A COUNTABLE DENSE HOMOGENEOUS SET OF REALS OF SIZE \aleph_1

ILIJAS FARAH AND MICHAEL HRUŠÁK AND CARLOS AZAREL MARTÍÑEZ RANERO

Abstract. We prove there is a countable dense homogeneous subspace of \mathbb{R} of size \aleph_1. The proof involves an absoluteness argument using an extension of $L_{\omega_1\omega}(\mathbb{Q})$ obtained by adding predicates for Borel sets.

A separable topological space X is countable dense homogeneous (CDH) if given any two countable dense subsets $D, D' \subseteq X$ there is a homeomorphism h of X such that $h[D] = D'$. The main purpose of this note is to show the following.

Theorem 1. There is a countable dense homogeneous set of reals X of size \aleph_1. Moreover, X can be chosen to be a λ-set.

Recall that a set of reals is a λ-set if all of its countable subsets are relatively G_δ, and therefore it cannot be completely metrizable. Theorem 1 and this remark solve problems 390 and 389 from [4]. Our construction necessarily uses the Axiom of Choice. In [6] it was shown that under sufficient large cardinal assumptions every CDH metric space in $L(\mathbb{R})$ is completely metrizable. Our proof of Theorem 1 uses Keisler’s completeness theorem for logic $L_{\omega_1\omega}(\mathbb{Q})$ (see §2), and the secondary purpose of this note is stating a somewhat general method for proving absoluteness of the existence of an uncountable set of reals properties of which are described using Borel sets as parameters.

1. A MEAGER COUNTABLE DENSE HOMOGENEOUS SET

Recall that every compact zero-dimensional subset of \mathbb{R} without isolated points is homeomorphic (even isomorphic as linearly ordered sets) to the Cantor set.

Lemma 1.1. There is an uncountable F_σ set F containing the rationals \mathbb{Q} and an F_σ equivalence relation $E \subseteq F \times F$ with all equivalence classes countable dense subsets of \mathbb{R}, such that for every dense $A \subseteq \mathbb{Q}$ there is a homeomorphism $h : F \to F$ satisfying

1. $h(\mathbb{Q}) = A$ and
2. $h(x) E x$ for every $x \in F$.

Proof. Let $F = \mathbb{Q} \cup D \cup \bigcup_{n \in \omega} F_n$, where \mathbb{Q} and D are disjoint countable dense subsets of \mathbb{R} and $\{F_n : n \in \omega\}$ is a family of pairwise disjoint copies of the Cantor
set disjoint from both \mathbb{Q} and D and such that every nonempty open set contains one of the F_ns. Denote by C the set of all relatively clopen subsets of all the Cantor sets F_n. For every pair $U, W \in C$ fix $h_{U,W}: U \rightarrow W$ an increasing homeomorphism. Let F be the (countable) family of all compositions of finitely many functions of the type $h_{U,W}$ and their inverses. Then define xEy if and only if $x, y \in Q \cup D$ or $y = h(x)$ for some $h \in F$. The relation E is then obviously an equivalence relation with countable and dense equivalence classes and it is F_σ as it is a countable union of compact sets.

Let $A \subseteq Q$ be dense. Enumerate C as $\{A_n : n \in \omega\}$, Q as $\{q_n : n \in \omega\}$, D as $\{d_n : n \in \omega\}$, $D \cup (Q \setminus A)$ as $\{c_n : n \in \omega\}$ and A as $\{a_n : n \in \omega\}$. Using the back-and-forth argument of Cantor, construct the homeomorphism $h: F \rightarrow F$ as an increasing union of strictly increasing partial homeomorphisms $h_n, n \in \omega$, so that, for every $n \in \omega$:

1. h_n extends h_{n-1},
2. $\text{dom}(h_n)$ consists of a finite subset of $Q \cup D$ and a finite union of elements of C,
3. $\text{range}(h_n)$ consists of a finite subset of $Q \cup D$ and a finite union of elements of C,
4. h_n restricted to $\text{dom}(h_n) \setminus (Q \cup D)$ is covered by finitely many elements of F,
5. $h_n(q) \in A$ for every $q \in Q \cap \text{dom}(h_n),$
6. $h_n(d) \in D \cup (Q \setminus A)$ for every $d \in D \cap \text{dom}(h_n),$
7. $\{q_m : m \leq n\} \cup \{d_m : m \leq n\} \cup \{\bigcup \{A_m : m \leq n\} \subseteq \text{dom}(h_n),$
8. $\{c_m : m \leq n\} \cup \{e_m : m \leq n\} \cup \{\bigcup \{A_m : m \leq n\} \subseteq \text{range}(h_n).$

