semi-Digital Hadronic CALorimeter (SDHCAL) provides the capability to reveal the track segments present in hadronic showers. These segments are then used as a tool to probe the behaviour of the active layers in situ, to better reconstruct the energy of these hadronic showers and also to distinguish them from elect...
Article
The Semi-Digital Hadronic CALorimeter (SD2 HCAL) is one of the two hadronic calorimeter options proposed 3 by the International Large Detector (ILD) project for the future 4 International Linear Collider (ILC) experiments . It is a sampling 5 calorimeter with 48 active layers made of Glass Resistive Plate 6 Chambers (GRPCs) and their embedded elect...
Article
Full-text available
The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to $6.10^{34} cm^{-2} s^{-1}$ . The region of the forward muon spectrometer ($|{\eta}| > 1.6$) is no...
Article
Full-text available
The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collid...
Article
Full-text available
The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-componen...
Article
Full-text available
The Semi-Digital Hadronic CALorimeter(SDHCAL) using Glass Resistive Plate Chambers (GRPCs) is one of the calorimeters proposed for particle physics experiments at the future electron-positron collider. It is a high granularity calorimeter which is required for the application of the particle flow algorithm in order to improve the jet energy resolut...
Article
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric-muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the...
Article
Full-text available
A large prototype of 1.3m3 was designed and built as a demonstrator of the semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each unit is built of an active layer made of 1m2 Glass Resistive Plate Chamber(GRPC) detector placed inside a cassette w...
Conference Paper
The Semi-Digital Hadronic CALorimeter (SDHCAL) is one of the two hadronic calorimeter options proposed by the International Large Detector (ILD) project for the future International Linear Collider (ILC) experiments. It is a sampling calorimeter with 48 active layers made of Glass Resistive Plate Chambers (GRPCs) and their embedded electronics. A f...
Article
Full-text available
Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadronic calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- a...
Article
Glass resistive plate chambers (GRPCs) have been proposed as the basic element for the JUNO top tracker detector. With good uniform performance and low cost, GRPCs are well suited for large area experiments. Glass RPCs used in underground experiments require specially designed cassette and gas flow systems, since the glass is fragile and easily cor...
Article
Full-text available
The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Ph...
Article
Full-text available
A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of...
Article
Full-text available
We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle ty...
Article
A Semi-Digital Hadronic Calorimeter using Glass Resistive Plate Chambers (GRPCs) is one of the calorimeters candidates proposed for particle physics experiments at the future electrons collider. It is a high granular calorimeter which is required for application of the particle flow algorithm in order to improve the jet energy resolution to achieve...
Article
Full-text available
We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in had...
Conference Paper
Full-text available
The Tomuvol collaboration aims to develop a high resolution, robust and low power consump-tion muon tracker in order to perform density imaging of volcanoes using atmospheric muons. The technology used originates from the R&D of the Calice collaboration, which is developing imaging calorimeters for ILC. Here we present the design of the Tomuvol det...
Article
Full-text available
High-energy (above a few hundred GeV) atmospheric muons are a natural probe for geophysical studies. They can travel through kilometres of rock allowing for a radiography of the density distribution within large structures, like mountains or volcanoes. A collaboration between volcanologists, astroparticle and particle physicists, Tomuvol was formed...
Article
Full-text available
One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the det...
Article
Full-text available
Muon imaging of volcanoes and of geological structures in general is actively being developed by several groups in the world. It has the potential to provide 3-D density distributions with an accuracy of a few percent. At this stage of development, comparisons with established geophysical methods are useful to validate the method. An experiment has...
Article
see paper for full list of authors, This revision: Removal of obsolete figures, addition of color version of some figures
Article
Full-text available
The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for pair-produced charged Higgs bosons in the framework of Two Higgs Doublet Models (2HDMs). The data of the four experiments have been statistically combined. The results are interpreted within the 2HDM for Type I and Type II benchmark scenarios. No statistically significant ex...
Article
Full-text available
The CALICE collaboration conducts calorimeter R&D for highly granular calorimeters, mainly for their application in detectors for a future lepton collider at the TeV scale. The activities ranges from generic R&D with small devices up to extensive beam tests with prototypes comprising up to several 100000 calorimeter cells. CALICE has validated the...