Then $h = \bigcup_{n \in \omega} h_n$ is the desired homeomorphism of F. \hfill \Box

Recall that if E is an equivalence relation then a set X is E-saturated if for all $x \in X$ we have $x \in X$ if and only if $y \in X$.

Lemma 1.2. Assume Q, D, F, E and F are as in Lemma 1.1 and its proof. If $X \subseteq F$ is an E-saturated set such that for every countable $B \subseteq X$ there is an E-saturated $A \subseteq X$ containing B and a homeomorphism $h: X \rightarrow X$ satisfying $h[A] = Q$, then X is countable dense homogeneous.

Proof. Fix a countable dense subset B of X. Let g be an autohomeomorphism of X such that $g^{-1}(Q)$ is an E-saturated set containing B. Then $A = g[B]$ is a dense subset of Q. By Lemma 1.1 there is an autohomeomorphism h of F such that $h[Q] = A$ and $h(x)Ex$ for every $x \in F$. Therefore $h \upharpoonright X$ is an autohomeomorphism of X. Then $H = h^{-1} \circ g$ is an autohomeomorphism of X such that $H[B] = Q$ as required. \hfill \Box

2. **Absoluteness**

Recall that $L_{\omega_1 \omega}(Q)$ is an extension of the first-order logic that allows countable disjunctions and has quantifier Qx, ‘there exists uncountably many.’ It is well-known that completeness of this logic is useful for proving that the existence of certain objects of size \aleph_1 is absolute between models of ZFC (see [7, 1, 3, 5, 9]).

Let $L^{B}_{\omega_1 \omega}(Q)$ be the extension of $L_{\omega_1 \omega}(Q)$ allowing countably many Borel predicates in the following sense. For some Borel sets $A_n \subseteq (\mathbb{N}^\mathbb{N})^{k_n}$ ($n \in \mathbb{N}$) and Borel functions $f_n: (\mathbb{N}^\mathbb{N})^{k_n} \rightarrow \mathbb{N}^\mathbb{N}$ ($n \in \mathbb{N}$), we have relation and function symbols A_n.
and f_n of matching arity, and for $b_n \in \mathbb{N}^n$ ($n \in \mathbb{N}$) we have constant symbols b_n ($n \in \mathbb{N}$).

If ϕ is a sentence of $L^B_{\omega_1}(Q)$, we say that a model X of ϕ (with universe X) is correct if

1. each A_n is interpreted as $A_n \cap X^{k_n}$, each f_n is interpreted as $f_n \upharpoonright X^{l_n}$, each b_n is interpreted as b_n, and
2. if A_n is countable then $A_n \subseteq X$.

A model of an $L_{\omega_1}(Q)$ sentence is standard if it interprets Qx as ‘there exist uncountably many. Recall that a linear order is ω_1-like if it is uncountable yet each of its initial segments is countable.

Theorem 2. An $L^B_{\omega_1}(Q)$-sentence ϕ has a correct model if and only if it has a correct model in some forcing extension $\mathcal{V}^\mathcal{P}$ of the universe \mathcal{V}.

Let us postpone the proof of Theorem 2 for a moment. Fix an $L^B_{\omega_1}(Q)$-sentence ϕ. We shall define an $L_{\omega_1}(Q)$ sentence ϕ^M as follows. (For simplicity we shall treat only the case when we have only one Borel set, $A \subseteq \mathbb{N}^n$; a standard coding argument shows that the general case with infinitely many Borel sets, functions and constants is really not any more general.) First, the language of ϕ is expanded by adding new symbols $N, M, \{c_n : n \in \mathbb{N}\}, B$ and $\{N_s : s \in \omega^{<\omega}\}$. Let ϕ_0 be the conjunction of sentences stating the following:

1. $(\forall x)N(x) \Leftrightarrow \bigvee_{n \in \mathbb{N}} x = c_n$,
2. $(\forall x)B(x) \Leftrightarrow \bigvee_{x \in N^{<\omega}} x = N_s$,
3. axioms of formal arithmetic for c_n ($n \in \mathbb{N}$),
4. first-order properties of basic open sets $[s] = \{x \in \mathbb{N}^n : s \subseteq x\}$ for N_s ($s \in \omega^{<\omega}$),
5. if $M(x)$, then $x \in N_s$ for exactly one s of length n for all n, and moreover \{$s : x \in N_s\}$ forms a chain (all this can clearly be stated in L_{ω_1}).

Since A is a Borel set, we can fix arithmetic formulas $\psi_0(x, y)$ and $\psi_1(x, y)$ such that $x \in A \iff (\forall y)\psi_0(x, y) \iff (\exists y)\psi_1(x, y)$. Let ϕ_i ($i < 2$) be the translation of ψ_i into the language of N_s ($s \in \omega^{<\omega}$). Replace each occurrence of $A(x)$ in ϕ by $M(x) \wedge (\forall y)\phi_0(x, y)$, and let ϕ^M be the conjunction of thus modified ϕ, ϕ_0, and $(\forall x)(\exists y)\phi_0(x, y) \vee (\exists y)\neg\phi_1(x, y)$.

Lemma 2.1. An $L^B_{\omega_1}(Q)$ sentence ϕ has a correct model if and only if ϕ^M has a standard model.

Proof. Assume ϕ has a correct model $X = (X, A, \ldots)$. Extend its universe by adding all natural numbers, basic open subsets of \mathbb{N}^n, and the set Y of ‘witnesses’ defined as follows. If $x \in X \cap A$, pick y_x such that $\phi_0(x, y_x)$ holds. If $x \in X \setminus A$, pick y_x such that $\neg\phi_1(x, y_x)$ holds. Let $Y = \{y_x : x \in X\}$. Finally interpret M as X. It is clear that thus obtained model is a standard model of ϕ^M.

Now assume ϕ^M has a standard model, $3 = (Z, A', \ldots)$. Let $X = \{x \in Z : 3 \models M(x)\}$, and let \bar{X} be the reduction of $(X, A' \cap X, \ldots)$ to the language of ϕ. We only need to check that A is interpreted as $A' \cap X$. Note that $3 \models \phi_i(x, y)$ iff $\phi_i(x, y)$ holds, for $i < 2$. For every $x \in X$ we either have $3 \models \phi_0(x, y)$ or $3 \models \neg\phi_1(x, y)$ for some y. If $3 \models \phi_0(x, y)$ for some y, then $3 \models A(x)$ and $x \in A$. On the other hand, if $3 \models \phi_1(x, y)$ for some y, then $3 \models \neg A(x)$ and $x \notin A$. \qed
Proof of Theorem 2. By Lemma 2.1 \(\phi \) has a correct model if and only if \(\phi^M \) has a standard model. By Keisler’s completeness theorem for \(L_{\omega_1\omega}(Q) \) ([8]), \(\phi^M \) has a standard model if and only if it is not inconsistent in the proof system described in [8]. However, if \(\phi^M \) is inconsistent in \(V \), then it would remain such in the extension. If \(\phi^M \) has a model \(X \) in \(V \), then \(X \) is a weak model (see [8]) of \(\phi^M \) in \(V \), and again by Keisler’s theorem \(\phi^M \) has a standard model in \(V \) as well. □

In the following lemma \(A, B, C, D \) are unary relation symbols, \(h \) is a unary function symbol and \(f \) is a binary function symbol. We say that a property is expressible in \(L_{\omega_1\omega}(Q) \) if there is a sentence of \(L_{\omega_1\omega}(Q) \) such that in each of its correct models the interpretations \(A, B, C, D, f, h \) of these predicates satisfy the stated property.

Lemma 2.2. The following properties are expressible in \(L_{\omega_1\omega}(Q) \).