Article
Full-text available
The limitation of the detection rate of standard bakelite resistive plate chambers (RPC) used as muon detectors in the LHC experiments has prevented the use of such detectors in the high rate regions in both CMS and ATLAS detectors. One alternative to these detectors are RPCs made with low resistivity glass plates ($10^{10} {\rm \Omega .cm}$), a be...
Conference Paper
The limitation of the detection rate of standard bakelite resistive plate chambers (RPC) used as muon detector in LHC experiments is behind the absence of such detectors in the high η regions in both CMS and ATLAS detectors. RPCs made with low resistivity glass plates (1010 Ω.cm) could be an adequate solution to equip the high TJ regions extending...
Article
Full-text available
High energy (above 100 GeV) atmospheric muons are a natural probe for geophysical studies. They can travel through kilometres of rock allowing for a radiography of the density distribution within large structures, like mountains or volcanoes. A collaboration between volcanologists, astroparticle and particle physicists, TOMUVOL, was formed in 2009...
Article
Full-text available
Muon imagery of volcanoes and geological structures are presently and actively developed by several groups in the world. It has the potential to provide a 2-D or 3-D density distribution with an accuracy of a few percent. However, at this stage of the development of the method, comparisons with the results from established geophysical methods are n...
Article
Full-text available
An important technological step towards the realization of an ultra-granular hadronic calorimeter to be used in the future International Linear Collider (ILC) experiments has been made. A 33X50 cm2 GRPC detector equipped with a power-pulsed electronics board offering a 1cm2 lateral segmentation was successfully tested in a 3-Tesla magnet operating...
Article
Full-text available
We present results from a study of hadronic event structure in high energy e+e− interactions using the L3 detector at LEP. A new class of event shape distributions are measured at and above the Z boson pole for light quark (u, d, s, c) flavours. Energy flow correlations are studied for all hadronic events. Next-to-leading-log QCD calculations and Q...
Article
The IPNL group has developed a new kind of GRPCs to be used in future high energy experiments. The GRPCs are very thin and large (1m2). New resistive coating products were used to ensure good homogeneity and lower pad multiplicity of these chambers to be read out by 1cm2 pads. A new gas-distribution scheme was also developed and intended to reduce...
Article
Full-text available
Bose–Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using a Lévy stable distribution in conjunction with a model where a particle’s momentum is correlated with its space–time point of production, the τ-model. Using this descrip...
Article
A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The protot...
Article
Full-text available
71 pages, many figures See paper for full list of authors -
Article
Semileptonic decays B→ D*-ℓ+νX were selected from a sample of 3.1 million hadronic Z decays collected by the DELPHI detector at LEP. A topological search for semileptonic B decays to resonant and non-resonant D*-π+ states was performed and the ratio of the branching fractions: Br(B → D*-ℓ+νX)/Br(B → D*-+νX) + Br(B0 → + D*-ℓ+ν) = 0.19 ± 0.10(stat) ±...
Article
Full-text available
Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers....
Article
Full-text available
A new design of highly granular hadronic calorimeter using Glass Resistive Plate Chambers (GRPCs) with embedded electronics has been proposed for the future International Linear Collider (ILC) experiments. It features a 2-bit threshold semi-digital read-out. Several GRPC prototypes with their electronics have been successfully built and tested in p...
Article
A new generation of high granularity hadronic calorimeters was proposed recently to apply efficiently the so-called particle flow algorithms (PFA) techniques that aim to improve on jet energy resolution in the future International Linear Collider experiments. We present a new development on a gaseous hadronic calorimeter using glass resistive plate...
Article
The Particle Flow Algorithm (PFA) concept is one of the main features of the future ILC experiments. This implies a highly granular hadronic calorimeter. A 1 cm2 segmentation can be obtained using semi-digital embedded electronics together with an efficient gas detector. The Glass RPC is an excellent candidate that was successfully used in the BELL...
Article
Full-text available
The PEANUT experiment was designed to study the NuMi neutrino beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a micrometric tracking device and are interleaved with lead plates used as passive material. The detector is designed to precisely reconstruct the topo...
Article
Full-text available
An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is...
Article
Full-text available
A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions in the calorimeter. One of the main objectives of the CALICE program is to val...
Article
Full-text available
This ourse constitutes a brief introduction to probability applications in high energy physis. First the mathematical tools related to the diferent probability conepts are introduced. The probability distributions which are commonly used in high energy physics and their characteristics are then shown and commented. The central limit theorem and its...