1. \(A \) is countable.
2. A binary relation \(< \) is an \(\omega_1 \)-like linear order.
3. \(h: A \to B \) is a surjection.
4. \(h: A \to B \) is a continuous function.
5. \(h: A \to B \) is a homeomorphism.
6. \(h: A \to B \) and it satisfies \(h[C] = D \).
7. \(f(x, \cdot): A \to B \) is a homeomorphism for every \(x \).
8. \(x \) is in the closure of \(A \).
9. \(A \) is a dense subset of \(B \).
10. \(A \) is a relatively open subset of \(B \).
11. \(A \) is a relatively \(G_\delta \) subset of \(B \).
12. \(B \) has a countable dense subset \(K \) that is relatively \(G_\delta \) in \(B \).
13. \(X \) is \(E \)-saturated, for a given Borel equivalence relation \(E \) all of whose equivalence classes are countable.

Proof. Items (3) and (6) are first-order definable, and (1) and (2) are straightforward to define using \(Qx \).

For (4), (5) and (8) one only needs to observe that since we have a standard model of \(L_{\omega_1\omega}(Q) \), quantifiers such as \((\forall \epsilon > 0)(\exists \delta > 0)\) are evaluated correctly. Item (7) is immediate from the preceding items, and (10) and (9) are immediate from (8). For (11), introduce new predicates \(A_n (n \in \mathbb{N}) \) and require that each \(A_n \) is a relatively open set of \(B \) and \(A = \bigcap_n A_n \).

To see (12), add a predicate for \(A \) and then use (1), (11), (2) and (9).

Let \(E \) be as in (13). It is well-known that there are Borel functions \(f_n (n \in \mathbb{N}) \) such that \(xEy \) if and only if \((\exists n)x = f_n(y) \), hence for (13) we only need to add names for \(f_n (n \in \mathbb{N}) \) to our language. □

3. Proof of Theorem 1

Assume \(Q, D, F, E \) and \(\mathcal{F} = \{ g_n : n \in \mathbb{N} \} \) are as in Lemma 1.1 and its proof. By Lemma 1.2, an uncountable \(E \)-saturated \(X \subseteq F \) with an \(\omega_1 \)-like ordering \(< \) such that

1. Each \(E \)-equivalence class is an interval in \(< \).
2. There is a function \(H: X \times X \to X \) such that for every \(x \in X \):
 a. \(H(x, \cdot) \) is an autohomeomorphism of \(X \),
(b) \(H(x, y) \in \mathbb{Q} \) if and only if \(y < x \)

will be countable dense homogeneous. By Lemma 2.2, the existence of \(X \) and \(H \)
can be expressed in \(L^{\omega_1}_{\omega}(\mathbb{Q}) \), and by Theorem 2 it suffices to show that \(X \) exists
in some forcing extension. In order to assure that \(X \) is uncountable, we will force with a ccc poset. In [2] it was proved that if \(\{ C_\alpha : \alpha < \omega_1 \} \) and \(\{ D_\alpha : \alpha < \omega_1 \} \)
are two families of pairwise disjoint countable dense subsets of \(\mathbb{R} \) then a ccc forcing
adds a homeomorphism \(h : \bigcup_{\alpha < \omega_1} C_\alpha \rightarrow \bigcup_{\alpha < \omega_1} D_\alpha \) such that \(h[C_\alpha] = D_\alpha \) for
every \(\alpha < \omega_1 \). Therefore, if we pick any \(\omega_1 \) sequence of equivalence classes so that
the first one is \(\mathbb{Q} \cup D \) and well-order their union \(X \) in type \(\omega_1 \) then a standard ccc
forcing such that MA holds in the extension adds \(H \) with the required properties.

Since \(\mathbb{Q} \) is a relatively \(G_\delta \) subset of \(\mathbb{F} \), it is a countable dense and relatively \(G_\delta \)
subset of \(X \). By the countable dense homogeneity, \(X \) is a \(\lambda \)-set.

References

Dept. of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Canada M3J 1P3

Matematički Institut, Kneza Mihaila 35, 11 000 Beograd, Serbia and Montenegro
E-mail address: ifarah@mathstat.yorku.ca
URL: http://www.mathstat.yorku.ca/~ifaraf

Instituto de matemáticas, UNAM, Unidad Morelia, A. P. 61-3, Xangari, C. P. 58089, Morelia, Mich., México
E-mail address: michael@matmor.unam.mx
E-mail address: azarel@matmor.unam.mx